WO2014080520A1 - レーザ装置 - Google Patents

レーザ装置 Download PDF

Info

Publication number
WO2014080520A1
WO2014080520A1 PCT/JP2012/080480 JP2012080480W WO2014080520A1 WO 2014080520 A1 WO2014080520 A1 WO 2014080520A1 JP 2012080480 W JP2012080480 W JP 2012080480W WO 2014080520 A1 WO2014080520 A1 WO 2014080520A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
solid
wavelength
state laser
wavelength conversion
Prior art date
Application number
PCT/JP2012/080480
Other languages
English (en)
French (fr)
Inventor
恭介 蔵本
柳澤 隆行
史生 正田
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to US14/412,360 priority Critical patent/US20150188281A1/en
Priority to JP2014548414A priority patent/JP5826409B2/ja
Priority to PCT/JP2012/080480 priority patent/WO2014080520A1/ja
Priority to CN201280077176.6A priority patent/CN104813550A/zh
Priority to EP12888974.8A priority patent/EP2924819A4/en
Publication of WO2014080520A1 publication Critical patent/WO2014080520A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam is generated with frequency components different from those of the incident light beams
    • G02F1/3534Three-wave interaction, e.g. sum-difference frequency generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/37Non-linear optics for second-harmonic generation
    • G02F1/377Non-linear optics for second-harmonic generation in an optical waveguide structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/0632Thin film lasers in which light propagates in the plane of the thin film
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08054Passive cavity elements acting on the polarization, e.g. a polarizer for branching or walk-off compensation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08086Multiple-wavelength emission
    • H01S3/0809Two-wavelenghth emission
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/10061Polarization control
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1645Solid materials characterised by a crystal matrix halide
    • H01S3/1653YLiF4(YLF, LYF)

Definitions

  • the present invention relates to a laser device used for a light source such as a projector device.
  • a device that displays a color image such as a projector device or a projection television
  • light sources of three colors R (red), G (green), and B (blue) are required as light sources.
  • wavelength conversion laser devices have been developed that use 900 nm band, 1 ⁇ m band, and 1.3 ⁇ m band laser light as the fundamental laser light, and convert the fundamental laser light into the second harmonic using a nonlinear material. Has been.
  • an apparatus composed of a semiconductor laser element, a solid-state laser element, and a wavelength conversion element (for example, see Patent Document 1 below).
  • a semiconductor laser element for example, a semiconductor laser element
  • a solid-state laser element for example, a semiconductor laser element
  • a wavelength conversion element for example, see Patent Document 1 below.
  • the wavelength spectrum width of the fundamental wave is very narrow, so the wavelength spectrum width of the double harmonic is also very narrow. is there.
  • This feature means that coherency is high, and there are various advantages.
  • speckle noise increases due to strong interference.
  • One way to reduce this speckle noise is to reduce coherency by mixing multiple wavelengths.
  • fundamental waves of a plurality of wavelengths may be generated and wavelength conversion may be performed on each.
  • FIG. 8 is a configuration diagram of such a wavelength conversion laser device.
  • 101 is a semiconductor laser that outputs laser light
  • 102 is a lens that collects laser light output from the semiconductor laser 101
  • 103 is a laser medium that generates wavelength A
  • 104 is a laser medium that generates wavelength B. is there.
  • fundamental waves of the wavelength A and the wavelength B are generated.
  • the fundamental wave incident on the wavelength conversion element 105 capable of wavelength conversion of both the wavelength A and the wavelength B, it becomes possible to take out two wavelength converted lights.
  • Patent Document 2 A device similar to this is also shown in Patent Document 2 below.
  • the present invention has been made to solve the above-described problems, and an object thereof is to obtain a laser device that is small, inexpensive, and easy to manufacture.
  • the laser device has a characteristic that a solid laser element having gains for a plurality of different wavelengths in different axial directions and a light loss increases as the light intensity increases for each wavelength light.
  • the solid-state laser element and the optical element are included in the resonator of the fundamental wave generated by the solid-state laser element, and oscillate at two or more wavelengths.
  • output light having a plurality of different wavelengths can be obtained with a single solid-state laser element.
  • FIG. FIG. 1 is a top view of the configuration of a broadband laser light source apparatus according to Embodiment 1 of the present invention.
  • reference numeral 1 denotes a semiconductor laser that outputs laser light
  • 2 denotes a lens that condenses the laser light output from the semiconductor laser 1.
  • Reference numeral 3 denotes a solid-state laser element made of a YLF material (Nd: YLF) added with Nd.
  • This Nd: YLF material is characterized in that the gain peak wavelength in one axial direction is around 1047 nm and the gain peak wavelength in the other axial direction is around 1053 nm.
  • the solid-state laser element 3 is arranged so that the direction perpendicular to the paper surface is a direction where the gain peak wavelength is 1047 nm, and the direction perpendicular to the paper surface is a direction where the gain peak wavelength is 1053 nm.
  • the oscillation wavelength of the semiconductor laser 1 is around 792 nm so that the Nd: YLF material that is the solid-state laser element 3 can be excited.
  • wavelength conversion elements (optical elements) 4 and 5 made of MgO-added LiNbO 3 are disposed.
  • the wavelength conversion element 4 is formed with polarization inversion so that second harmonic conversion (SHG) light can be generated with respect to 1047 nm light, and the polarization direction of the inversion polarization is on the paper surface. It is perpendicular to the direction. Thereby, wavelength conversion is possible for the 1047 nm light having the polarization direction perpendicular to the paper surface.
  • the wavelength conversion element 5 has polarization inversion so that SHG light can be generated with respect to 1053 nm light, and the polarization direction of the inversion polarization is horizontal to the paper surface. Thereby, wavelength conversion is possible for the 1053 nm light having the polarization direction horizontal to the paper surface.
  • the end face 6 of the solid-state laser element 3 is provided with an end face coating having such characteristics as to transmit excitation light of (Nd: YLF excitation wavelength) and reflect light of 1047 nm and 1053 nm which are fundamental waves.
  • the end face 7 of the solid-state laser element 3 is coated so as to reflect the excitation light and transmit the fundamental wave and the SHG light.
  • the end face 8 of the wavelength conversion element 4 has a coating that transmits the fundamental wave and reflects the SHG light.
  • the end face 9 of the wavelength conversion element 4 and the end face 10 of the wavelength conversion element 5 have the fundamental wave and the SHG light.
  • the coating which permeates is given.
  • the end face 11 of the wavelength conversion element 5 is coated so as to reflect the fundamental wave and transmit the SHG light.
  • the conversion efficiency to SHG light increases as the light intensity of the fundamental wave increases due to its non-linearity. This means that the light loss increases as the light intensity of the fundamental wave increases. Therefore, as the optical output of 1047 nm light increases, the resonator loss of 1047 nm light increases and the threshold gain increases. Then, the number of excitation ions that give gain to 1047 nm light increases, and the number of excitation ions that give gain to 1053 nm light in thermal equilibrium with it also increases, so that 1053 nm light can oscillate. At this time, since the gain of the 1053 nm light is generated in the direction horizontal to the paper surface, it oscillates with linearly polarized light horizontal to the paper surface. The 1053 nm light is converted into 526.5 nm SHG light having double photon energy in the wavelength conversion element 5. In this case as well, optical loss due to conversion to SHG light occurs. That is, as the light intensity increases, the resonator loss increases.
  • the number of upper level ions N1 that gives a threshold gain for 1047 nm light and the number of upper level ions N2 that gives a threshold gain for 1053 nm light are determined by the amount of optical loss determined by the light intensity of each fundamental wave.
  • stable oscillation occurs at each light intensity such that N1 and N2 satisfy the thermal equilibrium condition.
  • the equilibrium state is obtained when the fundamental wave of 1047 nm and the fundamental wave of 1053 nm are oscillating at the same time.
  • the state where the 1047 nm light and the 1053 nm light are oscillating independently is shown in FIG. To do.
  • the wavelength conversion element 4 converts the wavelength of 1047 nm light
  • the wavelength conversion element 5 converts the wavelength of 1053 nm light, so that two wavelengths of 523.5 nm and 526.5 nm are output simultaneously.
  • the fundamental wave circulates both the solid-state laser element 3 and the wavelength conversion elements 4 and 5. It can only happen in Accordingly, the solid-state laser element 3 having gains at two different wavelengths and wavelength conversion elements (optical elements) 4 and 5 that give optical loss such as wavelength conversion to both wavelengths are provided.
  • This can be realized in a configuration that oscillates by a resonator including both the solid-state laser element 3 and the wavelength conversion elements (optical elements) 4 and 5.
  • the same function can be realized if the material has a plurality of gain wavelengths. Further, even if the polarization directions having the gain peak are not orthogonal to each other, the competition between the fundamental waves as described above occurs, so that oscillation at a plurality of wavelengths is possible. Further, in the first embodiment, the wavelength conversion elements 4 and 5 are separately manufactured and arranged, but can be integrated, and if manufactured simultaneously, they can be manufactured inexpensively and easily.
  • the light loss increases as the light intensity increases with respect to the solid-state laser element 3 having gains with respect to different wavelengths in different axial directions and the respective wavelength lights.
  • Wavelength conversion elements 4 and 5 having such a characteristic that the solid-state laser element 3 and the wavelength conversion elements 4 and 5 are included in the resonator of the fundamental wave generated by the solid-state laser element 3. And configured to oscillate at two or more wavelengths. Therefore, it is possible to obtain output light having a plurality of different wavelengths with a single solid-state laser element 3. Thereby, a small, inexpensive and easily manufactured laser device can be obtained.
  • FIG. FIG. 3 is a top view of the configuration of the broadband laser light source apparatus according to the second embodiment of the present invention.
  • a semiconductor laser 1 a lens 2 for condensing laser light, a solid-state laser element 3, and end faces 6 and 7 are the same as those in the first embodiment.
  • the end face 6 of the solid-state laser element 3 is coated so as to transmit excitation light of (Nd: YLF excitation wavelength) and reflect light of 1047 nm and 1053 nm which are fundamental waves.
  • the end face 7 of the solid-state laser element 3 is coated so as to reflect excitation light and transmit two fundamental waves.
  • a wavelength conversion element (optical element) 12 made of MgO-added LiNbO 3 is disposed in front of the solid-state laser element 3.
  • the wavelength conversion element 12 has a period 13 that generates polarization inversion with a period that generates SHG light for 1047 nm light and a period 13 that generates SHG light for 1053 nm light with a portion 13 formed in a direction perpendicular to the paper surface.
  • the polarization inversion is divided into portions 14 formed in a direction perpendicular to the paper surface.
  • a ⁇ / 4 shift plate (wavelength shift plate) 17 capable of providing an optical path difference of ⁇ / 4 wavelength with respect to both 1047 nm light and 1053 nm light is disposed in front of the wavelength conversion element 12. .
  • the end face 15 of the wavelength conversion element 12 is coated with a coating that transmits two fundamental waves and reflects the two SHG lights on the end face 16 of the wavelength conversion element 12 and the end face 18 of the ⁇ / 4 shift plate 17. Are coated to transmit two fundamental waves and their SHG light.
  • the end face 19 of the ⁇ / 4 shift plate 17 is coated so as to reflect two fundamental waves and transmit the SHG light.
  • FIG. 4 shows the oscillation state of the fundamental wave of 1047 nm and the fundamental wave of 1053 nm in such an apparatus.
  • the polarization rotates by 90 °, so that the polarization rotates by 180 ° in two rounds and returns to the original polarization state.
  • the portion 13 in the wavelength conversion element 12 generates SHG light for 1047 nm light perpendicular to the paper surface. Therefore, as in the first embodiment, the resonator loss increases as the light intensity of the fundamental wave increases.
  • the fundamental wave of 1053 nm also returns to its original state in two rounds, like the fundamental wave of 1047 nm.
  • SHG light is generated at the portion 14 in the wavelength conversion element 12.
  • SHG light is generated for 1053 nm light perpendicular to the paper surface.
  • the phenomenon that the resonator loss increases as the light intensity increases in both the fundamental waves of 1047 nm and 1053 nm occurs. Therefore, the fundamental waves of 1047 nm and 1053 nm can be oscillated simultaneously. Further, 1047 nm light is wavelength-converted at the wavelength conversion element portion 13 and 1053 nm light is wavelength-converted at the wavelength conversion element portion 14 so that two wavelengths of 523.5 nm and 526.5 nm are output simultaneously. become.
  • the polarization direction of the fundamental wave of 1053 nm is a direction horizontal to the paper surface.
  • the polarization direction is perpendicular to the paper surface. Therefore, the polarization inversion direction of the portion 14 of the wavelength conversion element 12 can be made perpendicular to the paper surface.
  • the polarization inversion is formed in the direction of the electric field by applying a strong electric field to the wavelength conversion element 12.
  • the element thickness in the direction of applying polarization needs to be small to some extent. Therefore, if the thickness of the wavelength conversion element 12 in the direction perpendicular to the paper surface is reduced and the inversion polarization is formed in the direction perpendicular to the paper surface, the polarization inversion of both the portions 13 and 14 can be easily formed.
  • the process is performed with a mask pattern having different polarization inversion periods in the portions 13 and 14, the portions 13 and 14 can be simultaneously formed in the wavelength conversion element 12 in one process.
  • the wavelength conversion element having the structure of the portion 13 and the wavelength conversion element having the structure of the portion 14 may be separately manufactured and arranged.
  • FIG. 3 shows an example in which there is one excitation region.
  • a single solid-state laser element 3 is excited by a plurality of laser beams arranged in a direction parallel to the paper surface, the wavelength conversion element 12 is exposed on the paper surface. It is difficult to reduce the thickness in the horizontal direction. Therefore, in the configuration as in the second embodiment, if the thickness of the wavelength conversion element 12 in the direction perpendicular to the paper surface is reduced, and polarization inversion is formed in the direction perpendicular to the paper surface for the portions 13 and 14. Thus, the effects of the present invention can be easily obtained.
  • the ⁇ / 4 shift plate 17 is disposed in front of the wavelength conversion element 12
  • the ⁇ / 4 shift plate has the same effect regardless of the position of the path around the fundamental wave. become. Therefore, the ⁇ / 4 shift plate may be behind the solid-state laser element 3 or between the solid-state laser element 3 and the wavelength conversion element 12.
  • the second embodiment has shown an example in which the polarization is reciprocally rotated 90 ° using the ⁇ / 4 shift plate 17 as a method of rotating the polarization.
  • This is one in which the fundamental wave returns to the original polarization in two rounds and forms a round mode.
  • a turn mode is formed and oscillation is possible.
  • a ⁇ / 4 shift plate is arranged so as to rotate the polarization 45 degrees in a reciprocating manner.
  • the ⁇ / 4 shift plate 17 is used, that is, the relative phase of the fast axis and the slow axis may be shifted not only by ⁇ in a reciprocating manner but also by an integral multiple of ⁇ . Further, even when an arbitrary phase is shifted, it is only necessary to return to the original polarization state with a certain number of rounds. In this case, however, it is necessary that the relative phase between the fast axis and the slow axis becomes an integral multiple of ⁇ at a certain number of turns, and at the same time, the polarization direction must be the original direction.
  • the wavelength conversion element 12 is rotated in the middle. In this case, the polarization inversion direction and the polarization direction are less likely to coincide with each other. On the other hand, when the polarization is rotated 90 ° in a reciprocating manner, the polarization inversion direction and the polarization are completely coincident in one of the two turns. Considering that the second harmonic intensity is proportional to the square of the optical electric field, the wavelength conversion efficiency is highest in this case.
  • the solid-state laser element 3 having gains with respect to a plurality of different wavelengths in a plurality of different axial directions, and the light loss as the light intensity increases with respect to each wavelength light.
  • a wavelength conversion element 12 having such a characteristic as to increase, and a ⁇ / 4 shift plate 17 that rotates the polarization of the fundamental wave, and the solid-state laser element 3, the wavelength conversion element 12, and the ⁇ / 4 shift plate 17 are:
  • the structure is included in the resonator of the fundamental wave generated by the solid-state laser element 3, and is configured to oscillate at two or more fundamental wave wavelengths. Therefore, it is possible to obtain output light having a plurality of different wavelengths with a single solid-state laser element 3. Thereby, a small, inexpensive and easily manufactured laser device can be obtained.
  • FIG. 5 is a view of the configuration of the broadband laser light source apparatus according to the third embodiment of the present invention as seen from above.
  • a semiconductor laser 1 a lens 2 for condensing laser light, a solid-state laser element 3, and end faces 6 and 7 are the same as those in the first embodiment.
  • the end face 6 of the solid-state laser element 3 is coated so as to transmit excitation light of (Nd: YLF excitation wavelength) and reflect light of 1047 nm and 1053 nm which are fundamental waves.
  • the end face 7 of the solid-state laser element 3 is coated so as to reflect excitation light and transmit two fundamental waves.
  • a wavelength conversion element 20 made of MgO-added LiNbO 3 is disposed in front of the solid-state laser element 3.
  • the wavelength conversion element 20 has a period 21 that generates polarization inversion in a direction perpendicular to the paper surface to generate SHG light for 1047 nm light, and a period to generate SHG light for 1053 nm light.
  • the polarization inversion is divided into portions 22 formed in a direction perpendicular to the paper surface.
  • a portion (sum frequency conversion element) 23 in which polarization inversion is formed in a direction perpendicular to the paper surface is integrally formed so as to generate SFG (S ⁇ m Frequency Generation) light having wavelengths of 1047 nm and 1053 nm.
  • a ⁇ / 4 shift plate 17 is disposed in front of the wavelength conversion element 20.
  • the end face 24 of the wavelength conversion element 20 is coated so as to transmit the two fundamental waves and transmit the SHG light and SFG light
  • the end face 25 of the wavelength conversion element 20 and the ⁇ / 4 shift plate 17 The end face 26 is coated so as to transmit the two fundamental waves, the SHG light, and the SFG light.
  • the end face 27 of the ⁇ / 4 shift plate 17 is coated to reflect two fundamental waves and transmit the SHG light and SFG light.
  • FIG. 6 shows the oscillation state of the fundamental wave of 1047 nm and the fundamental wave of 1053 nm in such an apparatus.
  • the fundamental waves of 1047 nm and 1053 nm are generated simultaneously by the same principle as in the first embodiment.
  • the fundamental wave of 1047 nm having the polarization in the direction perpendicular to the paper surface is wavelength-converted to generate 523.5 nm SHG light.
  • the fundamental wave of 1053 nm having a polarization in a direction perpendicular to the paper surface is wavelength-converted, and 526.5 nm of SHG light is generated.
  • the SFG light of 525.0 nm is obtained by sum frequency conversion of the fundamental wave of 1047 nm having the polarization in the direction perpendicular to the paper surface and the fundamental wave of 1053 nm similarly having the polarization in the direction perpendicular to the paper surface. Will occur.
  • the wavelength converted light of these three wavelengths is output to the outside through the end face 27.
  • both of the two fundamental waves have the polarization direction perpendicular to the paper surface, so that high-efficiency SFG conversion is possible.
  • the direction of polarization inversion in the portions 21, 22, and 23 of the wavelength conversion element 20 are all directions perpendicular to the paper surface, and each wavelength conversion function can be achieved only by changing the period of polarization inversion. It is possible to have it. Therefore, the three regions can be manufactured by a single process, and can be manufactured inexpensively and easily.
  • a ⁇ / 4 shift plate 17 may be provided behind the solid-state laser element 3 or between the solid-state laser element 3 and the wavelength conversion element 20.
  • the relationship between the relative phase shift amount between the fast axis and the slow axis and the wavelength conversion efficiency is the same as in the case of the second embodiment.
  • the solid-state laser element 3 having gains for a plurality of different wavelengths in a plurality of different axial directions, and the wavelength conversion element 20 for converting the wavelength of each wavelength light, , A portion 23 for sum frequency conversion for each wavelength light, and a ⁇ / 4 shift plate 17 for rotating the polarization of the fundamental wave, and the solid-state laser element 3, the wavelength conversion element 20, the portion 23 and ⁇ / 4.
  • the shift plate 17 is configured to be included in the resonator of the fundamental wave generated by the solid-state laser element 3, and is configured to oscillate at two or more fundamental wave wavelengths. Therefore, it is possible to obtain output light having a plurality of different wavelengths with a single solid-state laser element 3. Thereby, a small, inexpensive and easily manufactured laser device can be obtained.
  • FIG. 7 is a top view of the configuration of the broadband laser light source apparatus according to Embodiment 4 of the present invention.
  • a solid-state laser element 28 is disposed in front of a semiconductor laser 1 and a lens 2 for condensing laser light.
  • the solid-state laser element 28 has a waveguide structure, and Nd: YLF is used for the waveguide 29 through which light propagates.
  • Nd YLF is used for the waveguide 29 through which light propagates.
  • SiO 2 films 30 and 31 having a refractive index smaller than that of the waveguide 29 are formed as cladding layers.
  • the waveguide thickness is, for example, 100 ⁇ m
  • the clad layer thickness is, for example, 1 ⁇ m.
  • a substrate 32 for holding them is bonded, and the material of the substrate 32 is a glass material having a thermal expansion coefficient close to that of the waveguide 29.
  • the thickness is set to around 1 mm so that handling is easy.
  • a waveguide-type wavelength conversion element 35 having a waveguide structure is disposed in front of the waveguide-type solid-state laser element 28.
  • An MgO-added LiNbO 3 material with inversion polarization is used for the optical waveguide portion of the wavelength conversion element 35.
  • the optical waveguide portion generates a portion 36 having a polarization inversion with a period that generates SHG light for 1047 nm light and SHG light for 1053 nm light.
  • a portion 37 having a polarization inversion with a proper period and a portion 38 in which polarization inversion is formed so as to generate SFG light having wavelengths of 1047 nm and 1053 nm are integrally formed.
  • the reversal polarization direction of all the portions 36 to 38 is a direction horizontal to the paper surface and the thin plate direction of the waveguide.
  • SiO 2 films 39 and 40 having a refractive index smaller than that of the waveguide are formed as cladding layers.
  • the waveguide thickness is, for example, 100 ⁇ m
  • the clad layer thickness is, for example, 1 ⁇ m.
  • a substrate 41 for holding them is bonded, and the material of the substrate 41 is a glass material having a thermal expansion coefficient close to that of the MgO-added LiNbO 3 material that is the waveguide of the wavelength conversion element 35.
  • the thickness is set to around 1 mm so that handling is easy.
  • a ⁇ / 4 shift plate 17 is disposed in front of the waveguide type wavelength conversion element 35.
  • the end face 33 of the waveguide type solid-state laser element 28 is coated so as to transmit the excitation light of (Nd: YLF excitation wavelength) and reflect the light of 1047 nm and 1053 nm as the fundamental wave.
  • a coating that reflects the excitation light and transmits the two fundamental waves is applied.
  • the end face 42 of the waveguide type wavelength conversion element 35 is coated so as to transmit two fundamental waves and transmit the SHG light and SFG light, and the end face 43 of the wavelength conversion element 35 and ⁇ / 4
  • the end face 26 of the shift plate 17 is coated so as to transmit the two fundamental waves, the SHG light, and the SFG light.
  • the end face 27 of the ⁇ / 4 shift plate 17 is coated to reflect two fundamental waves and transmit the SHG light and SFG light.
  • the advantages of the waveguide type such as reducing the number of modes in the vertical direction and generating a large gain, can be obtained. Further, considering that the relative phase between the fast axis and the slow axis is shifted by the wavelength shift plate, the effective refractive index varies depending on the mode order in the vertical direction, and therefore the phase shift amount varies depending on the mode order. This leads to a decrease in conversion efficiency. Therefore, by adopting a waveguide type, it is possible to reduce the number of modes in the vertical direction and increase the wavelength conversion efficiency.
  • the effect of making the solid-state laser element or the wavelength conversion element into the waveguide structure can be obtained for all of the first to third embodiments.
  • the laser medium that generates the fundamental wave for performing SHG conversion is a solid-state laser element, but a gain medium having a plurality of gain wavelengths instead of the solid-state laser element.
  • the same function can be realized by using a gas laser, a dye laser, or a semiconductor laser.
  • an element whose light loss increases as the light intensity increases is used instead of the wavelength conversion element, similar multi-wavelength oscillation is possible.
  • the solid-state laser element 28 and the wavelength conversion element 35 are configured to have a waveguide structure. Therefore, by making the element shape a waveguide type, a laser device that reduces the number of modes in the vertical direction and generates a large gain can be obtained.
  • the light loss increases as the light intensity increases with respect to the solid-state laser elements having gains for different wavelengths in different axial directions and the respective wavelength lights.
  • a solid-state laser element and the optical element are included in a resonator of a fundamental wave generated by the solid-state laser element, and oscillate at two or more wavelengths. Therefore, it is suitable for use in a light source such as a projector apparatus.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Nonlinear Science (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Lasers (AREA)

Abstract

 異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子3と、それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ光学素子とを備え、固体レーザ素子3および光学素子が、該固体レーザ素子3によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の波長にて発振するように構成したので、単数の固体レーザ素子3にて、異なる複数の波長の出力光を得ることが可能となり、小型かつ安価で製造の容易なレーザ装置が得られる。

Description

レーザ装置
 この発明は、プロジェクタ装置などの光源に用いられるレーザ装置に関する。
 プロジェクタ装置やプロジェクションテレビなどのカラー画像を表示する装置では、光源としてR(赤)、G(緑)、B(青)の3つの色の光源が必要とされる。
 近年、これらの光源として、900nm帯、1μm帯、1.3μm帯のレーザ光を基本波レーザ光とし、非線形材料を用いて基本波レーザ光を第2高調波に変換する波長変換レーザ装置が開発されている。
 このような装置の一例としては、半導体レーザ素子、固体レーザ素子、および波長変換素子で構成されているものがある(例えば、下記特許文献1参照)。
 これは、半導体レーザ素子で発生した励起光を、固体レーザ素子に吸収させて基本波を発生させた後に、波長変換素子によって基本波の2倍高調波を発生させるものである。
 基本波を発生させるレーザ媒質として、特に固体レーザを用いるような場合、その基本波の波長スペクトル幅は、非常に狭いものとなるため、その2倍高調波の波長スペクトル幅も非常に狭いものである。
 この特徴はコヒーレンシーが高いことを意味し、さまざまなメリットがある反面、ディスプレイ用として考えた場合は、干渉が強くなることでスペックルノイズが大きくなってしまうという課題を発生させる。
 このスペックルノイズを低減する1つの方法として、複数の波長を混合することで、コヒーレンシーを低下させることがある。
 前記のようなレーザ光源で、複数の波長を得るには、複数の波長の基本波を発生させ、それぞれに対し波長変換を行うことがある。
 図8は、このような波長変換レーザ装置の構成図である。
 図において、101はレーザ光を出力する半導体レーザ、102は半導体レーザ101から出力されるレーザ光を集光するレンズ、103は波長Aを発生するレーザ媒質、104は波長Bを発生するレーザ媒質である。
 レーザ媒質103,104の両方に、半導体レーザ101からの励起光を吸収させることで、波長Aおよび波長Bの基本波が発生する。
 その基本波を、波長Aおよび波長Bの両方の波長変換が可能な波長変換素子105に入射させることで、2つの波長変換光を取り出すことが可能になる。
 これと同様の装置は、下記特許文献2にも示されている。
WO2006/103767号 特開2006-66436号公報
 図8に示した波長変換レーザ装置の場合、レーザ媒質103,104など、2つの固体レーザ素子が必要となることで、大型かつ高価で製造が難しくなる課題があった。
 この発明は、前記のような課題を解決するためになされたもので、小型かつ安価で製造が容易なレーザ装置を得ることを目的とする。
 この発明に係るレーザ装置は、異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子と、それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ光学素子とを備え、固体レーザ素子および光学素子が、該固体レーザ素子によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の波長にて発振するものである。
 この発明によれば、単数の固体レーザ素子にて、異なる複数の波長の出力光を得ることが可能となる。
 これにより、小型かつ安価で製造の容易なレーザ装置が得られる効果がある。
この発明の実施の形態1による広帯域レーザ光源装置の構成を示す上面図である。 この発明の実施の形態1による広帯域レーザ光源装置の動作原理を示す説明図である。 この発明の実施の形態2による広帯域レーザ光源装置の構成を示す上面図である。 この発明の実施の形態2による広帯域レーザ光源装置の動作原理を示す説明図である。 この発明の実施の形態3による広帯域レーザ光源装置の構成を示す上面図である。 この発明の実施の形態3による広帯域レーザ光源装置の動作原理を示す説明図である。 この発明の実施の形態4による広帯域レーザ光源装置の構成を示す上面図である。 従来の波長変換レーザ装置の構成を示す上面図である。
 以下、この発明の広帯域レーザ光源装置およびその製造方法の好適な実施の形態につき図面を用いて説明する。
実施の形態1.
 図1は、この発明の実施の形態1による広帯域レーザ光源装置の構成を上面より見た図である。
 図において、1はレーザ光を出力する半導体レーザ、2は半導体レーザ1から出力されるレーザ光を集光するレンズである。
 3はNdを添加したYLF材料(Nd:YLF)からなる固体レーザ素子である。
 このNd:YLF材料は、一方の軸方向の利得ピーク波長が1047nm付近で、他方の軸方向の利得ピーク波長が1053nm付近であるという特徴を持つ。
 この固体レーザ素子3は、紙面に垂直な方向を利得ピーク波長が1047nmとなっている方向に、紙面に垂直な方向を利得ピーク波長が1053nmとなっている方向になるように配置されている。
 半導体レーザ1の発振波長は、固体レーザ素子3であるNd:YLF材料を励起できるように792nm付近となっている。
 固体レーザ素子3の前方には、MgO添加LiNbOを材料とする波長変換素子(光学素子)4,5が配置されている。
 波長変換素子4は、1047nm光に対して、その第2高調波変換(SHG:Second Harmonic Generation)光を発生させることができるように分極反転が形成されており、その反転分極の分極方向は紙面に対し垂直方向となっている。
 これにより、紙面に垂直な偏光方向を持つ1047nm光に対して波長変換が可能である。
 波長変換素子5は、1053nm光に対して、SHG光を発生させることができるように分極反転が形成されており、その反転分極の分極方向は紙面に対し水平方向となっている。
 これにより、紙面に水平な偏光方向を持つ1053nm光に対して波長変換が可能である。
 固体レーザ素子3の端面6は、(Nd:YLF励起波長)の励起光を透過させ、基本波となる1047nmおよび1053nm光を反射するような特性を持つ端面コーティングが施されている。
 固体レーザ素子3の端面7は、励起光を反射し、基本波とそのSHG光を透過させるようなコーティングが施されている。
 波長変換素子4の端面8には、基本波を透過し、SHG光を反射するようなコーティングが、波長変換素子4の端面9、および波長変換素子5の端面10には、基本波とSHG光を透過させるようなコーティングが施されている。
 波長変換素子5の端面11には、基本波を反射し、SHG光を透過させるようなコーティングが施されている。
 このようなレーザ装置において、半導体レーザ1の励起光強度を上げていくと、固体レーザ素子3内の活性イオンが励起され反転分布が形成される。
 そこで最初に、利得の高い1047nmの波長の基本波が、利得を持つ方向である紙面に垂直な方向の直線偏光で発振する。
 この1047nm光は、波長変換素子4によって、1047nm光の2倍のフォトンエネルギーを持つ、波長523.5nmのSHG光に変換されることになる。
 このSHG光への変換によって、基本波である1047nm光は減少する。つまり光損失が発生することになる。
 SHG光への変換効率は、その非線形性によって、基本波の光強度が増大するほど大きくなるが、これは、基本波の光強度が増大するほど、光損失が増大することを意味する。
 よって、1047nm光の光出力が大きくなるほど、1047nm光の共振器損失が増大し、しきい値利得が高くなる。
 すると、1047nm光に利得を与える励起イオン数が増大、それと熱平衡状態にある1053nm光に利得を与える励起イオン数も増大するため、1053nm光が発振可能となる。
 このとき、1053nm光の利得は、紙面に水平な方向に対して発生しているため、紙面に水平な直線偏光で発振する。
 この1053nm光は、波長変換素子5内で、2倍のフォトンエネルギーを持つ526.5nmのSHG光に変換されることになる。
 この場合も、SHG光への変換による光損失が発生する。つまり、光強度が大きくなるにつれ、共振器損失が増大することになる。
 以上のように、一方の波長の基本波の光強度が大きくなるほど光損失が増大、その基本波を発振させるために必要な利得が増大し、定常状態でのイオン数が増大した結果、他方の波長に対する利得が大きくなり発振し易くなるといった現象が発生することから、2つの基本波が競合することになる。
 1047nm光に対するしきい値利得を与える上準位イオン数N1と、1053nm光に対するしきい値利得を与える上準位イオン数N2は、各基本波の光強度で決定される光損失量によって決まることになるが、このN1とN2が熱平衡条件を満たすような、それぞれの光強度において安定発振することになる。
 このように、1047nmの基本波と1053nmの基本波が同時に発振している状態で平衡状態となるが、この1047nm光と1053nm光が独立して発振している状態をそれぞれ分けて図2に記載する。
 波長変換素子4にて1047nm光が、波長変換素子5にて1053nm光がそれぞれ波長変換され、523.5nmおよび526.5nmの2つの波長が同時に出力されることになる。
 このような状態は、基本波の光強度が大きいほど、その基本波に対する光損失が大きくなるという状況下、つまり、基本波が固体レーザ素子3と波長変換素子4,5の両方を周回する方式でのみ起こりうるものである。
 従って、2つの異なる波長に利得を有する固体レーザ素子3と、その両波長に対して波長変換のような光損失を与える波長変換素子(光学素子)4,5とを備え、基本波が、それら両方の固体レーザ素子3および波長変換素子(光学素子)4,5を含む共振器によって発振するような構成において実現可能なものである。
 なお、この実施の形態1では、固体レーザ素子3にNd:YLFを用いた例を示したが、複数の利得波長を持つような材料であれば同様の機能を実現できることは言うまでもない。
 また、利得ピークを持つ偏光方向は、お互いに直交していなくとも、前記に示すような基本波間の競合が発生するため、複数波長での発振は可能である。
 さらに、この実施の形態1では、波長変換素子4,5を別々に作製、配置しているが、一体化することも可能で、同時に作製すれば安価かつ容易に製造可能となる。
 以上のように、この実施の形態1によれば、異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子3と、それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ波長変換素子4,5とを備え、固体レーザ素子3および波長変換素子4,5が、該固体レーザ素子3によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の波長にて発振するように構成した。
 よって、単数の固体レーザ素子3にて、異なる複数の波長の出力光を得ることが可能となる。
 これにより、小型かつ安価で製造の容易なレーザ装置が得られる。
実施の形態2.
 図3は、この発明の実施の形態2による広帯域レーザ光源装置の構成を上面より見た図である。
 図において、半導体レーザ1、レーザ光を集光するレンズ2、固体レーザ素子3、端面6,7は、前記実施の形態1の場合と同じである。
 固体レーザ素子3の端面6は、(Nd:YLF励起波長)の励起光を透過させ、基本波となる1047nmおよび1053nm光を反射させるようなコーティングが施されている。
 固体レーザ素子3の端面7は、励起光を反射し、2つの基本波を透過させるようなコーティングが施されている。
 固体レーザ素子3の前方には、MgO添加LiNbOを材料とする波長変換素子(光学素子)12が配置されている。
 波長変換素子12は、1047nm光に対してSHG光を発生させるような周期の分極反転を、紙面に垂直な方向に形成した部分13と、1053nm光に対してSHG光を発生させるような周期の分極反転を、紙面に垂直な方向に形成した部分14に分かれている。
 この波長変換素子12の前方には、1047nm光および1053nm光の両者に対してλ/4波長の光路差を持たせることが可能なλ/4シフト板(波長シフト板)17が配置されている。
 波長変換素子12の端面15には、2つの基本波を透過し、その2つのSHG光を反射させるようなコーティングが、波長変換素子12の端面16、およびλ/4シフト板17の端面18には、2つの基本波とそのSHG光を透過させるようなコーティングが施されている。
 λ/4シフト板17の端面19には、2つの基本波を反射し、そのSHG光を透過させるようなコーティングが施されている。
 このような装置における、1047nmの基本波と1053nmの基本波の発振状態を図4に示す。
 1047nm光は、λ/4板17を1回往復すると偏波が90°回転するため、2周回でその偏波が180°回転し、元の偏波状態に戻ることになる。
 1047nm光は、いずれの部分においても、紙面に垂直な方向の偏波と、紙面に水平な方向の偏波が存在する。
 波長変換素子12内の部分13は、紙面に垂直な1047nm光に対してSHG光を発生する。
 従って、前記実施の形態1の場合と同じように、基本波の光強度が大きいほど共振器損失が増大することになる。
 一方、1053nmの基本波も、1047nmの基本波と同様、2周回でその偏波が元の状態に戻ることになる。
 この場合は、波長変換素子12にある部分14にてSHG光が生成されることになる。
 ここでは、前記実施の形態1の場合と異なり、紙面に垂直な1053nm光に対してSHG光を発生することになる。
 以上のように、この実施の形態2においても、前記実施の形態1の場合と同様に、1047nmと1053nmの基本波の双方で、光強度が大きいほど共振器損失が増大するという現象が発生するため、1047nmと1053nmの基本波が同時に発振可能になる。
 また、波長変換素子の部分13にて1047nm光が、波長変換素子の部分14にて1053nm光がそれぞれ波長変換されることで、523.5nmおよび526.5nmの2つの波長が同時に出力されることになる。
 前記実施の形態1の場合、1053nmの基本波の偏光方向は紙面に水平な方向となるが、この実施の形態2では、λ/4シフト板17を挿入することにより、紙面に垂直な方向にも偏光を持つことになるため、波長変換素子12の部分14の分極反転方向を紙面に垂直にすることが可能となる。
 分極反転は、波長変換素子12に強い電界をかけることで、その電界方向に形成されるものである。
 強い電界をかけるためには、分極をかける方向の素子厚は、ある程度小さいことが必要である。
 よって、波長変換素子12の紙面に垂直な方向の厚さを小さくして、紙面に垂直な方向に反転分極を形成すれば、部分13,14の双方の分極反転を容易に形成可能である。
 また、部分13,14で分極反転周期が異なるようなマスクパタンによってプロセスを実施すれば、1度のプロセスで波長変換素子12に、部分13,14を同時に形成することが可能となる。
 もちろん、部分13の構造を持つ波長変換素子と、部分14の構造を持つ波長変換素子を別々に作製し、配置してもよい。
 また、図3は励起領域が1つである例であるが、紙面に平行な方向に並べた複数のレーザ光で、単一の固体レーザ素子3を励起する場合、波長変換素子12の紙面に水平な方向の厚さを小さくすることは困難である。
 そこで、この実施の形態2のような構成として、波長変換素子12の紙面に垂直な方向の厚さを小さくし、部分13,14に対して、紙面に垂直な方向に分極反転を形成すれば、容易に本願発明の効果を得ることが可能となる。
 ここでは、λ/4シフト板17を波長変換素子12の前方に配置した例を示したが、λ/4シフト板は、基本波が周回する経路のどの位置にあっても同じ効果を有することになる。
 従って、λ/4シフト板が、固体レーザ素子3の後方や、固体レーザ素子3と波長変換素子12の間にあってもよい。
 この実施の形態2は、偏波を回転させる方法としてλ/4シフト板17を用いて偏波を往復で90°回転させる例を示した。
 これは、基本波が2周回で元の偏波に戻り周回モードを形成するものである。
 しかしながら、それ以上の周回数であっても、元の偏波状態に戻れば、周回モードを形成して、発振が可能となる。
 これは例えば、偏波を往復で45°回転させるようにλ/4シフト板を配置するなどである。
 また、同様に、λ/4シフト板17を用いる、つまり速軸と遅軸の相対位相を往復でπだけシフトさせるのみではなく、πの整数倍だけシフトさせてもよい。
 また、任意の位相をシフトした場合でも、ある周回数で元の偏波状態に戻るのであればよい。
 ただし、この場合、ある周回数で、速軸と遅軸の相対位相がπの整数倍となるだけではなく、同時に偏波方向が元の方向になることが必要である。
 偏波方向が完全に元に戻らない場合においても、元の偏波方向の成分のみが結合し発振することは可能となる。
 しかしながら、結合しない成分は損失となるため、発振効率は低下することになる。
 また、偏波回転角が往復で90°以外の場合や、速軸と遅軸の相対位相シフト量がπの整数倍以外で、途中で回転偏波となるような場合は、波長変換素子12内で、その分極反転の方向と偏波方向が完全に一致する場合が少なくなる。
 一方、偏波を往復で90°回転させる場合は、2周回のうち1周回で、分極反転の方向と偏波が完全に一致する。
 第2高調波強度が光電界の2乗に比例することを考えると、この場合に、最も波長変換効率が高くなることになる。
 以上のように、この実施の形態2によれば、異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子3と、それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ波長変換素子12と、基本波の偏波を回転させるλ/4シフト板17とを備え、固体レーザ素子3、波長変換素子12およびλ/4シフト板17が、該固体レーザ素子3によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の基本波波長にて発振するように構成した。
 よって、単数の固体レーザ素子3にて、異なる複数の波長の出力光を得ることが可能となる。
 これにより、小型かつ安価で製造の容易なレーザ装置が得られる。
実施の形態3.
 図5は、この発明の実施の形態3による広帯域レーザ光源装置の構成を上面より見た図である。
 図において、半導体レーザ1、レーザ光を集光するレンズ2、固体レーザ素子3、端面6,7は、前記実施の形態1の場合と同じである。
 固体レーザ素子3の端面6は、(Nd:YLF励起波長)の励起光を透過させ、基本波となる1047nmおよび1053nm光を反射させるようなコーティングが施されている。
 固体レーザ素子3の端面7は、励起光を反射し、2つの基本波を透過させるようなコーティングが施されている。
 固体レーザ素子3の前方には、MgO添加LiNbOを材料とする波長変換素子20が配置されている。
 波長変換素子20は、1047nm光に対してSHG光を発生させるような周期の分極反転を、紙面に垂直な方向に形成した部分21と、1053nm光に対してSHG光を発生させるような周期の分極反転を、紙面に垂直な方向に形成した部分22に分かれている。
 さらに、1047nmと1053nmの波長の和周波変換(SFG:Sμm Frequency Generation)光を発生させるように、紙面に垂直な方向に分極反転を形成した部分(和周波変換素子)23が一体形成されている。
 波長変換素子20の前方には、λ/4シフト板17が配置されている。
 波長変換素子20の端面24には、2つの基本波を透過し、そのSHG光およびSFG光を透過させるようなコーティングが施され、波長変換素子20の端面25、およびλ/4シフト板17の端面26には、2つの基本波とそのSHG光、およびSFG光を透過させるようなコーティングが施されている。
 λ/4シフト板17の端面27には、2つの基本波を反射し、そのSHG光およびSFG光を透過させるようなコーティングが施されている。
 このような装置における、1047nmの基本波と1053nmの基本波の発振状態を図6に示す。
 この実施の形態3の場合においても、前記実施の形態1の場合と同じ原理によって、1047nmと1053nmの基本波が同時に発生する。
 波長変換素子20の部分21では、紙面に垂直な方向に偏波を持つ1047nmの基本波が波長変換され、523.5nmのSHG光が発生する。
 部分22では、紙面に垂直な方向に偏波を持つ1053nmの基本波が波長変換され、526.5nmのSHG光が発生する。
 さらに、部分23では、紙面に垂直な方向に偏波を持つ1047nmの基本波と、同じく紙面に垂直な方向に偏波を持つ1053nmの基本波との和周波変換によって、525.0nmのSFG光が発生する。
 これら3つの波長の波長変換光は、端面27を通して外部に出力される。
 SFG光は、2つの基本波それぞれに対し、SFG変換領域の分極反転の方向と一致する成分が変換に寄与する。
 よって、この実施の形態3のような構成にすれば、2つの基本波が共に紙面に垂直な偏光方向を持つことになるため、高効率でのSFG変換が可能となる。
 この実施の形態3では、波長変換素子20における部分21,22,23での分極反転の方向は、いずれも紙面に垂直な方向であり、分極反転の周期を変えるのみで各々の波長変換機能を持たせることが可能である。
 従って、3つの領域を1度のプロセスで作製可能で、安価でかつ容易に作製できる。
 ここでは、λ/4シフト板17を波長変換素子20の前方に配置した例を示したが、λ/4シフト板は、基本波が周回する経路のどの位置にあっても同じ効果を有することになる。
 従って、λ/4シフト板が、固体レーザ素子3の後方や、固体レーザ素子3と波長変換素子20の間にあってもよい。
 速軸と遅軸の相対位相シフト量と波長変換効率との関係については、前記実施の形態2の場合と同様である。
 以上のように、この実施の形態3によれば、異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子3と、それぞれの波長光に対して波長変換する波長変換素子20と、それぞれの波長光に対して和周波変換する部分23と、基本波の偏波を回転させるλ/4シフト板17とを備え、固体レーザ素子3、波長変換素子20、部分23およびλ/4シフト板17が、該固体レーザ素子3によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の基本波波長にて発振するように構成した。
 よって、単数の固体レーザ素子3にて、異なる複数の波長の出力光を得ることが可能となる。
 これにより、小型かつ安価で製造の容易なレーザ装置が得られる。
実施の形態4.
 図7は、この発明の実施の形態4による広帯域レーザ光源装置の構成を上面より見た図である。
 図において、半導体レーザ1、レーザ光を集光するレンズ2の前に固体レーザ素子28が配置されている。
 固体レーザ素子28は、導波路型の構造を有しており、光が伝搬する導波路29にNd:YLFを用いている。
 導波路29の下面および上面にはそれぞれ、クラッド層として導波路29よりも屈折率の小さなSiO膜30,31が形成されている。
 導波路厚は、例えば100μmであり、クラッド層厚は共に、例えば1μmとなっている。
 また、これらを保持するための基板32が接着されており、この基板32の材料は導波路29と熱線膨張係数が近いガラス材料など用いられる。
 また、その厚さは、ハンドリングが容易となるように1mm前後としている。
 この導波路型の固体レーザ素子28の前方には、同じく導波路構造を持った導波路型の波長変換素子35が配置されている。
 この波長変換素子35の光導波部分には、反転分極を形成したMgO添加LiNbO材料を用いている。
 この光導波路部分は、前記実施の形態3の場合と同様に、1047nm光に対してSHG光を発生させるような周期の分極反転を持つ部分36と、1053nm光に対してSHG光を発生させるような周期の分極反転を持つ部分37、および、1047nmと1053nmの波長のSFG光を発生させるように分極反転を形成した部分38を一体形成したものとなっている。
 全ての部分36~38の反転分極方向は、紙面に水平な方向で、導波路の薄板方向である。
 この導波路の下面および上面にはそれぞれ、クラッド層として導波路よりも屈折率の小さなSiO膜39,40が形成されている。
 導波路厚は、例えば100μmであり、クラッド層厚は共に、例えば1μmとなっている。
 また、これらを保持するための基板41が接着されており、この基板41の材料は、波長変換素子35の導波路であるMgO添加LiNbO材料と熱線膨張係数が近いガラス材料などが用いられる。
 また、その厚さは、ハンドリングが容易となるように1mm前後としている。
 導波路型の波長変換素子35の前方には、λ/4シフト板17が配置されている。
 導波路型の固体レーザ素子28の端面33には、(Nd:YLF励起波長)の励起光を透過させ、基本波となる1047nmおよび1053nm光を反射させるようなコーティングが施され、端面34には、励起光を反射し、2つの基本波を透過させるようなコーティングが施されている。
 導波路型の波長変換素子35の端面42には、2つの基本波を透過し、そのSHG光およびSFG光を透過させるようなコーティングが施され、波長変換素子35の端面43、およびλ/4シフト板17の端面26には、2つの基本波とそのSHG光、およびSFG光を透過させるようなコーティングが施されている。
 λ/4シフト板17の端面27には、2つの基本波を反射し、そのSHG光およびSFG光を透過させるようなコーティングが施されている。
 素子形状を導波路型にすることで、垂直方向のモード数を減らして大きな利得を発生するなどの導波路型の利点を得ることができる。
 また、波長シフト板にて、速軸と遅軸の相対位相をシフトすることを考えると、垂直方向のモード次数によって実効屈折率が異なるため、位相シフト量がモード次数によって異なることになる。
 これは、変換効率の低下につながることから、導波路型とすることで、垂直方向のモード数を減らし、波長変換効率を大きくすることが可能となる。
 以上を勘案すると、固体レーザ素子あるいは波長変換素子を導波路構造にすることにする効果は、前記実施の形態1から前記実施の形態3までの全てについて得ることができる。
 なお、以上に示した実施の形態の全てにおいて、SHG変換を行う基本波を発生するレーザ媒質を、固体レーザ素子であるとしているが、固体レーザ素子の代わりに、複数の利得波長を持つ利得媒体、例えば気体レーザや、色素レーザ、あるいは半導体レーザなどを用いても同様の機能が実現可能である。
 また、波長変換素子の代わりに、光強度が大きいほど光損失が増大するような素子を用いれば、同様の複数波長の発振が可能となる。
 以上のように、この実施の形態4によれば、固体レーザ素子28および波長変換素子35が、導波路構造を有するように構成した。
 よって、素子形状を導波路型にすることで、垂直方向のモード数を減らして大きな利得を発生するレーザ装置が得られる。
 なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
 以上のように、この発明に係るレーザ装置は、異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子と、それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ光学素子とを備え、固体レーザ素子および光学素子が、該固体レーザ素子によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の波長にて発振するように構成したので、プロジェクタ装置などの光源に用いるのに適している。
 1 半導体レーザ、2 レンズ、3,28 固体レーザ素子、4,5,12 波長変換素子(光学素子)、6~11,15,16,18,19,24~27,33,34,42,43 端面、13,14,21,22,36~38 部分、17 λ/4シフト板(波長シフト板)、20,35 波長変換素子、23 部分(和周波変換素子)、29 導波路、30,31,39,40 SiO膜、32,41 基板。

Claims (9)

  1.  異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子と、
     それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ光学素子とを備え、
     前記固体レーザ素子および前記光学素子が、該固体レーザ素子によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の波長にて発振することを特徴とするレーザ装置。
  2.  光学素子が、
     波長変換素子であることを特徴とする請求項1記載のレーザ装置。
  3.  固体レーザ素子および光学素子が、
     導波路構造を有することを特徴とする請求項1記載のレーザ装置。
  4.  異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子と、
     それぞれの波長光に対して、光強度が大きいほど光損失が大きくなるような特性を持つ光学素子と、
     基本波の偏波を回転させる波長シフト板とを備え、
     前記固体レーザ素子、前記光学素子および前記波長シフト板が、該固体レーザ素子によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の基本波波長にて発振することを特徴とするレーザ装置。
  5.  光学素子が、
     波長変換素子であることを特徴とする請求項4記載のレーザ装置。
  6.  固体レーザ素子および光学素子が、
     導波路構造を有することを特徴とする請求項4記載のレーザ装置。
  7.  波長シフト板が、
     基本波の偏波方向をおよそ90°回転させることを特徴とする請求項4記載のレーザ装置。
  8.  異なる複数の軸方向に、異なる複数の波長に対する利得を持つ固体レーザ素子と、
     それぞれの波長光に対して波長変換する波長変換素子と、
     それぞれの波長光に対して和周波変換する和周波変換素子と、
     基本波の偏波を回転させる波長シフト板とを備え、
     前記固体レーザ素子、前記波長変換素子、前記和周波変換素子および前記波長シフト板が、該固体レーザ素子によって発生した基本波の共振器内に含まれる構成となっており、2つ以上の基本波波長にて発振することを特徴とするレーザ装置。
  9.  固体レーザ素子、波長変換素子および和周波変換素子が、
     導波路構造を有することを特徴とする請求項8記載のレーザ装置。
PCT/JP2012/080480 2012-11-26 2012-11-26 レーザ装置 WO2014080520A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US14/412,360 US20150188281A1 (en) 2012-11-26 2012-11-26 Laser device
JP2014548414A JP5826409B2 (ja) 2012-11-26 2012-11-26 レーザ装置
PCT/JP2012/080480 WO2014080520A1 (ja) 2012-11-26 2012-11-26 レーザ装置
CN201280077176.6A CN104813550A (zh) 2012-11-26 2012-11-26 激光装置
EP12888974.8A EP2924819A4 (en) 2012-11-26 2012-11-26 LASER UNIT

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2012/080480 WO2014080520A1 (ja) 2012-11-26 2012-11-26 レーザ装置

Publications (1)

Publication Number Publication Date
WO2014080520A1 true WO2014080520A1 (ja) 2014-05-30

Family

ID=50775724

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/080480 WO2014080520A1 (ja) 2012-11-26 2012-11-26 レーザ装置

Country Status (5)

Country Link
US (1) US20150188281A1 (ja)
EP (1) EP2924819A4 (ja)
JP (1) JP5826409B2 (ja)
CN (1) CN104813550A (ja)
WO (1) WO2014080520A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188250A (ja) * 2019-05-16 2020-11-19 ライトメッド コーポレーションLightmed Corporation 高仕事率多波長可視光のラマンレーザー

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6411120B2 (ja) * 2014-08-04 2018-10-24 株式会社アマダミヤチ レーザ装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415975A (ja) * 1990-05-09 1992-01-21 Mitsui Petrochem Ind Ltd 光共振器
JPH04369616A (ja) * 1991-06-19 1992-12-22 Matsushita Electric Ind Co Ltd 短波長光源およびその製造方法
JP2002314180A (ja) * 2001-04-13 2002-10-25 Toshiba Corp レーザー発振器および発振方法
JP2006066436A (ja) 2004-08-24 2006-03-09 Showa Optronics Co Ltd 内部共振器型和周波混合レーザ
WO2006103767A1 (ja) 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha モード制御導波路型レーザ装置
WO2009016709A1 (ja) * 2007-07-30 2009-02-05 Mitsubishi Electric Corporation 波長変換レーザ装置
JP2010016058A (ja) * 2008-07-01 2010-01-21 Sony Corp レーザ光源装置及びこれを用いたレーザ照射装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289482A (en) * 1992-12-30 1994-02-22 The United States Of America As Represented By The Secretary Of The Navy Intracavity-pumped 2.1 μm Ho3+ :YAG laser
US5802086A (en) * 1996-01-29 1998-09-01 Laser Power Corporation Single cavity solid state laser with intracavity optical frequency mixing
CN200947526Y (zh) * 2006-09-11 2007-09-12 福州高意通讯有限公司 一种半导体端面泵浦的微片激光器
CN101299509B (zh) * 2008-06-25 2010-11-03 福州高意通讯有限公司 一种多波长的激光器
US8213470B2 (en) * 2010-11-24 2012-07-03 Photop Technologies, Inc. Intra-cavity frequency doubled microchip laser operating in TEM00 transverse mode
JPWO2012124266A1 (ja) * 2011-03-17 2014-07-17 パナソニック株式会社 波長変換レーザ光源及び画像表示装置
CN202189998U (zh) * 2011-08-24 2012-04-11 福州高意通讯有限公司 一种宽温半导体泵浦激光器
CN102662215B (zh) * 2012-05-09 2016-05-04 上海波汇科技股份有限公司 一种波分复用光电发射模块
CN102662212B (zh) * 2012-05-31 2013-09-25 中国科学院上海微系统与信息技术研究所 一种光子晶体及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0415975A (ja) * 1990-05-09 1992-01-21 Mitsui Petrochem Ind Ltd 光共振器
JPH04369616A (ja) * 1991-06-19 1992-12-22 Matsushita Electric Ind Co Ltd 短波長光源およびその製造方法
JP2002314180A (ja) * 2001-04-13 2002-10-25 Toshiba Corp レーザー発振器および発振方法
JP2006066436A (ja) 2004-08-24 2006-03-09 Showa Optronics Co Ltd 内部共振器型和周波混合レーザ
WO2006103767A1 (ja) 2005-03-30 2006-10-05 Mitsubishi Denki Kabushiki Kaisha モード制御導波路型レーザ装置
WO2009016709A1 (ja) * 2007-07-30 2009-02-05 Mitsubishi Electric Corporation 波長変換レーザ装置
JP2010016058A (ja) * 2008-07-01 2010-01-21 Sony Corp レーザ光源装置及びこれを用いたレーザ照射装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GIULIO CERULLO ET AL.: "High efficiency, 40W cw Nd:YLF laser with large TEMOO mode", OPTICS COMMUNICATIONS, vol. 93, no. 1, 2, 15 September 1992 (1992-09-15), pages 77 - 81, XP024455516 *
See also references of EP2924819A4
T. Y. FAN ET AL.: "Efficient GaAlAs diode- laser-pumped operation of Nd:YLF at 1.047 pm with intracavity doubling to 523.6 nm", OPTICS LETTERS, vol. 11, no. 4, April 1986 (1986-04-01), pages 204 - 206, XP000710383 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020188250A (ja) * 2019-05-16 2020-11-19 ライトメッド コーポレーションLightmed Corporation 高仕事率多波長可視光のラマンレーザー
JP7097919B2 (ja) 2019-05-16 2022-07-08 ライトメッド コーポレーション 高仕事率多波長可視レーザー光を生成するための方法

Also Published As

Publication number Publication date
US20150188281A1 (en) 2015-07-02
EP2924819A4 (en) 2016-08-24
JPWO2014080520A1 (ja) 2017-01-05
CN104813550A (zh) 2015-07-29
EP2924819A1 (en) 2015-09-30
JP5826409B2 (ja) 2015-12-02

Similar Documents

Publication Publication Date Title
WO2009104392A1 (ja) 光源装置、照明装置及び画像表示装置
WO2007026510A1 (ja) ファイバレーザおよび光学装置
WO2006028078A1 (ja) 受動qスイッチレーザ装置
JP2008176186A (ja) レーザ光源装置およびそれを用いたモニタ装置ならびに画像表示装置
US8121156B2 (en) Solid-state laser device and image display device
US8228960B2 (en) Laser device, laser display device, and laser irradiation device
JP6141452B2 (ja) 多波長レーザ装置
JP5529153B2 (ja) 波長変換レーザ光源及び画像表示装置
JP5826409B2 (ja) レーザ装置
JP4427026B2 (ja) 偏光子および偏光分離素子
WO2011016170A1 (ja) 波長変換レーザ及び画像表示装置
US20090161700A1 (en) Fiber laser
JP4930036B2 (ja) 外部共振型レーザ光源装置及びそれを用いたモニタ装置並びに画像表示装置
JP5899468B2 (ja) 波長変換装置及び画像表示装置
JP6171950B2 (ja) レーザ発振器及び波長切替装置
JP2008112623A (ja) 光源装置、プロジェクタ
WO2013140432A1 (ja) レーザ装置
JP2009054651A (ja) レーザ光源装置及びこれを用いた画像生成装置
JP2014197633A (ja) レーザ装置
JP4862960B2 (ja) 波長変換レーザ装置および画像表示装置
JP2009181994A (ja) 固体レーザ用光学素子
JPH118427A (ja) 多重レーザ光発生装置および多重レーザ光発生素子
JP6107397B2 (ja) 波長変換素子および波長変換レーザ装置
JP2011154275A (ja) 分極反転波長変換素子および光源
JP2008216531A (ja) レーザ装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12888974

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2014548414

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 14412360

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2012888974

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE