JP4202730B2 - 固体レーザ装置 - Google Patents

固体レーザ装置 Download PDF

Info

Publication number
JP4202730B2
JP4202730B2 JP2002335782A JP2002335782A JP4202730B2 JP 4202730 B2 JP4202730 B2 JP 4202730B2 JP 2002335782 A JP2002335782 A JP 2002335782A JP 2002335782 A JP2002335782 A JP 2002335782A JP 4202730 B2 JP4202730 B2 JP 4202730B2
Authority
JP
Japan
Prior art keywords
optical axis
resonator
wavelength
solid
mirror
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002335782A
Other languages
English (en)
Other versions
JP2004172314A (ja
JP2004172314A5 (ja
Inventor
正幸 籾内
泰造 江野
義明 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topcon Corp
Original Assignee
Topcon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topcon Corp filed Critical Topcon Corp
Priority to JP2002335782A priority Critical patent/JP4202730B2/ja
Priority to US10/361,363 priority patent/US6816519B2/en
Publication of JP2004172314A publication Critical patent/JP2004172314A/ja
Publication of JP2004172314A5 publication Critical patent/JP2004172314A5/ja
Application granted granted Critical
Publication of JP4202730B2 publication Critical patent/JP4202730B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/081Construction or shape of optical resonators or components thereof comprising three or more reflectors
    • H01S3/082Construction or shape of optical resonators or components thereof comprising three or more reflectors defining a plurality of resonators, e.g. for mode selection or suppression
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0602Crystal lasers or glass lasers
    • H01S3/0604Crystal lasers or glass lasers in the form of a plate or disc
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/0619Coatings, e.g. AR, HR, passivation layer
    • H01S3/0621Coatings on the end-faces, e.g. input/output surfaces of the laser light
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/07Construction or shape of active medium consisting of a plurality of parts, e.g. segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/094049Guiding of the pump light
    • H01S3/094053Fibre coupled pump, e.g. delivering pump light using a fibre or a fibre bundle
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0941Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode
    • H01S3/09415Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a laser diode the pumping beam being parallel to the lasing mode of the pumped medium, e.g. end-pumping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/1083Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering using parametric generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/106Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity
    • H01S3/108Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating by controlling devices placed within the cavity using non-linear optical devices, e.g. exhibiting Brillouin or Raman scattering
    • H01S3/109Frequency multiplication, e.g. harmonic generation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/11Mode locking; Q-switching; Other giant-pulse techniques, e.g. cavity dumping
    • H01S3/1123Q-switching
    • H01S3/113Q-switching using intracavity saturable absorbers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/16Solid materials
    • H01S3/163Solid materials characterised by a crystal matrix
    • H01S3/1671Solid materials characterised by a crystal matrix vanadate, niobate, tantalate
    • H01S3/1673YVO4 [YVO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2383Parallel arrangements
    • H01S3/2391Parallel arrangements emitting at different wavelengths

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • Lasers (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は固体レーザ装置、特に固体レーザ装置に係り、共振器により2波長で発振し共振器内で波長変換する固体レーザ装置に関するものである。
【0002】
【従来の技術】
半導体レーザからのレーザビームの周波数を変換するものとして内部共振型SHG方式を用いたLD励起固体レーザがある。
【0003】
図9に於いて、1波長発振のLD励起固体レーザの概略を説明する。
【0004】
図9中、2は発光部、3は光共振部である。前記発光部2はLD発光器4、集光レンズ5を具備し、更に前記光共振部3は誘電体反射膜7が形成されたレーザ結晶8、非線形光学媒質(NLO)9、誘電体反射膜11が形成された凹面鏡12であり、前記光共振部3に於いてレーザビームをポンピングし、共振、増幅して出力している。尚、前記レーザ結晶8としては、Nd:YVO4 、前記非線形光学媒質9としてはKTP(KTiOPO4 リン酸チタニルカリウム)が挙げられる。
【0005】
更に説明すると以下の通りである。
【0006】
レーザ光源1は、例えば波長809nmのレーザビームを射出する為のものであり、半導体レーザである前記LD発光器4が使用されている。又、該LD発光器4が励起光を発生させるポンプ光発生装置としての機能を有する。尚、前記レーザ光源1は半導体レーザに限ることなく、レーザビームを生じさせることができれば、何れの光源手段をも採用することができる。
【0007】
前記レーザ結晶8は光の増幅を行う為のものである。該レーザ結晶8には、発振線が1064nmのNd:YVO4 が使用される。その他、Nd3+イオンをドープしたYAG(イットリウム アルミニウム ガーネット)等が採用され、YAGは、946nm、1064nm、1319nm等の発振線を有している。又、発振線が700〜900nmのTi(Sapphire)等を使用することができる。
【0008】
前記レーザ結晶8の前記LD発光器4側には、第1の誘電体反射膜7が形成されている。該第1の誘電体反射膜7は、前記LD発光器4からのレーザビームに対して高透過であり、且つ前記レーザ結晶8の発振波長に対して高反射であると共に、SHG(SECOND HARMONIC GENERATION)に対しても高反射となっている。
【0009】
前記凹面鏡12は、前記レーザ結晶8に対向する様に構成されており、前記凹面鏡12のレーザ結晶8側は、適宜の半径を有する凹面球面鏡の形状に加工されており、第2の誘電体反射膜11が形成されている。該第2の誘電体反射膜11は、前記レーザ結晶8の発振波長に対して高反射であり、SHG(SECONDHARMONIC GENERATION)に対して高透過となっている。
【0010】
以上の様に、前記レーザ結晶8の第1の誘電体反射膜7と、前記凹面鏡12の第2の誘電体反射膜11とを組合わせ、前記LD発光器4からのレーザビームを集光レンズ5を介して前記レーザ結晶8にポンピングさせると、該レーザ結晶8の第1の誘電体反射膜7と、前記第2の誘電体反射膜11との間で光が往復し、光を長時間閉込めることができるので、光を共振させて増幅させることができる。
【0011】
前記レーザ結晶8の第1の誘電体反射膜7と、前記凹面鏡12とから構成された光共振器内に前記非線形光学媒質9が挿入されている。該非線形光学媒質9にレーザビームの様に強力なコヒーレント光が入射すると、光周波数を2倍にする第2次高調波が発生する。該第2次高調波(SHG)発生は、SECOND HARMONIC GENERATIONと呼ばれている。従って、前記レーザ光源1からは波長532nmのレーザビームが射出される。
【0012】
前記したレーザ光源1は前記非線形光学媒質9を、前記レーザ結晶8と凹面鏡12とから構成された光共振器内に挿入しているので、内部型SHGと呼ばれており、変換出力は、励起光電力の2乗に比例するので、光共振器内の大きな光強度を直接利用できるという効果がある。
【0013】
又、入射された基本周波のレーザビームを異なる2波長に発振し、和周波(Sum Frequency Mixing(SFM))、差周波(Differential Frequency Mixing(DFM))を用いて更に異なる周波数に変換する固体レーザ装置がある。
【0014】
斯かる固体レーザ装置について、図10により説明する。尚、図10に於いて、前記LD発光器4、集光レンズ5は省略してある。
【0015】
前記LD発光器4側より凹面鏡12、レーザ結晶8、第1平面反射鏡14、非線形光学媒質9、第2平面反射鏡15、第3平面反射鏡16が配設されている。
【0016】
前記凹面鏡12は波長λi (図示では809nm)に対して高透過であり、波長λ1 (図示では1342nm)、波長λ2 (図示では1064nm)に対して高反射、前記第1平面反射鏡14はSHG(図示では波長λ3 =593nm)に対して高反射であり、波長λ1 、波長λ2 に対して高透過であり、前記第2平面反射鏡15は波長λ3 、波長λ2 に対して高透過であり、波長λ1 に対して高反射であり、前記第3平面反射鏡16は波長λ3 に対して高透過であり、波長λ2 に対しては高反射となっている。
【0017】
前記凹面鏡12を通して入射した励起光λi はレーザ結晶(Nd:YVO4 )を励起し、自然放出光のうち波長λ1 とλ2 の光は前記凹面鏡12と前記第2平面反射鏡15間、及び前記凹面鏡12と前記第3平面反射鏡16間でポンピングして共振し、λ1 の波長が励起増幅され、又λ2 の波長が励起増幅され、更に両波長のレーザビームが前記非線形光学媒質9を透過することで、両波長の和周波λ3 が得られ、前記第3平面反射鏡16を透過して射出される。
【0018】
尚、和周波(SFM)の場合、1/λ3 =1/λ1 +1/λ2 の関係がある。又、前記非線形光学媒質9を選択することで、差周波(DFM)も得られ、この場合、1/λ3 =1/λ1 −1/λ2 の関係がある。(λ1 <λ2 とする)
【0019】
和周波(SFM)、差周波(DFM)を発生させる上記した固体レーザ装置の周波数変換では、前記非線形光学媒質9を光共振器内部に配置することで、高効率で波長変換ができるという利点がある。
【0020】
上記従来例としては、例えば非特許文献1に記載されたものがある。
【0021】
【非特許文献1】
F.chen.and S.W.Tsai Opt.Lett.27(2002)397.
【0022】
【発明が解決しようとする課題】
図10で示した固体レーザ装置では、和周波(SFM)、差周波(DFM)を発生させ周波数変換を行っており、高効率で波長変換ができるという利点がある一方で下記の不具合がある。
【0023】
前記レーザ結晶8に入力できるレーザビームは結晶の破壊閾値で励起入力制限を受ける為、高出力を得るのが難しい。
【0024】
又、励起効率を上げるには波長λ1 の基本波と波長λ2 の基本波が同一光軸上となる必要があるが、前記凹面鏡12、前記第2平面反射鏡15、前記第3平面反射鏡16が共通の光軸上に設けられているので、前記凹面鏡12、前記第2平面反射鏡15、前記第3平面反射鏡16を調整して波長λ1 、波長λ2 の2つの光軸を完全に一致させることが困難である。
【0025】
更に、前記非線形光学媒質9はレーザビームのエネルギ密度の高い部分(ビームウェスト)に設けられることが効率上求められる。ビームウェスト(ω)は下記の式1で求められ、又前記凹面鏡12が波長λ 1 、波長λ 2 に対して共通に設けられているので、波長λが異なるとビームウェスト位置も異なる。従って、図10に示される様に前記レーザ結晶8が波長λ1 、波長λ2 に対して共通に設けられると、前記非線形光学媒質9を波長λ1 、波長λ2 のビームウェストの位置とすることはできないので、励起効率が低下するという問題があった。
【0026】
ω=√{λ√[L(R−L)]/π}…(式1)
但し、Lは共振器長、Rは凹面鏡の曲率である。
【0027】
更に、固体レーザ装置から発せられるレーザビームに複数の波長を要求される場合がある。例えば、固体レーザ装置が眼科医療装置に用いられる場合等では、治療により異なる波長が必要となる。上記した固体レーザ装置では出力されるレーザビームは短波長であり、複数の波長のレーザビームが要求される場合は対応できなかった。
【0028】
本発明は斯かる実情に鑑み、高出力が得られ、2波長の光軸合せが容易で、而も高効率で周波数変換が可能であり、更に複数の波長のレーザビームを射出可能とした固体レーザ装置を提供するものである。
【0029】
【課題を解決するための手段】
本発明は、第1光軸上に構成される第1共振器と、第2光軸上に構成される第2共振器と、前記第1共振器に励起光を入射させる第1の発光部と、前記第2共振器に励起光を入射させる第2の発光部とを有し、又前記第1光軸は分離光軸部と共有光軸部を有し、前記第2光軸は分離光軸部を有し、前記第1光軸、第2光軸は共有光軸部で重合し、前記第1光軸の分離光軸部上に設けられた第1固体レーザ媒質と、前記第2光軸の分離光軸部上に設けられた第2固体レーザ媒質と、前記共有光軸部に設けられた波長変換用光学部材と波長切替え手段とを有し、前記波長変換用光学部材は変換周波数の異なる複数の波長変換用光学結晶から成り、前記波長切替え手段はレーザビームが入射する波長変換用光学結晶を変更可能である固体レーザ装置に係り、又前記第1共振器、前記第2共振器は凹面鏡、平面鏡を具備し、前記凹面鏡はそれぞれの分離光軸部上に設けられ、前記平面鏡は共有光軸部上に設けられた固体レーザ装置に係り、又前記第1共振器に励起光を入射させる第1の発光部と前記第2共振器に励起光を入射させる第2の発光部とは独立して駆動可能である固体レーザ装置に係り、又前記第1固体レーザ媒質、第2固体レーザ媒質はそれぞれ第1共振器、第2共振器の分離光軸部上の励起光の集光部分に設けられた固体レーザ装置に係るものであり、更に又波長変換用光学部材は共有光軸部分のビームウェスト部分に設けられた固体レーザ装置に係るものである。
【0030】
【発明の実施の形態】
以下、図面を参照しつつ本発明の実施の形態を説明する。
【0031】
図1、図2は第1の実施の形態を示しており、第1光軸20上に第1集光レンズユニット21、第1凹面鏡22、第1固体レーザ媒質(第1レーザ結晶)23、中間鏡24、非線形光学媒質(波長変換用光学部材(NLO))25、出力鏡26を配設する。前記第1集光レンズユニット21と対向してLD発光器27が配設され、該LD発光器27は一列に配設された所要数のLDを有している。個々のLDから発せられるレーザビームは光ファイバ28により束ねられ、結合されたレーザビームとして前記第1集光レンズユニット21に入射される。
【0032】
前記第1固体レーザ媒質23と中間鏡24との間で前記第1光軸20と例えば90°で交差する第2光軸29上に第2集光レンズユニット31、第2凹面鏡32、第2固体レーザ媒質(第2レーザ結晶)33を配設し、前記第1光軸20と前記第2光軸29とが交差する位置には波長分離板34が配設される。前記第2光軸29は前記波長分離板34により屈曲され、該波長分離板34と前記出力鏡26との間を前記第1光軸20と共用している。而して、前記波長変換用光学部材25は前記第1光軸20と第2光軸29の共有光軸部に配置される。
【0033】
前記第2集光レンズユニット31と対向してLD発光器35が配設され、該LD発光器35は一列配設された所要数のLDを有している。個々のLDから発せられるレーザビームは光ファイバ36により束ねられ、結合されたレーザビームとして前記第2集光レンズユニット31に入射される。
【0034】
前記第1凹面鏡22は励起光である波長λを高透過で、第1基本波の波長λ1 については高反射であり、前記中間鏡24は波長λ1 、第2基本波の波長λ2 について高透過であり、波長変換光の波長λ3 [(和周波(SFM)或は差周波(DFM)、又はSHG1 (λ1 /2)、SHG2 (λ2 /2)]については高反射であり、前記出力鏡26は波長λ1 、λ2 、については高反射であり、波長変換光の波長λ3 [(和周波(SFM)或は差周波(DFM)、又はSHG1 (λ1 /2)、SHG2 (λ2 /2)]については高透過である。以下は和周波(SFM)について述べる。
【0035】
又、前記第2凹面鏡32は、励起光λについては高透過で、第2基本波λ2 については高反射となっており、前記波長分離板34は第1基本波λ1 については高透過で、第2基本波λ2 については高反射となっている。前記第1凹面鏡22と前記出力鏡26間で第1基本波λ1 の第1基本波用の第1共振器30が構成され、前記第2凹面鏡32と前記出力鏡26間で第2基本波λ2 の第2基本波用の第2共振器37が構成される。
【0036】
前記第1凹面鏡22の反射面と前記出力鏡26の反射面との距離L1 と、前記第2凹面鏡32の反射面と前記出力鏡26の反射面との距離L2 は、前記第1共振器30のビームウェストω1と前記第2共振器37のビームウェストω2とが略等しくなる様に設定されている。
【0037】
尚、式1より
ω 1 2 =λ 1 [ 1 (R 1 −L 1 ] /π
ω 2 2 =λ 2 [ 2 (R 2 −L 2 ] /π
ω1 とω2 が略同等とすると
λ1 2 L1 (R1 −L1 )=λ2 2 L2 (R2 −L2 )
である。(R1 とR2 は凹面鏡22,32の曲率半径)
【0038】
上記構成に於いて、前記LD発光器27、LD発光器35は励起光としてλ=809nmを射出し、前記第1固体レーザ媒質23、第2固体レーザ媒質33として1342nm、1064nmの発振線を有するNd:YVO4 が使用され、又この場合、前記波長変換用光学部材25としてKTP(KTiOPO4 リン酸チタニルカリウム)が使用される。
【0039】
該波長変換用光学部材25は複数の波長変換用光学結晶25a,25b,25c(図2では3種類)から構成され、それぞれ和周波SFM(又は差周波DFM)、SHG1 (λ1 /2)、SHG2 (λ2 /2)用に角度調整されている。
【0040】
前記波長変換用光学部材25は波長切替え手段19に支持され、該波長切替え手段19は前記波長変換用光学部材25を共有光軸部に対して直角方向に変位可能であり、前記波長変換用光学結晶25a、波長変換用光学結晶25b、波長変換用光学結晶25cを個別に前記共有光軸部上に位置決め可能となっている。
【0041】
尚、前記波長切替え手段19は、光学的に光路を切替える様にしてもよい。
【0042】
先ず、和周波変換用の波長変換用光学結晶25aが共有光軸部に挿入された状態を説明する。
【0043】
前記LD発光器27から射出されたレーザビームは前記光ファイバ28を経て前記第1集光レンズユニット21により前記固体レーザ媒質23内に集光し、該第1凹面鏡22と前記出力鏡26間で第1基本波λ1 =1342nmのレーザビームが発振される。又、前記LD発光器35から射出されたレーザビームは前記光ファイバ36を経て前記第2集光レンズユニット31により前記第2固体レーザ媒質33内に集光し前記波長分離板34で反射され、前記第2凹面鏡32と前記出力鏡26間で第2基本波λ2 =1064nmのレーザビームが発振される。
【0044】
更に、第1基本波λ1 、第2基本波λ2 のレーザビームが前記波長変換用光学結晶25aを透過することで、593nmの和周波が発生し、前記中間鏡24に向かう波長593nmのレーザビームは、前記中間鏡24で反射され、前記出力鏡26より波長593nmのレーザビームとして射出される。
【0045】
上記した固体レーザ装置の構成で、前記第1共振器30と第2共振器37とは前記中間鏡24、波長変換用光学結晶25a、出力鏡26以外は分離した構成となっているので、前記LD発光器27から前記第1共振器30内に入射したレーザビームは図中では第1凹面鏡22と波長分離板34との間に集光点を形成し、この集光点が前記第1固体レーザ媒質23内又は近傍となる位置に設けられる。又、同様に前記LD発光器35から前記第2共振器37に入射したレーザビームは図中では第2凹面鏡32と波長分離板34との間に集光点を形成し、この集光点が前記第2固体レーザ媒質33内又は近傍となる位置に設けられる。
【0046】
前記第1固体レーザ媒質23、第2固体レーザ媒質33の励起効率は、レーザビームのエネルギ密度、或は偏光方向に影響されるが、前記第1固体レーザ媒質23、第2固体レーザ媒質33の位置調整は個々に行えるので、最適な位置に設定でき、又偏光方向の調整についても、前記LD発光器27、LD発光器35それぞれ個別に行えるので、調整が容易である。又、光学部材の位置調整、例えば前記第1凹面鏡22、第2凹面鏡32の光軸合せについても、一方の調整が他方に影響しないので、一方の調整を完了した後、他方が調整できる等調整が容易である。更に、2つの励起光の偏光を平行或は直交させることが可能な為、前記波長変換用光学部材25に制限はなく、全ての波長変換用光学結晶の使用が可能である。
【0047】
又、前記第1光軸20、第2光軸29の共通部分を完全に合致させることが可能であり、又完全に合致させることで、前記波長変換用光学結晶25aの変換効率が向上する。
【0048】
又、第1共振器と第2共振器とが同じ波長(λ1 =λ2 )で発振する様にしてもよい。この場合、波長分離板34は偏光分離板(P/S)を用いる。発振波長は例えばNd:YAGなら1064nm(532nmで緑)となる。
【0049】
上記した構成で前記第1固体レーザ媒質23には前記LD発光器27からのレーザビーム、前記第2固体レーザ媒質33には前記LD発光器35からのレーザビームが単独で入射するので、前記第1固体レーザ媒質23、第2固体レーザ媒質33に掛る負荷が少なく、又2組のLD発光器27、LD発光器35からのレーザビームにより波長変換光が得られるので高出力となる。
【0050】
次に、前記波長切替え手段19により、前記波長変換用光学結晶25bが共有光軸部に挿入され、SHG1 (λ1 /2)として671nmのレーザビームを照射する場合を説明する。
【0051】
前記LD発光器35を停止して、前記LD発光器27からの励起光λのみを入射させる。この場合、前記第1共振器30のみが作用し、基本波λ1は前記波長変換用光学結晶25bによりSHG1 (λ1 /2)に波長変換され、射出される。
【0052】
又、前記波長切替え手段19により、前記波長変換用光学結晶25cが共有光軸部に挿入され、SHG2 (λ2 /2)として532nmのレーザビームを照射する場合を説明する。
【0053】
前記LD発光器27を停止して、前記LD発光器35からの励起光λのみを入射させる。この場合、前記第2共振器37のみが作用し、基本波λ2 は前記波長変換用光学結晶25cによりSHG2 (λ2 /2)に波長変換され、射出される。
【0054】
而して、前記波長変換用光学結晶25a,25b,25cの選択と、前記LD発光器27、LD発光器35の駆動の制御で3種類の波長のレーザビームを射出することができる。
【0055】
尚、上記波長変換用光学部材25としてはKTPの他に、BBO(β−BaB2 O4 β型ホウ酸リチウム)、LBO(LiB3 O5 トリホウ酸リチウム)、KNbO3 (ニオブ酸カリウム)等も採用される。
【0056】
又、前記中間鏡24、出力鏡26を省略し、前記波長変換用光学結晶25aの図2中左端面に第1基本波の波長λ1 、第2基本波のλ2 については高透過であり、593nmの和周波については高反射の反射膜を形成し、前記波長変換用光学結晶25aの右端面には波長λ1 ,λ2 については高反射であり、波長変換光の前記和周波(593nm)のλ3 については高透過の反射膜を形成する。
【0057】
又、前記波長変換用光学結晶25bの左端面に波長λ1 ,λ2 については高透過であり、671nmのSHG1 については高反射の反射膜を形成し、前記波長変換用光学結晶25bの右端面には波長λ1 、波長λ2 については高反射であり、SHG1 (671nm)の波長λ3 については高透過の反射膜を形成する。
【0058】
又、前記波長変換用光学結晶25cについては左端に波長λ1 、波長λ2 については高透過であり、532nmのSHG2 については高反射の反射膜を形成し、前記波長変換用光学結晶25c右端面には波長λ1 ,λ2 については高反射でありSHG2 (532nm)の波長λ3 については高透過の反射膜を形成する様にしてもよい。
【0059】
前記波長変換用光学結晶25a,25b,25cの両端面に上記した反射膜を形成することで、前記中間鏡24、出力鏡26を省略でき一層の小型化が可能となる。
【0060】
図3は、第2の実施の形態を示している。図3中、図1、図2中で示したものと同等のものには同符号を付してある。
【0061】
第2共振器37の第2固体レーザ媒質33と波長分離板34間にQ−sw39が配設される。該Q−sw39は過飽和吸収体(結晶体)から構成される。該Q−sw39は入射したレーザビームを過飽和吸収し、吸収量が所定レベルを越えるとレーザビームを射出するので、該Q−sw39はスイッチング作用を有している。従って、固体レーザ装置から射出されるレーザビームは前記Q−sw39のスイッチング作用により、パルス状に射出される。
【0062】
尚、該Q−sw39の材質としては、例えばCr:YAG、AO(音響光学素子)等が挙げられる。
【0063】
通常レーザ結晶の結晶端面は、励起による熱レンズ効果で凹面鏡作用を生じる。従って、前記第1凹面鏡22、第2凹面鏡32を省略し、第1固体レーザ媒質23のLD発光器27側の端面、前記第2固体レーザ媒質33のLD発光器35側の端面に共振器用反射面を形成してもよい。
【0064】
図4に示す第3の実施の形態では、上記実施の形態中の第1凹面鏡22、第2凹面鏡32、中間鏡24、出力鏡26を省略した場合である。
【0065】
LD発光器27に対向して第1固体レーザ媒質23を第1光軸20上に配設し、波長分離板34を挾んで波長変換用光学部材25を配設する。該波長変換用光学部材25は、前記第1光軸20と直角方向に連設された波長変換用光学結晶25a、波長変換用光学結晶25b、波長変換用光学結晶25cから構成されている。又、前記LD発光器27、第1固体レーザ媒質23は前記第1光軸20上に設けられ、前記波長変換用光学部材25は後述する第2光軸29との共有光軸部に設けられる。
【0066】
前記第1固体レーザ媒質23の前記LD発光器27と対峙する面には励起光λが高透過で第1基本波λ1 について高反射の誘電体反射膜40が形成され、前記第1固体レーザ媒質23の反対峙面には前記第1基本波λ1 が高透過の膜41が形成される。前記波長分離板34は第1基本波λ1 は高透過で、第2基本波λ2 は高反射となっている。
【0067】
又、前記波長変換用光学部材25の前記LD発光器27側の面には第1基本波λ1 を高透過で波長変換光λ3 について高反射の誘電体反射膜42が形成され、前記波長変換用光学部材25の反LD発光器27側の面には第1基本波λ1 は高反射で波長変換光λ3 は高透過な誘電体反射膜43が形成されている。
【0068】
又、前記波長分離板34は前記第1光軸20と交差する第2光軸29上に配設され、前記波長分離板34に対向して第2固体レーザ媒質33、LD発光器35が配設されている。前記第2固体レーザ媒質33の前記LD発光器35と対峙する面には励起光λが高透過で第2基本波λ2 について高反射の誘電体反射膜44が形成され、前記第2固体レーザ媒質33の反LD発光器35側の面には前記第2基本波λ2 が高透過の膜45が形成される。
【0069】
而して、前記誘電体反射膜40と前記誘電体反射膜43との間で第1共振器が構成され、前記誘電体反射膜44と前記誘電体反射膜43との間で第2共振器が構成される。又、前記波長変換用光学部材25の波長変換用光学結晶25a、波長変換用光学結晶25b、波長変換用光学結晶25cは択一的に前記共有光軸部に挿入される。
【0070】
尚、第3の実施の形態での作用については、図1、図2中で示した第1の実施の形態と同様であるので説明を省略する。第3の実施の形態では第1凹面鏡22、第2凹面鏡32、中間鏡24、出力鏡26を省略したので、固体レーザ装置の小型化が可能である。
【0071】
又、図5は第3の実施の形態を用いた第4の実施の形態を示している。
【0072】
図中、46,47,48はそれぞれレーザビーム発光ユニットであり、図4で示した固体レーザ装置と同等の構成を有しており、それぞれ射出されるレーザビームはλa 、λb 、λc の波長を有している。
【0073】
尚、前記レーザビームの波長λa 、λb 、λc は励起光λの選択、第1固体レーザ媒質23、波長変換用光学部材25を適宜選択することで、所要の波長が得られる。
【0074】
第1レーザビーム発光ユニット46から射出されるレーザビームは集光レンズ49により集光され、光ファイバ50に入射される。又、第2レーザビーム発光ユニット47から射出されたレーザビームは集光レンズ51により集光され、光ファイバ52に入射され、又第3レーザビーム発光ユニット48から射出されたレーザビームは集光レンズ53により集光され、光ファイバ54に入射される。前記光ファイバ50、光ファイバ52、光ファイバ54は出力部分55が所要長さ溶着されることで波長λa 、λb 、λc のレーザビームが結合され、同一光軸を有するレーザビームとして前記出力部分55より射出される。
【0075】
前記第1レーザビーム発光ユニット46、第2レーザビーム発光ユニット47、第3レーザビーム発光ユニット48が全て駆動されている場合は、前記出力部分55から射出されるレーザビームは波長λa 、λb 、λc の混合色となり、いずれか1つ、例えば前記第1レーザビーム発光ユニット46のみが駆動されている場合は、波長λa の単色光となる。更に、レーザビーム発光ユニット46,47,48は個々に3色のレーザビームを射出可能であるので、多数色のレーザビームを射出可能となる。
【0076】
第4の実施の形態では複数の波長を効率よく、同一光軸で射出できるので、例えばプロジェクタの光源として利用できる。
【0077】
尚、第4の実施の形態でレーザビームを同一光軸に結合する手段として光ファイバを使用したが、波長を分離反射、分離透過するミラーを使用してもよい。
【0078】
図6は第5の実施の形態を示している。
【0079】
図6中、図1中で示したものと同一のものには同符号を付している。
【0080】
図1で示した第1の実施の形態では、第1共振器30と第2共振器37とをT字状に構成したが、第5の実施の形態では直線状に構成したものである。
【0081】
同一光軸上に第1凹面鏡22、第1固体レーザ媒質23、第2共振器用反射鏡60、波長変換用光学結晶25、第1共振器用反射鏡61、出力用波長分離板62、第2固体レーザ媒質33、第2凹面鏡32が配設され、前記第1凹面鏡22と前記第1共振器用反射鏡61間で第1共振器30が形成され、前記第2凹面鏡32と前記第2共振器用反射鏡60間で第2共振器37が形成される。而して、前記第2共振器用反射鏡60と第1共振器用反射鏡61間は第1光軸20と第2光軸29の共有光軸部となっている。
【0082】
第1集光レンズユニット21と対向してLD発光器27が配設され、該LD発光器27は一列に配設された所要数のLDを有している。個々のLDから発せられるレーザビームは光ファイバ28により束ねられ、結合されたレーザビームとして前記第1集光レンズユニット21に入射される。
【0083】
第2集光レンズユニット31と対向してLD発光器35が配設され、該LD発光器35は一列に配設された所要数のLDを有している。個々のLDから発せられるレーザビームは光ファイバ36により束ねられ、結合されたレーザビームとして前記第2集光レンズユニット31に入射される。
【0084】
前記第1凹面鏡22は励起光λを高透過で、第1基本波λ1 については高反射であり、前記第2共振器用反射鏡60は第1基本波λ1 について高透過で、第2基本波λ2 については高反射であると共に波長変換光λ3 (和周波(SFM)或は差周波(DFM)、以下は和周波(SFM)について述べる)についても高反射となっている。前記第1共振器用反射鏡61は第1基本波λ1 については高反射であり、第2基本波λ2 、波長変換光λ3 については高透過である。
【0085】
前記出力用波長分離板62は第1基本波λ1 、第2基本波λ2 については高透過であり、波長変換光λ3 については高反射となっている。前記第2凹面鏡32は、励起光λについては高透過で、第2基本波のλ2 については高反射となっている。
【0086】
上記構成に於いて、前記LD発光器27、LD発光器35は励起光としてλ=809nmを射出し、前記第1固体レーザ媒質23、第2固体レーザ媒質33として1342nm、1064nmの発振線を有するNd:YVO4 が使用され、又前記波長変換用光学結晶25としてKTPが使用される。
【0087】
前記波長変換用光学部材25は波長切替え手段19に支持され、該波長切替え手段19は前記波長変換用光学部材25を共有光軸部に対して直角方向に変位可能であり、波長変換用光学結晶25a、波長変換用光学結晶25b、波長変換用光学結晶25cを個別に前記共有光軸部上に位置決め可能となっている。
【0088】
前記第1凹面鏡22の反射面と前記第1共振器用反射鏡61の反射面との距離L1 と、前記第2凹面鏡32の反射面と前記第2共振器用反射鏡60の反射面との距離L2 は、第1共振器のビームウェストω1 と第2共振器ビームウェストω2 が略等しくなるように設定される。
【0089】
式1より λ1 2 L1 (R1 −L1 )=λ2 2 L2 (R2 −L2 )(式2)
R1 ,R2 は凹面鏡22,32の曲率半径である。
【0090】
而して、前記波長変換用光学結晶25a、波長変換用光学結晶25b、波長変換用光学結晶25cを選択し、前記LD発光器27、前記LD発光器35の駆動の選択の組合わせで、和周波593nmのレーザビーム、SHG1 (λ1 /2)の671nmのレーザビーム、SHG2 (λ2 /2)の532nmのレーザビームが前記出力用波長分離板64に反射されて出力される。
【0091】
上記した固体レーザ装置の構成で、前記第1共振器30と第2共振器37とは光学的に前記波長変換用光学結晶25以外は分離した構成となっているので、前記LD発光器27から前記第1共振器30内に入射したレーザビームは、図中では第1凹面鏡22と第2共振器用反射鏡60との間に集光点を形成し、この集光点が前記第1固体レーザ媒質23内又は近傍となる位置に設けられる。又、同様に前記LD発光器35から前記第2共振器37に入射したレーザビームは図中では第2凹面鏡32と出力用波長分離板62との間に集光点を形成し、前記第2固体レーザ媒質33内又は近傍となる位置に設けられる。
【0092】
前記第1固体レーザ媒質23、第2固体レーザ媒質33の位置調整は個々に行えるので、最適な位置に設定でき、又偏光方向の調整についても、前記LD発光器27、LD発光器35それぞれ個別に行えるので、調整が容易である。又、光学部材の位置調整、例えば前記第1凹面鏡22、第2凹面鏡32の光軸合せについても、一方の調整が他方に影響しないので、一方の調整を完了した後、他方が調整できる等調整が容易である。更に、2つの励起光の偏光を平行或は直交させることが可能な為、前記波長変換用光学結晶に制限はなく、全ての波長変換用光学結晶の使用が可能である。
【0093】
本実施の形態に於いても、前記第1光軸20、第2光軸29の共通部分を完全に合致させることが可能であり、又完全に合致させることで、波長変換用光学結晶の変換効率が向上する。
【0094】
図7、図8は第6の実施の形態を示し、第5の実施の形態に於ける反射面を、第1固体レーザ媒質23、波長変換用光学部材25、第2固体レーザ媒質33に直接形成し、第2共振器用反射鏡60、第1共振器用反射鏡61を省略したものである。図7、図8中、図4中で示したものと同等のものには同符号を付してある。
【0095】
同一光軸上にLD発光器27に第1固体レーザ媒質23を対向して配設し、該第1固体レーザ媒質23に波長変換用光学結晶25を連設し、出力用波長分離板62を挾んで第2固体レーザ媒質33を配設し、該第2固体レーザ媒質33に対向してLD発光器35が設けられている。
【0096】
前記第1固体レーザ媒質23の前記LD発光器27と対峙する面には励起光λが高透過で第1基本波λ1 について高反射の誘電体反射膜40が形成され、前記第1固体レーザ媒質23の前記LD発光器27との反対峙面には前記第1基本波λ1 が高透過で、第2基本波λ2 、波長変換光λ3 が高反射の誘電体反射膜66が形成される。尚、該誘電体反射膜66は前記波長変換用光学結晶25の第1固体レーザ媒質23に対峙する面に形成されてもよい。
【0097】
前記波長変換用光学結晶25の前記出力用波長分離板62に面する側には膜64が形成され、該膜64は前記第1基本波λ1 、第2基本波λ2 、波長変換光λ3 が高透過となっている。又、前記出力用波長分離板62は前記第1基本波λ1 、第2基本波λ2 が高透過で、波長変換光λ3 が高反射となっている。前記第2固体レーザ媒質33の前記出力用波長分離板62に面する側には誘電体反射膜65が形成され、前記LD発光器35に対峙する面には誘電体反射膜44が形成され、前記誘電体反射膜65は前記第2基本波λ2 が高透過で、第1基本波λ1 が高反射となっており、前記誘電体反射膜44は励起光λが高透過で第2基本波λ2 が高反射となっている。
【0098】
而して、前記誘電体反射膜40と前記誘電体反射膜65との間で第1共振器が構成され、前記誘電体反射膜44と前記誘電体反射膜66との間で第2共振器が構成される。
【0099】
尚、第6の実施の形態での作用については、図1中で示した第1の実施の形態と同様であるので説明を省略する。第6の実施の形態では第1凹面鏡22、第2凹面鏡32、第2共振器用反射鏡24、第1共振器用反射鏡26を省略したので、固体レーザ装置の小型化が可能である。
【0100】
尚、前記第1固体レーザ媒質23と前記波長変換用光学結晶25とを連設する場合、いずれか一方、例えば波長変換用光学結晶25の周囲に蒸着により膜を形成すれば前記第1固体レーザ媒質23と波長変換用光学結晶25を密着させて設けても該波長変換用光学結晶25と前記第1固体レーザ媒質23間に光学的間隙を形成することができる。
【0101】
【発明の効果】
以上述べた如く本発明によれば、第1光軸上に構成される第1共振器と、第2光軸上に構成される第2共振器と、前記第1共振器に励起光を入射させる第1の発光部と、前記第2共振器に励起光を入射させる第2の発光部とを有し、又前記第1光軸は分離光軸部と共有光軸部を有し、前記第2光軸は分離光軸部を有し、前記第1光軸、第2光軸は共有光軸部で重合し、前記第1光軸の分離光軸部上に設けられた第1固体レーザ媒質と、前記第2光軸の分離光軸部上に設けられた第2固体レーザ媒質と、前記共有光軸部に設けられた波長変換用光学部材と波長切替え手段とを有し、前記波長変換用光学部材は変換周波数の異なる複数の波長変換用光学結晶から成り、前記波長切替え手段はレーザビームが入射する波長変換用光学結晶を変更可能であるので、複数の波長のレーザビームを射出可能であり、又第1共振器と、第2共振器それぞれに個別に励起光を入射でき、高出力が得られ、第1共振器、第2共振器の光軸が分離しているので、2波長の光軸合せが容易である。
【0102】
又、前記第1固体レーザ媒質、第2固体レーザ媒質はそれぞれ第1共振器、第2共振器の分離光軸上の励起光の集光部分に設けられたので、高効率で励起が可能であり、又光軸合せが容易にでき、第1共振器と第2共振器の共通部分にそれぞれの基本波のビームウェストが形成され、波長変換用光学結晶を置くことにより、高効率で周波数変換が可能である等の優れた効果を発揮する。
【図面の簡単な説明】
【図1】本発明の第1の実施の形態を示す概略構成図である。
【図2】本発明の第1の実施の形態を示す要部概略構成図である。
【図3】本発明の第2の実施の形態を示す要部概略構成図である。
【図4】本発明の第3の実施の形態を示す要部概略構成図である。
【図5】本発明の第4の実施の形態を示す概略構成図である。
【図6】本発明の第5の実施の形態を示す概略構成図である。
【図7】本発明の第6の実施の形態を示す要部概略平面図である。
【図8】同前実施の形態を示す要部概略正面図である。
【図9】従来例の概略構成図である。
【図10】他の従来例の概略構成図である。
【符号の説明】
19 波長切替え手段
20 第1光軸
22 第1凹面鏡
23 第1固体レーザ媒質
25 波長変換用光学部材
26 出力鏡
27 LD発光器
28 光ファイバ
29 第2光軸
30 第1共振器
32 第2凹面鏡
33 第2固体レーザ媒質
35 LD発光器
36 光ファイバ
37 第2共振器
40 誘電体反射膜
43 誘電体反射膜
44 誘電体反射膜
60 第2共振器用反射鏡
61 第1共振器用反射鏡
62 出力用波長分離板
65 誘電体反射膜
66 誘電体反射膜

Claims (5)

  1. 第1光軸上に構成され第1凹面鏡と平面出力鏡との間で第1基本波λ1 を発振する第1共振器と、第2光軸上に構成される第2凹面鏡と前記平面出力鏡との間で第2の基本波λ2 を発振する第2共振器と、前記第1共振器に励起光を入射させる第1の発光部と、前記第2共振器に励起光を入射させる第2の発光部とを有し、又前記第1光軸は分離光軸部と共有光軸部を有し、前記第2光軸は分離光軸部と共有光軸部を有し、前記第1光軸、第2光軸は共有光軸部で重合し、前記第1光軸の分離光軸部上に設けられた第1固体レーザ媒質と、前記第2光軸の分離光軸部上に設けられた第2固体レーザ媒質と、前記共有光軸部の前記平面出力鏡に隣接する位置に設けられ、波長変換用光学部材と波長切替え手段とを有し、前記第1凹面鏡と前記平面出力鏡との距離L1 、前記第1凹面鏡の曲率R1 により定まる前記第1基本波λ1 のビームウェストと、前記第2凹面鏡と前記平面出力鏡との距離L2 、前記第2凹面鏡の曲率R2 により定まる前記第2基本波λ2 のビームウェストとを略等しくなる様に設定し、前記波長変換用光学部材は変換周波数の異なる複数の波長変換用光学結晶から成り、前記波長切替え手段はレーザビームが入射する波長変換用光学結晶を変更可能であることを特徴とする固体レーザ装置。
  2. 前記第1共振器、前記第2共振器は凹面鏡、平面鏡を具備し、前記凹面鏡はそれぞれの分離光軸部上に設けられ、前記平面鏡は共有光軸部上に設けられた請求項1の固体レーザ装置。
  3. 前記第1共振器に励起光を入射させる第1の発光部と前記第2共振器に励起光を入射させる第2の発光部とは独立して駆動可能である請求項1の固体レーザ装置。
  4. 前記第1固体レーザ媒質、第2固体レーザ媒質はそれぞれ第1共振器、第2共振器の分離光軸部上の励起光の集光部分に設けられた請求項1の固体レーザ装置。
  5. 前記第1基本波λ1 、前記第2基本波λ2 、前記第1凹面鏡と前記平面出力鏡との距離L1 、前記第1凹面鏡の曲率R1 、前記第2凹面鏡と前記平面出力鏡との距離L2 、前記第2凹面鏡の曲率R2 とが、以下の関係となる様に設定されている請求項1の固体レーザ装置。
    λ1 2 L1 (R1 −L1 )=λ2 2 L2 (R2 −L2 )
JP2002335782A 2002-11-19 2002-11-19 固体レーザ装置 Expired - Fee Related JP4202730B2 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2002335782A JP4202730B2 (ja) 2002-11-19 2002-11-19 固体レーザ装置
US10/361,363 US6816519B2 (en) 2002-11-19 2003-02-10 Solid-state laser device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002335782A JP4202730B2 (ja) 2002-11-19 2002-11-19 固体レーザ装置

Publications (3)

Publication Number Publication Date
JP2004172314A JP2004172314A (ja) 2004-06-17
JP2004172314A5 JP2004172314A5 (ja) 2005-12-15
JP4202730B2 true JP4202730B2 (ja) 2008-12-24

Family

ID=32290352

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002335782A Expired - Fee Related JP4202730B2 (ja) 2002-11-19 2002-11-19 固体レーザ装置

Country Status (2)

Country Link
US (1) US6816519B2 (ja)
JP (1) JP4202730B2 (ja)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004070338A (ja) * 2002-07-23 2004-03-04 Canon Inc 光波長変換装置、及び光波長変換方法
US7397598B2 (en) * 2004-08-20 2008-07-08 Nikon Corporation Light source unit and light irradiation unit
JP2006196866A (ja) * 2004-12-14 2006-07-27 Topcon Corp 固体レーザ装置
JP2006173526A (ja) * 2004-12-20 2006-06-29 Topcon Corp 固体レーザ装置
FR2882860B1 (fr) * 2005-03-04 2009-05-22 Oxxius Sa Sa "dispositif laser a deux longueurs d'onde et systeme comprenant un tel dispositif"
US7535937B2 (en) * 2005-03-18 2009-05-19 Pavilion Integration Corporation Monolithic microchip laser with intracavity beam combining and sum frequency or difference frequency mixing
JP2006324601A (ja) * 2005-05-20 2006-11-30 Sunx Ltd レーザ装置及びレーザ加工装置
US7535938B2 (en) * 2005-08-15 2009-05-19 Pavilion Integration Corporation Low-noise monolithic microchip lasers capable of producing wavelengths ranging from IR to UV based on efficient and cost-effective frequency conversion
JP2007271725A (ja) * 2006-03-30 2007-10-18 Fujitsu Ltd 単一光子の波長変換装置
US7457330B2 (en) * 2006-06-15 2008-11-25 Pavilion Integration Corporation Low speckle noise monolithic microchip RGB lasers
WO2012029225A1 (ja) 2010-09-03 2012-03-08 富士電機株式会社 光源装置
US8891563B2 (en) 2012-07-10 2014-11-18 Coherent, Inc. Multi-chip OPS-laser
CN103585718B (zh) * 2013-11-04 2016-09-14 中国科学院苏州生物医学工程技术研究所 一种全固态折叠式腔内和频黄橙激光血管性疾病治疗仪
CN111106515B (zh) * 2019-12-31 2021-11-30 武汉奇致激光技术股份有限公司 一种多波长激光器及光学设备
CN114552361A (zh) * 2022-01-28 2022-05-27 罗根激光科技(武汉)有限公司 一种t型振荡器耦合激光器

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4338578A (en) * 1980-03-05 1982-07-06 Yefim Sukhman Multicolor pulsed coherent-light source
US5345457A (en) * 1993-02-02 1994-09-06 Schwartz Electro-Optics, Inc. Dual wavelength laser system with intracavity sum frequency mixing
JP2002151774A (ja) * 2000-09-01 2002-05-24 Nidek Co Ltd レーザ装置

Also Published As

Publication number Publication date
JP2004172314A (ja) 2004-06-17
US20040095982A1 (en) 2004-05-20
US6816519B2 (en) 2004-11-09

Similar Documents

Publication Publication Date Title
US5638388A (en) Diode pumped, multi axial mode intracavity doubled laser
US6241720B1 (en) Diode pumped, multi axial mode intracavity doubled laser
JP4202730B2 (ja) 固体レーザ装置
JP2753145B2 (ja) 周波数2倍化レーザ
US20030035448A1 (en) Harmonic laser
US6287298B1 (en) Diode pumped, multi axial mode intracavity doubled laser
US6931037B2 (en) Diode pumped, multi axial mode intracavity doubled laser
JP4231829B2 (ja) 内部共振器型和周波混合レーザ
JP4202729B2 (ja) 固体レーザ装置
JP4242141B2 (ja) 固体レーザ装置
JP2004111542A (ja) 半導体レーザ装置
RU2328064C2 (ru) Волоконный лазер с внутрирезонаторным удвоением частоты (варианты)
JP2008536322A (ja) 単周波数モノリシック線形レーザ・デバイス、および該デバイスを備えた装置
US20070041420A1 (en) Solid-state laser device
JPH07154021A (ja) 波長可変型青色レーザ装置
JP4518843B2 (ja) 固体レーザ装置
JP4128092B2 (ja) 固体レーザ装置
US20070286247A1 (en) Frequency-doubled laser resonator including two optically nonlinear crystals
JPH09232665A (ja) 出力安定化第二高調波光源
JPH09331097A (ja) 固体レーザ装置
JPH0595144A (ja) 半導体レーザ励起固体レーザ
JPH04335586A (ja) レーザーダイオードポンピング固体レーザー
JP3170851B2 (ja) レーザ光発生装置
JPH0645680A (ja) 固体レーザ装置
JPH04158589A (ja) 半導体レーザ励起固体レーザ装置

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20051028

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20080422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080701

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080829

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080930

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081009

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111017

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121017

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131017

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees