JPWO2006054715A1 - プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法 - Google Patents

プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法 Download PDF

Info

Publication number
JPWO2006054715A1
JPWO2006054715A1 JP2006545176A JP2006545176A JPWO2006054715A1 JP WO2006054715 A1 JPWO2006054715 A1 JP WO2006054715A1 JP 2006545176 A JP2006545176 A JP 2006545176A JP 2006545176 A JP2006545176 A JP 2006545176A JP WO2006054715 A1 JPWO2006054715 A1 JP WO2006054715A1
Authority
JP
Japan
Prior art keywords
propylene
extruded foam
based resin
resin extruded
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006545176A
Other languages
English (en)
Other versions
JP4999463B2 (ja
Inventor
菅原 稔
稔 菅原
安彦 大槻
安彦 大槻
津乗 良一
良一 津乗
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Prime Polymer Co Ltd
Original Assignee
Prime Polymer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Prime Polymer Co Ltd filed Critical Prime Polymer Co Ltd
Priority to JP2006545176A priority Critical patent/JP4999463B2/ja
Publication of JPWO2006054715A1 publication Critical patent/JPWO2006054715A1/ja
Application granted granted Critical
Publication of JP4999463B2 publication Critical patent/JP4999463B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/22After-treatment of expandable particles; Forming foamed products
    • C08J9/228Forming foamed products
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F10/00Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F10/04Monomers containing three or four carbon atoms
    • C08F10/06Propene
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3469Cell or pore nucleation
    • B29C44/348Cell or pore nucleation by regulating the temperature and/or the pressure, e.g. suppression of foaming until the pressure is rapidly decreased
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/35Component parts; Details or accessories
    • B29C44/352Means for giving the foam different characteristics in different directions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/46Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length
    • B29C44/468Feeding the material to be shaped into an open space or onto moving surfaces, i.e. to make articles of indefinite length in a plurality of parallel streams which unite during the foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F110/00Homopolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F110/04Monomers containing three or four carbon atoms
    • C08F110/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F210/00Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
    • C08F210/04Monomers containing three or four carbon atoms
    • C08F210/06Propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • C08J2323/10Homopolymers or copolymers of propene
    • C08J2323/12Polypropene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2205/00Polymer mixtures characterised by other features
    • C08L2205/02Polymer mixtures characterised by other features containing two or more polymers of the same C08L -group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L23/00Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers
    • C08L23/02Compositions of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L23/10Homopolymers or copolymers of propene
    • C08L23/14Copolymers of propene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2308/00Chemical blending or stepwise polymerisation process with the same catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249953Composite having voids in a component [e.g., porous, cellular, etc.]
    • Y10T428/249978Voids specified as micro
    • Y10T428/249979Specified thickness of void-containing component [absolute or relative] or numerical cell dimension
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/26Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
    • Y10T428/268Monolayer with structurally defined element

Abstract

本発明のプロピレン系樹脂押出発泡体は、プロピレン系樹脂を押出発泡させてなる押出発泡体であり、発泡倍率が10倍以上、平均セル径400μm未満である。また、繊維状フィラーを成形材料全体に対し、60wt%以下含有する。この構成により、押出発泡体中における発泡セル壁を多数形成することができるため、外部からの輻射熱を効率よく遮断することが可能となり、断熱性能に優れた押出発泡体となる。また、繊維状フィラーは、厚み方向に沿って配置されることとなるため、押出発泡体の厚み方向に少しの歪みが生じた場合でも、高い応力が生じることとなり、エネルギー吸収能力を向上させることが可能となる。

Description

本発明は、プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法に関する。
熱可塑性樹脂を押出発泡成形した押出発泡体や、多数の小孔を有するダイからこれらの熱可塑性樹脂を押し出し、押し出された樹脂の細条を集束してその外面を融着させて発泡させる、いわゆるストランド押出により成形された押出発泡細条集束体は、軽量でありながら機械的特性に優れることから、建築・土木分野や自動車分野等の各分野における構造材料として幅広く利用されている。このような熱可塑性樹脂の押出発泡体としては、ポリプロピレン系樹脂を含有する押出発泡体が知られている。
このようなポリプロピレン系樹脂を含有する押出発泡体は、建築・土木分野や自動車分野等の各分野で使用されることから、高い断熱性能と、高い衝撃吸収能力(エネルギー吸収能力)が必要とされている。例えば、自動車の天井、ドア等に使用される場合には、自動車の衝突時等における衝撃エネルギーを吸収する性能が必要とされるとともに、高い断熱性能が求められるのである。
このような2つの性能を満たすポリプロピレン系樹脂押出発泡体として、例えば、構成材料であるポリプロピレン系樹脂の2軸伸長歪0.2に於ける2軸伸長粘度が3×10ポイズ以上であり、2軸歪硬化率を0.25以上としたポリプロピレン系樹脂押出発泡細条集束体が提供されている(例えば、特許文献1参照)。
このようなポリプロピレン系樹脂押出発泡体では、2軸伸長歪0.2に於ける2軸伸長粘度が3×10ポイズ以上であるポリプロピレン系樹脂を使用することで、平均発泡セル径を0.4mm以上、2.0mm以下とするとともに、発泡セル膜の破れを防止し、断熱性能、エネルギー吸収能力を向上させている。
特開平9−25354号公報
押出発泡体の断熱性能は、ある程度の発泡倍率(例えば10倍以上)にあっては、発泡倍率とセル径に依存する。すなわち、発泡倍率は、押出発泡体における材料壁が薄くなれば伝熱量が小さくなることより、発泡倍率が高い方が断熱性能は良好となる。同様に、同じ発泡倍率でセル径が小さくなると、輻射熱を遮断する発泡セル壁数が多くなって伝熱しにくくなり、断熱性能が向上するため、セル径は小さい方が好ましい。このように発泡倍率を高くさせた状態で、平均セル径を小さくさせて断熱性能が向上すると成形体の厚さを薄くでき、コスト削減となるという派生効果もあるため、プロピレン系樹脂押出発泡体においても、発泡倍率向上とセル径を小さくすることが求められる。
しかしながら、前記した特許文献に開示されるような従来のプロピレン系樹脂押出発泡体は、発泡倍率の向上はある程度達成できるものの、平均セル径を400μmより小さくすることが困難であるため、断熱性能を十分に向上させることができない。
本発明の目的は、エネルギー吸収能力に優れるとともに、発泡倍率を高くさせた状態で、平均セル径を小さくすることができ、断熱性能に優れたプロピレン系樹脂押出発泡体及びこのプロピレン系樹脂押出発泡体の製造方法を提供することである。
本発明のプロピレン系樹脂押出発泡体は、プロピレン系樹脂を含有する成形材料を押出発泡させてなるプロピレン系樹脂押出発泡体であって、発泡倍率が10倍以上であり、平均セル径が400μm未満であり、前記成形材料は、繊維状フィラーを含有し、この繊維状フィラーの含有量が60wt%以下であること特徴とする。
この本発明のプロピレン系樹脂押出発泡体は、発泡倍率が10倍以上であり、平均セル径が400μm未満であるため、押出発泡体中における発泡セル壁を多数形成することができ、外部からの輻射熱を効率よく遮断することが可能となる。この結果、断熱性能に優れた押出発泡体を提供することができる。
また、構成材料であるプロピレン系樹脂は、リサイクル性能にも優れ、また、耐薬品性や耐熱性等も良好であることから、本発明のプロピレン系樹脂押出発泡体も、これらの諸性能(リサイクル性能、耐薬品性、耐熱性等)を享受することになる。更には、低コスト材料であるプロピレン系樹脂を使用することにより、前記した効果を有する押出発泡体を低コストで提供することが可能となる。
さらに、本発明のプロピレン系樹脂押出発泡体は、繊維状フィラーを60wt%以下含有している。この繊維状フィラーは、プロピレン系樹脂押出発泡体中の発泡セルにより、ランダムに配置されることとなる。すなわち、繊維状フィラーは、その繊維長方向がプロピレン系樹脂押出発泡体の押出し方向に沿うように配置されるだけでなく、発泡セルの存在により、厚み方向に沿って配置されることとなる。これにより、プロピレン系樹脂押出発泡体の厚み方向に少しの歪みが生じた場合でも、高い応力が生じることとなり、エネルギー吸収能力を向上させることが可能となる。
なお、繊維状フィラーの含有量は、5wt%以上、30wt%以下であることが好ましい。5wt%未満では、エネルギー吸収能力を向上させるために十分でなく、また、30wt%を超えると、発泡セルの壁面から繊維状フィラーがでるため、独立発泡セル率が低下し断熱性能が低下するといった問題や、発泡成形性を低下させるといった問題が生じる可能性がある。
なお、繊維状フィラーの含有量が60wt%を超えると、発泡成形性が低下するとともに、発泡セルの壁面から繊維状フィラーが突出して、独立発泡セル率が低下し断熱性能が低下する。
本発明では、前記繊維状フィラーの総本数のうち20%以上が、プロピレン系樹脂押出発泡体の押出方向と略直交する厚み方向に沿って配向していることが好ましい。
このような本発明によれば、繊維状フィラーの20%以上が、プロピレン系樹脂押出発泡体の厚み方向に沿って配向しているので、高いエネルギー吸収能力を備えたプロピレン系樹脂押出発泡体となる。
なお、ここで、厚み方向に沿って配置されている繊維状フィラーとは、厚み方向の軸に対し繊維長方向がなす角度が0°(厚み方向と平行)以上〜45°以下であるものをいう。
さらに、本発明では、独立発泡セル率が40%以上であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体の独立発泡率が40%以上であるので、独立した多数の発泡セルが熱を伝えにくくするため、断熱性能が更に向上するとともに、衝撃強度等の機械的強度や耐湿性が優れた押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体において、前記平均セル径が200μm以下であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体の平均セル径が200μm以下と更に小さいので、押出発泡体中における発泡セル壁を更に多く形成することができるため、断熱性能により一層優れた押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体は、押出発泡された細条が多数集束された押出発泡細条集束体であることが好ましい。
この本発明によれば、プロピレン系樹脂押出発泡体が、細条の押出発泡体が多数集束された押出発泡細条集束体からなるようにしているので、押出発泡体の発泡倍率を高くすることができ、発泡倍率が高く、十分な厚みを有する発泡成形体を、種々の形状で容易に成形することができる。
本発明のプロピレン系樹脂押出発泡体は、発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることが好ましい。
(A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
(B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
このプロピレン系多段重合体は、成分(A)、すなわち、超高分子量プロピレン系重合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性特性が調整され、優れた粘弾性特性を備えた直鎖状のプロピレン系重合体である。
従って、かかる粘弾性特性に優れたプロピレン系多段重合体を構成材料とすることにより、発泡倍率が10倍以上、平均セル径が400μmより小さい(好ましくは200μm以下)プロピレン系樹脂押出発泡体を確実に得ることができる。また、かかるプロピレン系多段重合体によれば、押出発泡体中の独立発泡セルの割合を高めることもでき、例えば、独立発泡セル率を40%以上とすることも確実に実施することができる。
本発明のプロピレン系樹脂押出発泡体は、前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することが好ましい。
プロピレン系樹脂押出発泡体。
Figure 2006054715
この本発明によれば、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、前記式(I)を具備するので、高発泡倍率の発泡成形の実施が可能となり、発泡倍率を10倍以上とした押出発泡体を容易かつ確実に得ることができる。
さらに、本発明では、前記成形材料は、温度298K、周波数10Hzにおける損失正接(tanδ)が0.04〜100であるオレフィン系重合体(以下、特定のオレフィン系重合体という場合もある)を含有することが好ましい。
この特定のオレフィン系重合体はプロピレン系樹脂とは結合しないため、結晶性高分子であるポリプロピレンの結晶から排除されて、その結果、押出発泡体の発泡セルの表面に粘性物質である当該特定のオレフィン系重合体を一様に存在させることとなる。
すなわち、剛直部分であるプロピレン系樹脂は、エネルギーを伝搬する性質を有する一方、室温付近で粘性を有する物質(特定のオレフィン系重合体)は、振動エネルギーを内部の分子運動の熱エネルギーとして使用するため、振動エネルギーを吸収する性質を有する。また、振動を吸収するためには、振動面に一様に粘性物質を分散させることが望ましく、振動面であるポリプロピレン系樹脂と分子構造が近い前記の特定のオレフィン系重合体は、ポリプロピレン系樹脂とある程度の相溶性を有するため、発泡セルの壁面の表面に一様に分散して、効率よく振動を吸収することになり、制振性能に優れた押出発泡体を提供することができる。
また、本発明では、前記オレフィン系重合体(a)と前記プロピレン系樹脂(b)の重量比(a/b)が1/100〜80/100であることが好ましい。
この本発明によれば、重量比(a/b)が1/100〜80/100となるように特定のオレフィン系重合体を含むことにより、ポリプロピレン系樹脂からなる発泡成形体において発泡セルの壁面にオレフィン系重合体が適度に分散されて、制振性能を向上させることができる。
また、本発明のプロピレン系樹脂押出発泡体は、前記オレフィン系重合体として、下記の第1態様または第2態様の1−ブテン系共重合体を使用することが好ましく、このような1−ブテン系重合体を使用することにより、押出発泡体に制振性能を確実に付与することができる。
第1態様:下記の(1)〜(3)の要件を具備する1−ブテン系重合体。
(1)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.01〜0.5dL/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
(3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
第2態様:下記の(1)、(2)及び(3’)を具備する1−ブテン系重合体。
(1’)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.25〜0.5dL/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
(3’)13C−核磁気共鳴(NMR)スペクトルから求めたメソペンタッド分率(mmmm)が73%以下
本発明のプロピレン系樹脂押出発泡体の製造方法は、上述した何れかに記載のプロピレン系樹脂押出発泡体を製造するための製造方法であり、前記成形材料を押出用ダイから押出した後、押出用ダイから押出されたプロピレン系樹脂押出発泡体を、押出し方向と略直交する方向沿って真空吸引することを特徴とする。
このような本発明の製造方法では、成形材料を押出用ダイから押し出した後、プロピレン系樹脂押出発泡体を、押出し方向と略直交する方向沿って真空吸引しているので、繊維状フィラーの繊維長の方向、すなわち、繊維状フィラーの配向方向をプロピレン系樹脂押出発泡体の厚み方向に沿った方向とすることができ、高いエネルギー吸収能力を有するプロピレン系樹脂押出発泡体を得ることができる。
本発明の実施形態にかかるプロピレン系樹脂押出発泡体を示す断面図である。 繊維状フィラーを含有しないプロピレン系樹脂押出発泡体の応力―歪み曲線を示す図である。 本発明の実施形態にかかるプロピレン系樹脂押出発泡体の応力−歪み曲線を示す図である。 前記プロピレン系樹脂押出発泡体の製造に使用される押出用ダイ及び冷却サイジングローラを示す斜視図である。
符号の説明
1 プロピレン系樹脂押出発泡体
2 押出用ダイ
3 冷却サイジングローラ
11 繊維状フィラー
12 発泡セル
13 細条
21 押出孔
31 冷却ローラ
以下、本発明の実施形態を図面に基づいて説明する。
図1には、本発明のプロピレン系樹脂押出発泡体1を示す。プロピレン系樹脂押出発泡体1(以下、押出発泡体1)は、プロピレン系樹脂を含有する成形材料を押出発泡させてなるものであり、発泡倍率が10倍以上であり、平均セル径が400μm未満とされている。また、繊維状フィラー11の含有量が成形材料全体の60wt%以下となっている。
このような構成により、断熱性能、エネルギー吸収性能に優れた押出発泡体1を提供することができる。
また、押出発泡体1の独立発泡率を40%以上、好ましくは60%以上とすれば、独立した多数の発泡セル12が熱を伝えにくくするため、断熱性能が更に向上するとともに、衝撃強度等の機械的強度や耐湿性が優れるものとなる。
このような構成を有する本発明の押出発泡体1を形成するプロピレン系樹脂としては、溶融時の溶融張力を高くしたプロピレン系樹脂、例えば、特開平10−279632号、特開2000−309670、特開2000−336198、特開2002−12717、特表2002−542360、特表2002−509575等に記載のプロピレン系樹脂を使用することができる。
また、本発明の押出発泡体1を得るには、前記したように、プロピレン系樹脂として、溶融時の溶融張力を高くすることが望ましく、粘弾性特性に優れた樹脂材料を使用することが好ましい。
このような粘弾性特性に優れたプロピレン系樹脂としては、例えば、下記成分(A)及び成分(B)からなるプロピレン系多段重合体であることが好ましい。
(A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
(B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
このプロピレン系多段重合体は、成分(A)、すなわち、超高分子量プロピレン系重合体の付与により、高溶融張力化を達成し、また、分子量分布の調整により粘弾性特性が調整された直鎖状のプロピレン系重合体である。このような粘弾性特性に優れたプロピレン系多段重合体を使用することにより、前記した本発明の要件(発泡倍率が10倍以上、平均セル径が400μmより小さい(好ましくは200μm以下)、独立発泡セル率を60%以上)を具備したプロピレン系樹脂押出発泡体を確実に得ることができるので好ましい。
ここで、成分(A)の極限粘度が10dL/g以下では、溶融張力が不十分となり、所望の発泡性能を得ることができない場合がある。
また、成分(A)の質量分率が5質量%より小さいと、溶融張力が不十分となり、所望の発泡性能を得ることができない場合がある。一方、質量分率が20質量%を超えると、いわゆるメルトフラクチャーが激しくなる場合があり、押出発泡体の肌荒れ等の原因となり、製品品質が低下する。
成分(A)の極限粘度は、前記したように10dL/g超であることが好ましいが、12〜20dL/gの範囲内であることがより好ましく、13〜18dL/gの範囲内であることが特に好ましい。
また、成分(A)の質量分率は、8〜18質量%の範囲内であることが好ましく、10〜16質量%の範囲内であることが特に好ましい。
成分(B)の極限粘度が0.5dL/gより小さいと、溶融張力が不十分となり、所望の発泡性能を得ることができない場合があり、一方、3.0dL/gを超えると、粘度が高すぎ、好適な押出成形を実施することができない場合がある。
また、成分(B)の質量分率が80質量%より小さいと、好適な押出成形の実施が困難となる場合があり、質量分率が95質量%を超えると、溶融張力が低くなり、これも好適な押出成形の実施が困難となる場合がある。
成分(B)の極限粘度は、前記したように0.5〜3.0dL/gの範囲内であることが好ましいが、0.8〜2.0dL/gの範囲内であることが好ましく、1.0〜1.5dL/gの範囲内であることが特に好ましい。
また、成分(B)の質量分率は、82〜92質量%の範囲内であることが好ましく、84〜90質量%の範囲内であることが特に好ましい。
このプロピレン系多段重合体において、共重合体成分を構成する炭素数2〜8のα−オレフィンとしては、例えば、プロピレン以外のα−オレフィンであるエチレン、1−ブテン等が挙げられる。このうち、エチレンを使用することが好ましい。
また、プロピレン系多段重合体は、230℃におけるメルトフローレート(MFR)が100g/10分以下であることが好ましく、20g/10分以下であることが特に好ましい。MFRが100g/10分を超えると、多段重合体の溶融張力及び粘度が低くなり、成形が困難となる場合がある。
プロピレン系多段重合体は、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することが好ましい。
Figure 2006054715
ここで、230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、前記式(I)を具備しない場合にあっては、高倍率の発泡成形の実施が困難となり、発泡倍率が10倍以上した押出発泡体を得ることができない場合がある。前記した定数(1.2)は、1.3以上とすることが好ましく、1.4以上とすることが特に好ましい。
なお、プロピレン系多段重合体が前記した式(I)の関係を具備するようにするには、成分(A)を5質量%含有させるようにすればよい。
プロピレン系多段重合体は、溶融状態の動的粘弾性(角周波数ωと貯蔵弾性率G’との関係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさであることが好ましく、具体的には、角周波数が10rad/sの場合の貯蔵弾性率G’(10)と、角周波数が1rad/sの場合の貯蔵弾性率G’(1)との比であるG’(10)/G’(1)が2.0以上であることが好ましく、2.5以上であることが特に好ましい。かかる比G’(10)/G’(1)が2.0より小さいと、押出発泡体に延伸等の外的変化を加えた際の安定性が低下する場合がある。
同様に、プロピレン系多段重合体は、溶融状態の動的粘弾性として、低周波数側での貯蔵弾性率の傾きが、一定量以下の大きさであることが好ましく、具体的には、角周波数が0.1rad/sの場合の貯蔵弾性率G’(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)が6.0以下であることが好ましく、4.0以下であることが特に好ましい。かかる比G’(0.1)/G’(0.01)が6.0を超えると、押出発泡体の発泡倍率を高くすることが困難となる場合がある。
このようなプロピレン系多段重合体は、下記成分(a)及び(b)、または下記成分(a)、(b)及び(c)からなるオレフィン重合用触媒を用い、2段階以上の重合工程で、プロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンとを共重合させて製造することができる。
(a)四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタンを、エーテル化合物及び電子受容体で処理して得られる固体触媒成分
(b)有機アルミニウム化合物
(c)環状エステル化合物
ここで、(a)四塩化チタンを有機アルミニウム化合物で還元して得られる三塩化チタンを、エーテル化合物及び電子受容体で処理して得られる固体触媒成分(以下、単に(a)固体触媒成分とする場合もある)において、四塩化チタンを還元する有機アルミニウム化合物としては、例えば、(イ)アルキルアルミニウムジハライド、具体的には、メチルアルミニウムジクロライド、エチルアルミニウムジクロライド、及びn−プロピルアルミニウムジクロライド、(ロ)アルキルアルミニウムセスキハライド、具体的には、エチルアルミニウムセスキクロライド、(ハ)ジアルキルアルミニウムハライド、具体的には、ジメチルアルミニウムクロライド、ジエチルアルミニウムクロライド、ジ−n−プロピルアルミニウムクロライド、及びジエチルアルミニウムブロマイド、(ニ)トリアルキルアルミニウム、具体的には、トリメチルアルミニウム、トリエチルアルミニウム、及びトリイソブチルアルミニウム、(ホ)ジアルキルアルミニウムハイドライド、具体的には、ジエチルアルミニウムハイドライド等をあげることができる。ここで、「アルキル」とは、メチル、エチル、プロピル、ブチル等の低級アルキルである。また、「ハライド」とは、クロライドまたはブロマイドであり、特に前者が通常である。
また、三塩化チタンを得るための、有機アルミニウム化合物による還元反応は、−60〜60℃、好ましくは−30〜30℃の温度範囲で実施することが通常である。還元反応における温度が−60℃より低いと、還元反応に長時間が必要となり、一方、還元反応における温度が60℃を超えると、部分的に過還元が生じる場合があり好ましくない。還元反応は、ペンタン、ヘプタン、オクタン及びデカン等の不活性炭化水素溶媒下において実施することが好ましい。
なお、四塩化チタンの有機アルミニウム化合物による還元反応によって得られた三塩化チタンに対して、更にエーテル処理及び電子受容体処理を施すことが好ましい。
前記三塩化チタンのエーテル処理で好ましく用いられるエーテル化合物としては、例えば、ジエチルエーテル、ジ−n−プロピルエーテル、ジ−n−ブチルエーテル、ジイソアミルエーテル、ジネオペンチルエーテル、ジ−n−ヘキシルエーテル、ジ−n−オクチルエーテル、ジ−2−エチルヘキシルエーテル、メチル−n−ブチルエーテル及びエチル−イソブチルエーテル等の各炭化水素残基が炭素数2〜8の鎖状炭化水素であるエーテル化合物が挙げられ、これらの中でも特に、ジ−n−ブチルエーテルを用いることが好適である。
三塩化チタンの処理で用いられる電子受容体としては、周期律表第III族〜第IV族及び第VIII族の元素のハロゲン化合物を使用することが好ましく、具体的には、四塩化チタン、四塩化ケイ素、三フッ化ホウ素、三塩化ホウ素、五塩化アンチモン、三塩化ガリウム、三塩化鉄、二塩化テルル、四塩化スズ、三塩化リン、五塩化リン、四塩化バナジウム及び四塩化ジルコニウム等を挙げることができる。
固体触媒成分(a)を調製する際に、三塩化チタンのエーテル化合物及び電子受容体による処理は、両処理剤の混合物を用いて行ってもよく、また、一方の処理剤による処理後に、他方の処理剤による処理を行うようにしてもよい。なお、これらのうちでは、後者が好ましく、エーテル処理後に電子受容体で処理を行うことが更に好ましい。
エーテル化合物及び電子受容体による処理の前に、三塩化チタンを炭化水素で洗浄することが好ましい。前記した三塩化チタンによるエーテル処理は、三塩化チタンとエーテル化合物を接触させることによって行われ、また、エーテル化合物による三塩化チタンの処理は、希釈剤の存在下で両者を接触させることによって行うのが有利である。このような希釈剤には、ヘキサン、ヘプタン、オクタン、デカン、ベンゼン及びトルエン等の不活性炭化水素化合物を使用することが好適である。なお、エーテル処理における処理温度は、0〜100℃であることが好ましい。また、処理時間については特に制限されないが、通常20分〜5時間の範囲で行われる。
エーテル化合物の使用量は、三塩化チタン1モルあたり、一般に0.05〜3.0モル、好ましくは0.5〜1.5モルの範囲とすればよい。エーテル化合物の使用量が0.05モルより小さいと、生成される重合体の立体規則性を十分に向上させることができなくなるので好ましくない。一方、エーテル化合物の使用量が3.0モルを超えると、生成される重合体の立体規則性は向上するものの、収率が低下することとなるので好ましくない。なお、有機アルミニウム化合物やエーテル化合物で処理した三塩化チタンは、厳密に言えば、三塩化チタンを主成分とする組成物である。
なお、このような固体触媒成分(a)としては、Solvay型三塩化チタンを好適に用いることができる。
有機アルミニウム化合物(b)としては、前記した有機アルミニウム化合物と同様なものを使用すればよい。
環状エステル化合物(c)としては、例えば、γ−ラクトン、δ−ラクトン、ε−ラクトン等が挙げられるが、ε−ラクトンを使用することが好ましい。
また、プロピレン系多段重合体を製造するために用いられるオレフィン重合用触媒は、前記した成分(a)〜(c)を混合することにより得ることができる。
プロピレン系多段重合体を得るには、2段階の重合方法のうち、水素不存在下でプロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンを共重合させることが好ましい。ここで、「水素不存在下」とは、実質的に水素不存在下という意味であり、水素が全く存在しない場合だけでなく、水素が極微量存在する場合(例えば、10molppm程度)も含まれる。要は、135℃テトラリン溶媒中で測定した、1段階目のプロピレン系重合体またはプロピレン系共重合体の極限粘度[η]が10dL/g以下とならない程度に水素を含む場合でも、「水素不存在下」の意味には含まれる。
このような水素不存在下でプロピレンの重合またはプロピレンとα−オレフィンとの共重合体を行うことにより、超高分子量プロピレン系重合体、すなわち、プロピレン系多段重合体の成分(A)を製造することができる。成分(A)は、水素不存在下で、原料モノマーを重合温度として、好ましくは20〜80℃、より好ましくは40〜70℃、重合圧力として、一般に、常圧〜1.47MPa、好ましくは0.39〜1.18MPaの条件下でスラリー重合して製造することが好ましい。
また、この製造方法では、プロピレン系多段重合体の成分(B)を、2段階目以降に製造することが好ましい。成分(B)の製造条件としては、前記したオレフィン重合用触媒を使用すること以外は特に制限はないが、原料モノマーを、重合温度として、好ましくは20〜80℃、より好ましくは60〜70℃、重合圧力として、一般に、常圧〜1.47MPa、好ましくは0.19〜1.18MPa、分子量調整剤としての水素が存在する条件下で重合して製造することが好ましい。
なお、前記した製造方法では、本重合を実施する前に、予備重合を行うようにしてもよい。予備重合を実施すると、パウダーモルフォロジーを良好に維持することができる、予備重合は、一般的に、重合温度として、好ましくは0〜80℃、より好ましくは10〜60℃、重合量として、固体触媒成分1gあたり、好ましくは0.001〜100g、より好ましくは0.1〜10gのプロピレンを重合またはプロピレンと炭素数2〜8のα−オレフィンを共重合させることが好ましい。
また、押出発泡体1の成形材料に含まれるプロピレン系樹脂をプロピレン系樹脂組成物とし、前記したプロピレン系多段重合体と、230℃におけるメルトフローレート(MFR)が30g/10分以下、かつ、重量平均分子量(M)と数平均分子量(M)との比であるM/Mが5.0以下のプロピレン系重合体とを混合してもよい。
前記したプロピレン系多段重合体と他の材料をブレンドして樹脂組成物とすることにより、押出発泡体の成形性改善と高機能化、低コスト化等を図ることができる。
この樹脂組成物を使用することにより、押出発泡体1は、溶融張力が高く、優れた粘弾性特性を有することとなり、押出発泡体1に高発泡倍率、良好な表面外観、シート成形時の延伸切れを防止するといった効果を付与することができる。
この樹脂組成物は、プロピレン系多段重合体に対する、プロピレン系重合体の重量比が6倍以上、より好ましくは10倍以上である。重量比が8倍より小さいと、押出発泡体1の表面外観が不良となる場合がある。
プロピレン系重合体のメルトフローレート(MFR)は、30g/10分以下であることが好ましく、15g/10分以下であることがより好ましく、10g/10分以下であることが特に好ましい。MFRが30g/10分を超えると、押出発泡体1の成形不良が生じる場合がある。
プロピレン系重合体のM/Mは、5.0以下であることが好ましく、4.5以下であることが特に好ましい。M/Mが5.0を超えると、押出発泡体1の表面外観が悪くなる場合がある。
なお、プロピレン系重合体は、チーグラー・ナッタ触媒や、メタロセン触媒等の公知の触媒を用いた重合方法により製造することができる。
この樹脂組成物は、溶融状態の動的粘弾性(角周波数ωと貯蔵弾性率G’との関係)として、高周波数側での貯蔵弾性率の傾きが一定量以上の大きさであることが好ましく、また、低周波数側での貯蔵弾性率の傾きが、一定量以下の大きさであることが好ましい。
具体的には、角周波数が10rad/sの場合の貯蔵弾性率G’(10)と、角周波数が1rad/sの場合の貯蔵弾性率G’(1)との比であるG’(10)/G’(1)が5.0以上であることが好ましく、5.5以上であることが特に好ましい。かかる比であるG’(10)/G’(1)が5.0より小さいと、押出発泡体1に延伸等の外的変化を加えた際の安定性が低下する場合がある。
また、角周波数が0.1rad/sの場合の貯蔵弾性率G‘(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)が14.0以下であることが好ましく、12.0以下であることが特に好ましい。かかる比G’(0.1)/G’(0.01)が14.0を超えると、押出発泡体1の発泡倍率を高くすることが困難となる場合がある。
ここで、押出発泡体1が延伸される場合では、緩和時間が1〜10sの範囲における成分が、押出発泡体1の延伸特性の悪化をもたらすのが一般的である。この領域の緩和時間の寄与が大きいほど、角周波数ωが1rad/s付近での貯蔵弾性率G’(1)の傾きが小さくなる。そこで、この傾きの指標として、角周波数ωが10rad/sのときの貯蔵弾性率G’(10)との比であるG’(10)/G’(1)を設けると、数値シミュレーション及び実験解析の結果から、この値が小さいほど、押出発泡における延伸時の破気が大きくなることが見出された。従って、前記した樹脂組成物では、G’(10)/G’(1)を5.0以上とすることが好ましい。
また、発泡セル成長の最終段階での破泡や、押出発泡成形におけるダイリップ近傍での高速伸長変形に伴う破泡に対しては、ある程度の歪み硬化性が要求されるため、適切な緩和時間領域での適量な高分子量成分が必要となり、そのためには、低周波数領域での貯蔵弾性率G’がある程度大きくなければならない。そこで、その指標として、角周波数ωが0.1rad/sの場合の貯蔵弾性率G’(0.1)と、角周波数が0.01rad/sの場合の貯蔵弾性率G’(0.01)との比であるG’(0.1)/G’(0.01)を設けると、数値シミュレーション及び実験解析の結果から、この値が大きくなると、破泡による発泡倍率の低下が顕著になることが見出された。よって、前記した樹脂組成物では、G’(0.1)/G’(0.01)を14.0以下とすることが好ましい。
なお、この樹脂組成物を含め、本発明の押出発泡体1を構成するプロピレン系樹脂には、必要に応じて、本発明の効果を妨げない範囲内で、酸化防止剤、中和剤、結晶核剤、金属不活性剤、燐系加工安定剤、紫外線吸収剤、紫外線安定剤、蛍光増白剤、金属石鹸、制酸吸収剤などの安定剤または架橋剤、連鎖移動剤、核剤、滑剤、可塑剤、充填剤、強化剤、顔料、染料、難燃剤、帯電防止剤などの添加剤を添加することができる。これらの添加剤の添加量は、成形する押出発泡体1に要求される諸特性や成形条件に応じて、適宜決定すればよい。
また、プロピレン系樹脂として、前記した溶融粘弾性に優れたプロピレン系多段重合体を使用する場合にあっては、必要により前記した添加剤を添加した状態で、前もって公知の溶融混練機を用いて溶融混練してペレット形状とした後に、所望の押出発泡体1を成形するようにしてもよい。
押出発泡体1の成形材料に含まれる繊維状フィラー11の含有量は、成形材料全体の60wt%以下、好ましくは、5wt%以上、30wt%以下である。5wt%未満では、エネルギー吸収能力を向上させることが困難となる可能性がある。また、30wt%を超えると、発泡成形性を低下させるという問題が生じる可能性がある。さらには、30wt%を超えると、発泡セルの壁面から繊維状フィラーがでるため、独立発泡セル率が低下し断熱性能が低下するといた問題や、発泡成形性が低下するといった問題が生じる可能性がある。なお、60wt%を超える場合には、発泡成形性の低下および断熱性能の低下が生じる。
この繊維状フィラー11としては、例えば、炭素繊維、ガラス繊維、その他の無機繊維(炭化ケイ素繊維、アルミナ繊維等)が挙げられる。中でも、ガラス繊維が好ましい。また、炭素繊維は、セルロース系、PAN系、ピッチ系等の炭素繊維が挙げられる。
ここで、繊維状フィラー11は、通常繊維状と呼ばれるものであって、ウィスカー形状のものをも含み、例えば、平均繊維長3mm、平均繊維径13μmのものが例示できる。
なお、繊維状フィラー11として、ガラス繊維を使用する場合には、平均繊維径5μm以上、20μm以下、平均繊維長0.1mm以上、10mm以下であることが好ましい。
繊維状フィラー11の総本数のうち、20%以上は、押出発泡体1の厚み方向に沿って配向している。ここで、厚み方向に沿って配置されている繊維状フィラー11とは、厚み方向の軸に対し繊維長方向がなす角度が0°(厚み方向と平行)以上〜45°以下であるものをいう。
このような繊維状フィラー11は、発泡セル12により、ランダムに配置されることとなる。すなわち、繊維状フィラー11は、繊維長方向が押出発泡体1の押出し方向に沿うように配置されるだけでなく、発泡した発泡セル12の存在により、厚み方向に沿って配置されることとなる。これにより、押出発泡体1の厚み方向に少しの歪みが生じた場合でも、高い応力が生じることとなり、エネルギー吸収能力を向上させることが可能となる。
より詳細に説明すると、繊維状フィラーを含有しないプロピレン系樹脂押出発泡体の応力と歪みとの関係は、図2のようになる。なお、図2中、斜線が引かれた部分が、エネルギー吸収量を示しており、この斜線が引かれた面積が大きなものほど、高いエネルギー吸収能力を有するものとなる。
一方で、本実施形態の押出発泡体1では、繊維状フィラー11を含有しており、この繊維状フィラー11は、押出し方向に沿って配向するだけでなく、繊維状フィラー11の一部が押出発泡体1の厚み方向に沿って配向していることから、応力と、歪みとの関係は、図3のようになる。すなわち、小さな歪みで、大きな応力が生じ、図3の斜線部分の面積は、図2の斜線部分の面積よりも大きくなるため、エネルギー吸収能力が向上していることがわかる。特に、本実施形態の押出発泡体1では、繊維状フィラー11は、押出発泡体1の厚み方向に沿って20%以上配向しているので、高いエネルギー吸収能力を備えたものとなる。
本発明の押出発泡体1は、前記したプロピレン系樹脂を押出発泡することにより得ることができるが、製造装置としては、成形材料を溶融状態に加熱し、適度のせん断応力を付与しながら混練し、発泡押出することができる公知の押出発泡成形装置を使用することができる。また、製造装置を構成する押出機も、単軸押出機または二軸押出機のいずれのものも採用することができる。このような押出発泡成形装置としては、例えば、特開2004−237729号に開示された、2台の押出機が接続されたタンデム型押出発泡成形装置を使用するようにしてもよい。
また、プロピレン系樹脂を発泡させる発泡手段としては、成形時に溶融状態の成形材料に流体(ガス)を注入する物理発泡や、成形材料に発泡剤を混合させる化学発泡を採用することができる。
物理発泡としては、注入する流体としては、不活性ガス、例えば、二酸化炭素(炭酸ガス)、窒素ガス等が挙げられる。また、化学発泡としては、使用できる発泡剤としては、例えば、アゾジカルボンアミド、アゾビスイソブチロニトリル等が挙げられる。
なお、前記した物理発泡にあっては、溶融状態の成形材料に対して、超臨界状態の炭酸ガスや窒素ガスを注入するようにすれば、平均セル径が400μm未満、好ましくは200μm以下の微細な発泡セルを多数形成させることが確実に実施することができるので好ましい。
ここで、超臨界状態とは、気体と液体が共存できる限界の温度及び圧力を超えることによって、気体と液体の密度が等しくなり2層が区別できなくなった状態をいい、この超臨界状態で生じる流体を超臨界流体という。また、超臨界状態における温度及び圧力が超臨界温度及び超臨界圧力であり、例えば、炭酸ガスでは、例えば、31℃、7.4MPaである。また、超臨界状態の炭酸ガスや窒素ガスは、成形材料に対して4〜15質量%程度注入するようにすればよく、シリンダ内において、溶融状態の成形材料に対して注入することができる。
押出発泡体1の形状は、特に制限はなく、構造材料として公知の形状、例えば、板状、円柱状、矩形状、凸状、凹状等の公知の形状を採用することができる。
また、押出発泡体1は、例えば、図4に示すように、複数個の押出孔21が形成された押出用ダイ2から多数の細条13(図1参照)を押出発泡させ、この細条13を長手方向に相互に融着させて多数集束してなる押出発泡細条集束体とすることが好ましい。このようにして、細条13の押出発泡体1を多数集束した押出発泡細条集束体とすることにより、押出発泡体1の発泡倍率を高くすることができ、発泡倍率が高く、十分な厚みを有する押出発泡体1を、種々の形状で容易に成形することができる。
このような押出発泡細条集束体を構成する細条13の形状は、押出用ダイ2に形成された押出孔21の形状に左右されるが、押出孔21の形状は、円形、菱形、スリット状等の任意の形状とすることができる。なお、成形にあたっては、押出用ダイ2の出口部における圧力損失が3MPaから50MPaとなるようにすることが好ましい。
また、押出用ダイ2に形成される押出孔21の形状は、全てを同じ形状としてもよいし、一つの押出用ダイ2中に多種類の形状の押出孔21を形成するようにしてもよい。
更には、例えば、円形の押出孔21とする場合であっても、その径の大きさとして複数の種類とし、径の異なる円形状の押出孔21を多数形成するようにしてもよい。
押出用ダイ2から押し出された押出発泡体1は、図4に示すように、肉厚方向(矢印Y方向)に真空吸引され、その後、一対の冷却サイジングローラ3で挟圧されて、冷却される。
真空吸引は、押出発泡体1を挟んで対向配置された真空吸引装置により、行なわれる。
冷却サイジングローラ3は、それぞれ複数、例えば、3つの冷却ローラ31を有しており、一対の冷却サイジングローラ3は、押出発泡体1を挟んで対向配置されている。
各冷却ローラ31には、表面の温度調整を可能とする水冷式等の温度調整手段(図示せず)が設けられている。
このようにして得られる本発明のプロピレン系樹脂押出発泡体1によれば、発泡倍率が10倍以上であり、平均セル径が400μm未満であるため、押出発泡体1中における発泡セル壁を多数形成することができる。これにより、外部からの輻射熱を効率よく遮断することが可能となり、断熱性能に優れた押出発泡体1を提供することができる。
なお、プロピレン系樹脂押出発泡体1の平均セル径は200μm以下とすることが好ましく、平均セル径を200μm以下と更に小さくすれば、押出発泡体1中における発泡セル壁を更に多く形成することができるため、断熱性能により一層優れたプロピレン系押出発泡体となる。
本発明のプロピレン系樹脂押出発泡体1の成形材料に含まれるプロピレン系樹脂は、リサイクル性能にも優れ、また、耐薬品性や耐熱性も良好であることから、本発明のプロピレン系樹脂押出発泡体1も、これらの諸性能(リサイクル性能、耐薬品性、耐熱性)を享受することになる。更には、低コスト材料であるプロピレン系樹脂を使用することにより、前記した効果を有する押出発泡体1を低コストで提供することが可能となる。
また、本発明のプロピレン系樹脂押出発泡体1は、繊維状フィラー11を60wt%以下含有しており、繊維状フィラー11は、繊維長方向がプロピレン系樹脂押出発泡体1の押出し方向に沿うように配置されるだけでなく、発泡した発泡セル12の存在により、厚み方向に沿って配置されている。これにより、プロピレン系樹脂押出発泡体1の厚み方向に少しの歪みが生じた場合でも、高い応力が生じることとなり、エネルギー吸収能力を向上させることが可能となる。
本発明の押出発泡体は、このようにして断熱性能、エネルギー吸収能力に優れるので、自動車分野の構造材料(天井、ドア、フロア、カウル等の構成部材)や、建築・土木分野の構造材料(建材等)等に適用することができる。
なお、本発明の押出発泡体1は、平均セル径が400μm未満(好ましくは200μm以下)と小さいため、優れた断熱性能とともに、同じ断熱性能とした場合であれば、従来のものよりも厚さを薄くすることができる。そのため、例えば、前記した分野等に適用した場合にあっては、従来の断熱材料より居住空間を大きくとることができるといった副次的な効果も好適に奏することができる。
なお、本発明の成形材料には、上述したものに加えて、温度298K、周波数10Hzにおける損失正接(tanδ)が0.04〜100であるオレフィン系重合体(特定のオレフィン系重合体)を添加してもよい。この特定のオレフィン系重合体はプロピレン系樹脂とは結合しないため、結晶性高分子であるポリプロピレンの結晶から排除されて、その結果、押出発泡体の発泡セルの表面に粘性物質である当該特定のオレフィン系重合体を一様に存在させることとなるので、制振性能に優れた押出発泡体となる。
また、特定のオレフィン系重合体は、温度298K、周波数10Hzにおける損失正接(tanδ)が0.04〜100であるが、0.04〜10であることが特に好ましい。当該損失正接が0.04〜100であれば、粘性挙動を示し、プロピレン系樹脂に含ませて押出発泡体とした場合にあっては優れた制振性能を発揮することができる。一方、損失正接が0.04より小さいと、十分な制振性能を得ることができず、損失正接が100より大きいと、固体的性質を示し、内部にエネルギー吸収されず、剛直なプロピレン系樹脂と一緒に振動してしまうため、これも制振性能を発揮することができない。
なお、かかる損失正接は、例えば、市販されている固体粘弾性測定装置(例えば、DMS 6100:セイコーインスツルメンツ(株)製など)により測定すればよい。
このような1−ブテン系共重合体に代表されるオレフィン系重合体は、ポリプロピレン系樹脂に対して、重量比が、オレフィン系重合体(a)/プロピレン系樹脂(b)=1/100〜80/100となるように添加することが好ましく、5/100〜60/100となるように添加することが特に好ましい。重量比が1/100〜80/100となるようにオレフィン系重合体を含むことにより、ポリプロピレン系樹脂からなる発泡成形体において発泡セルの壁面にオレフィン系重合体が適度に分散されて、制振性能を向上させることができる。
このオレフィン系重合体としては、例えば、例えば、WO 03/070788や、WO 03/070790に開示される樹脂材料、特許3255697号等に開示される樹脂材料を使用することができる。また、具体的には、WO 03/070788に開示される高流動1−ブテン系共重合体又はそれに類した1−ブテン系重合体があげられる。
この1−ブテン系共重合体は、具体的には、下記の第1態様または第2態様に示すものを使用することができる。これらを使用することにより、押出発泡体に制振性能を確実に付与することができる。
まず、第1態様として、下記の(1)〜(3)の要件を具備するものである。
(1)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.01〜0.5dL/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
(3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
また、この1−ブテン重合体は、第2形態として、下記の(1’)、(2)及び(3’)を具備するものである。
(1’)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.25〜0.5dL/g
(2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
(3’)13C−核磁気共鳴(NMR)スペクトルから求めたメソペンタッド分率(mmmm)が73%以下
このうち、第1態様の1−ブテン系重合体は、135℃、テトラリン溶媒中で測定した極限粘度[η]が0.01〜0.5dL/gであり、この極限粘度[η]は、好ましくは0.1〜0.5dLである。極限粘度[η]が0.01dL/gより小さいと、物性(強度)が低下する場合があり、一方、0.5dLを超えると、流動性が悪くなる場合がある。
また、第2態様の1−ブテン系重合体は、135℃、テトラリン溶媒中で測定した極限粘度[η]が0.25〜0.5dL/gであり、この極限粘度[η]は、好ましくは0.3〜0.5dL/gである。
極限粘度[η]が0.25dL/gより小さいと、結晶間を結びつける分子が不足して靭性(引張り破断伸び)が低下し、0.5dL/gを超えると、粘度が上昇しすぎるため、流動性が低下して成形不良が発生する場合がある。
前記した第1態様及び第2態様の1−ブテン系重合体は、融点(T−D)が軟質性の点から示差走査熱量計(DSC)で0〜100℃の結晶性樹脂であることを必要とするものであり、好ましくは0〜80℃である。
なお、融点(T−D)は、DSC(Differential Scanning Calorimetryの略)測定により求められる。すなわち、示差走査熱量計(DSC−7:パーキン・エルマー社製)を用い、試料10mgを窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融点吸熱カーブのもっとも高温側に観測されるピークのピークトップが、測定対象の融点(T−D)となる。ここで、本明細書における「結晶性樹脂」とは、このT−Dが観測される樹脂のことをいう。
また、このような第1態様の1−ブテン系重合体において、立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下であり、好ましくは20以下、更に好ましくは15以下である。この立体規則性指数が30を超えると、粘性物質の柔軟性が低下したり、振動吸収効果が低下する場合がある。
ここで、メソペンタッド分率(mmmm)は90%以下であることが好ましく、85%以下であることが更に好ましく、80%以下であることが特に好ましい。メソペンタッド分率(mmmm)が90%を超えると、柔軟性の低下や二次加工性の低下が生じる場合がある。
第2態様の1−ブテン系重合体は、メソペンタッド分率(mmmm)が73%以下である。メソペンタッド分率(mmmm)が73%を超えると、物理的架橋点が過剰になりすぎるため、柔軟性が低下する場合がある。
なお、このような1−ブテン系重合体において、メソペンタッド分率(mmmm)は、朝倉らにより報告された「Polymer Journal、16、717(1984)」、J.Randallらにより報告された「Macromol.Chem.Phys.,C29,201(1989)」及びV.Busicoらにより報告された「Marcomol.Chem.Phys.,198,1257(1997)」で提案された方法に準拠して求めた。すなわち、13C−核磁気共鳴スペクトルを用いてメチレン基、メチン基のシグナルを測定し、ポリ(1−ブテン)分子中のメソペンタッド分率を求めた。
なお、13C−核磁気共鳴スペクトルの測定は、下記の装置及び条件にて行えばよい。
装置:日本電子(棟)製JNM−EX400型13C−NMR装置
方法:プロトン完全デカップリング法
濃度:230mg/ミリリットル
溶媒:1,2,4−トリクロロベンゼンと重ベンゼンの90:10(容量比)混合溶媒
温度:130℃
パルス幅:45°
パルス繰り返し時間:4秒
演算:10000回
また、このような1−ブテン系重合体において、立体規則性指数{(mmmm)/(mmrr+rmmr)}は、前記した方法により、(mmmm)、(mmrr)及び(rmmr)を測定した値から算出すればよい。
また、第1態様及び第2態様の1−ブテン系重合体は、前記の要件の他に、GPC法により測定した重量平均分子畳(M)が10,000〜100,000であることが好ましい。Mが10,000未満では、物性(強度)が低下することがある。一方、Mが100,000を超えると、流動性が低下するため加工性が不良となることがある。
なお、前記したM/Mは、GPC法により、下記の装置及び条件で測定した、ポリスチレン換算の質量平均分子量(M)及び数平均分子量(M)より算出した値である。
(GPC測定装置)
カラム :TOSO GMHHR−H(S)HT
検出器 :液体クロマトグラム用RI検出器 WATERS 1500C測定条件
(50C測定条件)
溶媒 :1,2,4−トリクロロベンゼン
測定温度 :145℃
流速 :1.0ミリリットル/分
試料濃度 :2.2mg/ミリリットル
注入量 :160マイクロリットル
検量線 :Universal Calibration
解析プログラム:HT−GPC(Ver.1.0)
第1態様の1−ブテン系重合体は、JIS K7113に準拠した引張試験により測定した引張弾性率が500MPa以下であることが好ましく、300MPa以下であることが更に好ましい。引張弾性率が500MPaを超えると、十分な軟質性が得られない場合がある。
1−ブテン系重合体が共重合体である場合には、ランダム共重合体であることが好ましい。また、1−ブテンから得られる構造単位は50%モル以上であることが好ましく、より好ましくは70モル%以上である。このような1−ブテンに由来する構造単位が50モル%より小さいと、二次加工性の悪化が生じる可能性がある。
また、1−ブテン系重合体が共重合体である場合、α−オレフィン連鎖より下記式(V)により得られるランダム性指数Rが1以下であることが好ましい。
Figure 2006054715
ここで、Rはランダム性を表す指標であって、Rが小さいほどα−オレフィン(コモノマー)の孤立性が高く、組成が均一になる。このRは0.5以下が好ましく、 0.2以下が更に好ましい。
なお、Rが0の場合には、αα連鎖はなくなり、 α−オレフィン連鎖は完全に孤立連鎖のみになる。
なお、1−ブテン系重合体がプロピレン・ブテン共重合体である場合のブテン含有量、及びRは下記のようにして測定すればよい。
具体的には、ブテン含有量及びRは、日本電子(株)製のJNM−EX400型NMR装置を用いて、下記の測定条件で13C−NMRスペクトルを測定し、下記の方法により算出すればよい。
(測定条件)
試料濃度:220mg/NMR溶液 3ミリリットル
NMR溶液:1,2,4−トリクロロベンゼン/ベンゼン−d6(90/10vol%)
測定温度:130℃
パルス幅:45°
パルス繰り返し時間:10秒
積算回数:4000回
前記測定条件で、PP、PB、BB連鎖は、J.C.Randall,Macromolecules,1978,11,592で提案された方法に準拠し、13C−核磁気共鳴スペクトルのSαα炭素のシグナルを測定し、共重合体分子鎖中のPP、PB、BBダイアッド連鎖分率を求めた。
得られた各ダイアッド連鎖分率(モル%)より、下記の式(W)、式(X)よりブテン含有量及びランダム性指数Rを求めた。
Figure 2006054715
Figure 2006054715
また、1−ブテン系重合体がオクチン・ブテン共重合体である場合のブテン含有量及びRは下記のようにして測定すればよい。具体的には、ブテン含有量及びRは、 日本電子(株)製のJNM−EX400型NMR装置を用いて、下記の測定条件で13C−NMRスペクトルを測定し、下記の方法により算出すればよい。
(測定条件)
試料濃度:220mg/NMR溶液 3ミリリットル
NMR溶液:1,2,4−トリクロロベンゼン/ベンゼン−d6(90/10vol%)
測定温度:130℃
パルス幅:45°
パルス繰り返し時間:10秒
積算回数:4000回
前記測定条件で、13C−核磁気共鳴スペクトルのSαα炭素のシグナルを測定し、40.8〜40.0ppmに観測されるBB連鎖、41.3〜40.8ppmに観測されるOB連鎖、42.5〜41.3ppmに観測されるOO連鎖由来のピーク強度から共重合分子鎖中のOO、OB、BBダイアッド連鎖分率を求めた。
得られた各ダイアッド連鎖分率(モル%)より、下記の式(Y)、式(Z)よりブテン含有量及びランダム性指数Rを求めた。
Figure 2006054715
Figure 2006054715
前記の1−ブテン系共重合体は、WO 03/070788に開示される1−ブテン系共重合体の製造方法により、簡便に得ることができる。
なお、以上説明した態様は、本発明の一態様を示したものであって、本発明は、前記した実施形態に限定されるものではなく、本発明の構成を備え、目的及び効果を達成できる範囲内での変形や改良が、本発明の内容に含まれるものであることはいうまでもない。また、本発明を実施する際における具体的な構造及び形状等は、本発明の目的及び効果を達成できる範囲内において、他の構造や形状等としても問題はない。
以下、実施例及び製造例を挙げて、本発明をより具体的に説明するが、本発明は実施例等の内容に何ら限定されるものではない。
なお、下記の製造例、実施例における物性値等は、下記の方法で測定した。
(1)1段階目のプロピレン重合体成分(成分1)及び二段階目のプロピレン重合体成分(成分2)の質量分率:
重合時に連続的に供給されるプロピレンの流量計積算値を用いた物質収支から求めた。
(2)極限粘度[η]:
135℃のテトラリン溶媒中で測定した。なお、成分2の極限粘度[η]は、下記式(II)により計算した。
Figure 2006054715
(3)メルトフローレート(MFR):
JIS K7210に準拠し、温度を230℃、加重を2.16kgfとして測定した。
(4)溶融張力(MT):
キャピログラフ1C(東洋精機(株)製)を使用し、測定温度230℃、押出速度10mm/min、引き取り温度3.1m/分で測定した。なお、測定には、長さが8mm、直径が2.095mmのオリフィスを使用した。
(5)粘弾性測定:
下記の仕様の装置で測定した。なお、貯蔵弾性率G’は、複素弾性率の実数部分により求めることができるものである。
装置 : RMS−800(レオメトリックス社製)
温度 : 190℃
歪み : 30%
周波数 : 100rad/s〜0.01rad/s
[製造例1]
プロピレン系多段重合体の製造:
(i)予備重合触媒成分の調製:
内容積5リットルの攪拌機付き三つ口フラスコを十分に乾燥させ、窒素ガスで置換した後、脱水処理したヘプタンを4リットル、ジエチルアルミニウムクロライド140グラムを加え、市販品のSolvay型三塩化チタン触媒(東ソー・ファインケム(株)製)20gを加えた。これを攪拌しながら20℃に保持した状態で、プロピレンを連続的に導入した。80分後、攪拌を停止し、三塩化チタン触媒1gあたり0.8gのプロピレンが重合した予備触媒成分を得た。
(ii)プロピレンの重合(1段階目):
内容積10リットルの攪拌機付きステンレス製オートクレーブを十分乾燥させ、窒素ガスで置換させた後、脱水処理したヘプタン6リットルを加え、系内の窒素をプロピレンで置換した。その後、攪拌しながらプロピレンを導入して、系内を内温60℃、全圧0.78MPaに安定させた後、前記(i)で得た予備重合触媒成分を固体触媒換算で0.7グラム含んだヘプタンスラリー50ミリリットルを加えて重合開始とした。プロピレンを35分間連続的に供給した場合におけるプロピレン流量積算値から求めた重合体生成量は151gであり、その一部をサンプリングして分析した結果、極限粘度は14.1dL/gであった。その後、内温を40℃以下に降温させ、攪拌を緩め、脱圧した。
(iii)プロピレンの重合(2段階目):
脱圧後、再び内温を60℃として、水素を0.15MPa加えて攪拌しながらプロピレンを導入した。全圧0.78MPaでプロピレンを連続的に供給しながら、60℃で2.8時間重合を行った、この際、重合体の一部をサンプリングして分析した結果、極限粘度は1.16dL/gであった。
重合終了後、50ミリリットルのメタノールを添加し、降温、脱圧した。内容物を全量フィルター付きろ過槽へ移し、1−ブタノールを100ミリリットル加え、85℃で1時間攪拌した後に固液分離した。更に、85℃のヘプタン6リットルで固体部を2回洗浄し、真空乾燥してプロピレン重合体3.1kgを得た。
以上の結果から、1段階目と2段階目の重合重量比は12.2/87.8であり、2段階目で生成したプロピレン重合成分の極限粘度は1.08dL/gと求められた。
そして、得られたプロピレン系多段重合体粉末100重量部に対して、酸化防止剤としてイルガノックス1010(チバ・スペシャルティー・ケミカルズ(株)製)を600ppm、中和剤としてステアリン酸カルシウムを500ppm加えて混合し、ラブプラストミル単軸押出機(東洋精機(株)製、φ20mm)で温度を230℃として溶融混練してプロピレン重合体ペレットを調製した。
得られたプロピレン系多段重合体の物性及び樹脂特性を表1に示す。
(物性及び樹脂特性)
Figure 2006054715
[実施例1]
ポリプロピレン系樹脂押出発泡成形体(押出発泡細条集束体)の製造:
前記した製造例1で得たペレット状のプロピレン系多段重合体に、繊維状フィラーを混合したものを成形材料とした。繊維状フィラーとしては次のものを用いた。
(繊維状フィラー)
材質 ガラス繊維(旭ファイバーグラス株式会社製 MA486A(商品名))
平均繊維長 3mm
平均繊維径 13μm
この繊維状フィラーの含有量は、成形材料全体に対し、10wt%となっている。特開2004−237729号公報に開示されるタンデム型押出発泡成形装置(スクリュ径がφ50mmの単軸押出機と、スクリュ径がφ35単軸押出機の2台の単軸押出機を備える)を用いて、また、ダイとして、多数の円形押出孔(円管ダイ)が集合したものを用いて、下記の条件により、押出発泡された細条が多数集束された板状の押出発泡細条集束体であるプロピレン系樹脂押出発泡体を製造した。
なお、発泡は、φ50mm単軸押出機にて、CO超臨界流体を注入することにより行った。
すなわち、φ50mm単軸押出機により、成形材料を溶融させながら、CO超臨界流体を注入して、当該流体を溶融状態の成形材料中に均一になるように十分溶解させた後、連接されたφ35mm単軸押出機から、φ35mm単軸押出機におけるダイ出口の樹脂温度が180℃となるようにして押し出し、押出発泡体を成形した。製造条件の詳細を下記に示した。なお、φ35mm単軸押出機のダイ出口における樹脂温度は、熱電対温度計により測定するものであり、この樹脂温度が、発泡しながら押し出された溶融樹脂の温度と考えることができる。
(製造条件)
CO2超臨界流体 : 7質量%
押出量 : 8kg/hr
ダイ上流部樹脂圧力 : 8MPa
ダイ出口での押出温度 : 180℃
このようにして得られたプロピレン系樹脂押出発泡体の発泡倍率、平均セル径、独立気泡率を下記の条件に従って測定したところ、順に、26倍、180μm、50%であった。
(平均セル径、独立発泡セル率の測定条件)
発泡倍率 : 得られた発泡成形体の重量を水投法により求めた体積により除することにより密度を求め、算出した。
平均セル径: ASTM D3576−3577に準拠して測定した。
独立発泡セル率: ASTM D 2856に準拠して測定した。
(エネルギー吸収能力の測定)
プロピレン系樹脂押出発泡体の応力―歪み曲線を測定した。
圧縮試験機((株)ボールドウィン製 TENSILON/CTM−I−5000(商品名))を用い、300Kにて、圧縮歪速度1.0×10−2/Sの条件で圧縮試験を行なった。
(繊維状フィラーの配向方向の測定)
厚み方向に垂直な方向にプロピレン系樹脂押出発泡体を切断し、プロピレン系樹脂押出発泡体の断面における楕円形状の繊維切断面の長径と短径から配向角を評価した。この配向角が45°以下である場合にはプロピレン系樹脂押出発泡体の厚み方向に配向しているとみなし、プロピレン系樹脂押出発泡体の断面における繊維数の合計に対して、厚み方向に配向している繊維の数の割合を評価した。
実施例1で得られたプロピレン系樹脂押出発泡体は、平均セル径が400μm未満の発泡セルが無数にかつ均一に並んでいることが確認できた。
また、繊維状フィラーの総本数の20%以上がプロピレン系樹脂押出発泡体の厚み方向に沿って配置していることが確認できた。
さらに、このプロピレン系樹脂押出発泡体では、小さな歪みでも大きな応力が生じ、エネルギー吸収能力に優れていることが確認された。
また、常法を用いて断熱性能を評価したところ、良好な結果を得ることができた。
本発明の押出発泡体が優れた耐熱性能及びエネルギー吸収性能を兼ね備えることが確認できた。
[実施例2]
実施例1の成形材料にWO03/070788の実施例1に開示される1−ブテン系共重合体を加えた。WO 03/070788の実施例1に開示される1−ブテン系共重合体(a)を、重量比(a/b)を15/85(プロピレン系多段重合体を85質量%、1−ブテン系共重合体を15質量%)として混合して成形材料とした。1−ブテン系共重合体物性値及び樹脂特性を表2に示す。
なお、表2の測定項目については、温度298K、周波数10Hzにおける損失正接(tanδ)については、固体粘弾性測定装置(DMS 6100:セイコーインスツルメンツ(株)製)により測定し、それ以外の項目は、WO 03/70788に記載された方法に準拠して測定した。
(1−ブテン系共重合体の物性値及び樹脂特性)
Figure 2006054715
他の条件は、実施例1と同じである。
このようにして得られたプロピレン系樹脂押出発泡体の発泡倍率、平均セル径、独立気泡セル率を実施例1と同様の条件に従って測定したところ、順に、25倍、200μm、48%であり、平均セル径が400μm未満の発泡セルが無数にかつ均一に並んでいることが確認できた。
また、実施例1と同様の条件で繊維状フィラーの配向、エネルギー吸収能力の測定を行った。
繊維状フィラーの総本数の20%以上がプロピレン系樹脂押出発泡体の厚み方向に沿って配置していることが確認できた。
さらに、このプロピレン系樹脂押出発泡体のエネルギー吸収能力を測定したところ、非常に高いものであった。
また、常法を用いて断熱性能、制振性能を評価したところ、良好な結果を得ることができた。
以上より、押出発泡体が優れた耐熱性能、エネルギー吸収性能、制振性能を兼ね備えることが確認できた。
本発明のプロピレン系樹脂押出発泡体は、例えば、建築や土木分野、自動車分野において断熱性能を必要とされる構造材料について有利に使用できる。

Claims (14)

  1. プロピレン系樹脂を含有する成形材料を押出発泡させてなるプロピレン系樹脂押出発泡体であって、
    発泡倍率が10倍以上であり、
    平均セル径が400μm未満であり、
    前記成形材料は、繊維状フィラーを含有し、
    この繊維状フィラーの含有量が60wt%以下であること特徴とするプロピレン系樹脂
    押出発泡体。
  2. 請求項1に記載のプロピレン系樹脂押出発泡体において、
    前記繊維状フィラーの総本数のうち20%以上が、プロピレン系樹脂押出発泡体の押出方向と略直交する厚み方向に沿って配向していることを特徴とするプロピレン系樹脂押出発泡体。
  3. 請求項1又は2に記載のプロピレン系樹脂押出発泡体において、
    独立発泡セル率が40%以上であることを特徴とするプロピレン系樹脂押出発泡体。
  4. 請求項1から請求項3の何れかに記載のプロピレン系樹脂押出発泡体において、
    前記平均セル径が200μm以下であることを特徴とするプロピレン系樹脂押出発泡体。
  5. 請求項1から請求項4のいずれかに記載のプロピレン系樹脂押出発泡体において、
    押出発泡された細条が多数集束された押出発泡細条集束体であることを特徴とするプロピレン系樹脂押出発泡体。
  6. 請求項1から請求項5のいずれかに記載のプロピレン系樹脂押出発泡体において、
    押出発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜15質量%含有する
    (B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に85〜95質量%含有する
  7. 請求項6に記載のプロピレン系樹脂押出発泡体において、
    前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することを特徴とするプロピレン系樹脂押出発泡体。
    Figure 2006054715
  8. 請求項1から請求項7の何れかに記載のプロピレン系樹脂押出発泡体において、
    前記成形材料は、温度298K、周波数10Hzにおける損失正接(tanδ)が0.0
    4〜100であるオレフィン系重合体を含有することを特徴とするプロピレン系樹脂押出発泡体。
  9. 請求項8に記載のプロピレン系樹脂押出発泡体において、
    前記オレフィン系重合体(a)と前記プロピレン系樹脂(b)の重量比(a/b)が1/100〜80/100であることを特徴とするプロピレン系樹脂押出発泡体。
  10. 請求項8又は9に記載のプロピレン系樹脂押出発泡体において、
    前記オレフィン系重合体が、下記(1)、(2)及び(3)を具備する1−ブテン系重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (1)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.01〜0.5dL/g
    (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
    (3)立体規則性指数{(mmmm)/(mmrr+rmmr)}が30以下
  11. 請求項8又は9に記載に記載のプロピレン系樹脂押出発泡体において、
    前記オレフィン系重合体が、下記(1’)、(2)及び(3’)を具備する1−ブテン系重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (1’)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.25〜0.5dL/g
    (2)示差走査型熱量計(DSC)を用い、試料を窒素雰囲気下−10℃で5分間保持した後、10℃/分で昇温させることにより得られた融解吸熱カーブのもっとも高温側に観測されるピークのピークトップとして定義される融点(T−D)が0〜100℃の結晶性樹脂
    (3’)13C−核磁気共鳴(NMR)スペクトルから求めたメソペンタッド分率(mmmm)が73%以下
  12. 請求項1から11の何れかに記載のプロピレン系樹脂押出発泡体の製造方法において、
    前記成形材料を押出用ダイから押出した後、押出用ダイから押出されたプロピレン系樹脂押出発泡体を、押出し方向と略直交する方向沿って真空吸引することを特徴とするプロピレン系樹脂押出発泡体の製造方法。
  13. 請求項1から請求項5のいずれかに記載のプロピレン系樹脂押出発泡体において、
    押出発泡体を構成するプロピレン系樹脂が下記(A)及び(B)からなるプロピレン系多段重合体であることを特徴とするプロピレン系樹脂押出発泡体。
    (A)135℃、テトラリン溶媒中で測定した極限粘度[η]が10dL/g超のプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に5〜20質量%含有する
    (B)135℃、テトラリン溶媒中で測定した極限粘度[η]が0.5〜3.0dL/gのプロピレン単独重合体成分またはプロピレンと炭素数が2〜8のα−オレフィンとの共重合体成分を、全重合体中に80〜95質量%含有する
  14. 請求項13に記載のプロピレン系樹脂押出発泡体において、
    前記プロピレン系多段重合体の230℃におけるメルトフローレート(MFR)と、230℃における溶融張力(MT)との関係が、下記式(I)を具備することを特徴とするプロピレン系樹脂押出発泡体。
    Figure 2006054715
JP2006545176A 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法 Active JP4999463B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006545176A JP4999463B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2004336680 2004-11-19
JP2004336680 2004-11-19
JP2006545176A JP4999463B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
PCT/JP2005/021282 WO2006054715A1 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法

Publications (2)

Publication Number Publication Date
JPWO2006054715A1 true JPWO2006054715A1 (ja) 2008-06-05
JP4999463B2 JP4999463B2 (ja) 2012-08-15

Family

ID=36407251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006545176A Active JP4999463B2 (ja) 2004-11-19 2005-11-18 プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法

Country Status (6)

Country Link
US (1) US20090155567A1 (ja)
EP (1) EP1813644A4 (ja)
JP (1) JP4999463B2 (ja)
KR (1) KR20070097445A (ja)
CN (1) CN101090933B (ja)
WO (1) WO2006054715A1 (ja)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT1399064B1 (it) * 2010-03-22 2013-04-05 Friul Filiere S P A Elemento in materiale composito, impianto per la realizzazione di tale elemento in materiale composito e relativo procedimento di realizzazione
EP3375588B1 (en) * 2015-08-04 2020-11-25 Mitsubishi Chemical Corporation Fiber-reinforced plastic and method for producing same
JP6896419B2 (ja) * 2016-12-28 2021-06-30 株式会社プライムポリマー プロピレン系樹脂組成物及びその発泡体
JP6845689B2 (ja) * 2016-12-28 2021-03-24 株式会社プライムポリマー プロピレン系樹脂組成物及びその発泡体
US11097453B2 (en) 2017-10-23 2021-08-24 Neuvotec, Llc Hinge mold process for creating structural forms and shapes
CN109265825B (zh) * 2018-09-06 2021-01-05 江苏科技大学 一种聚丙烯或聚丙烯复合物发泡制品及其制备方法
JP7291898B2 (ja) 2019-02-08 2023-06-16 パナソニックIpマネジメント株式会社 発泡成形体
CN110128734A (zh) * 2019-06-11 2019-08-16 宁波邦泰汽车配件有限公司 一种复合型tpe挤出发泡片的制备工艺
WO2020255873A1 (ja) * 2019-06-17 2020-12-24 サンアロマー株式会社 超高分子量プロピレン(共)重合体を含むポリプロピレン系樹脂組成物
CN113950492A (zh) 2019-06-17 2022-01-18 胜亚诺盟股份有限公司 超高分子量丙烯聚合物(共聚物)
EP4317268A1 (en) 2021-03-23 2024-02-07 Toray Industries, Inc. Fibre-reinforced resin, porous structure, and formed member
CN113549268A (zh) * 2021-07-19 2021-10-26 山东京博石油化工有限公司 一种发泡聚丙烯材料及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR8805631A (pt) * 1987-02-18 1989-08-15 Dow Chemical Co Estrutura de espuma de fios ou perfis de espumas coalescida
JPH0925354A (ja) * 1995-07-07 1997-01-28 Asahi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体及びその製造方法
JP3569362B2 (ja) * 1995-07-25 2004-09-22 鐘淵化学工業株式会社 改質ポリプロピレン系樹脂からなる板状発泡体およびその製法
KR100503136B1 (ko) * 1997-08-05 2005-07-25 미쓰이 가가쿠 가부시키가이샤 폴리프로필렌 수지 조성물 및 그 용도
JP2000143858A (ja) * 1998-11-11 2000-05-26 Chisso Corp 押出発泡体、成形体及び押出発泡体の製造方法
KR100565151B1 (ko) * 1999-02-04 2006-03-30 미쓰이 가가쿠 가부시키가이샤 폴리프로필렌 블록 공중합체 수지 및 제조 방법
CN1125911C (zh) * 1999-08-04 2003-10-29 武汉理工大学 一种玻纤增强低发泡塑料建筑模板及其制造方法
US6638637B2 (en) * 2000-02-16 2003-10-28 3M Innovative Properties Company Oriented multilayer polyolefin films
JP2002105256A (ja) * 2000-09-28 2002-04-10 Grand Polymer Co Ltd ポリプロピレン樹脂組成物およびそれから得られる発泡体
SG119146A1 (en) * 2001-03-07 2006-02-28 Sumitomo Chemical Co Polypropylene-based resin composition process for producing the same and injection molded article
GB0128954D0 (en) * 2001-12-03 2002-01-23 Dow Chemical Co Energy absorption unit
JP2004217755A (ja) * 2003-01-14 2004-08-05 Mitsui Chemicals Inc 発泡体
KR101140043B1 (ko) * 2004-03-31 2012-05-02 가부시키가이샤 프라임 폴리머 프로필렌계 다단 중합체 및 그의 제조 방법, 및 프로필렌계수지 조성물

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07292147A (ja) * 1994-04-28 1995-11-07 Sekisui Chem Co Ltd ポリオレフィン系樹脂発泡体の製造方法
JP2001001384A (ja) * 1999-04-23 2001-01-09 Kanegafuchi Chem Ind Co Ltd ポリプロピレン系樹脂押出発泡細条集束体の製造方法
JP2003094504A (ja) * 2001-09-25 2003-04-03 Sumitomo Chem Co Ltd 多層発泡シートの製造方法

Also Published As

Publication number Publication date
US20090155567A1 (en) 2009-06-18
JP4999463B2 (ja) 2012-08-15
WO2006054715A1 (ja) 2006-05-26
KR20070097445A (ko) 2007-10-04
CN101090933B (zh) 2011-07-13
EP1813644A4 (en) 2009-03-25
CN101090933A (zh) 2007-12-19
EP1813644A1 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP4999463B2 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
JP5280680B2 (ja) プロピレン系樹脂押出発泡複合体
JP4889483B2 (ja) プロピレン系多段重合体及びその製造方法、並びにプロピレン系樹脂組成物
EP1899415B1 (en) Propylene polymers having broad molecular weight distribution
JP4999462B2 (ja) プロピレン系樹脂押出発泡体
JP5202942B2 (ja) プロピレン系樹脂押出発泡体の製造方法
KR20190079656A (ko) 폴리올레핀 필름 조성물의 제조 방법 및 그로부터 제조된 필름
JP2007119760A (ja) プロピレン系重合体及び発泡成形体
JP5123659B2 (ja) プロピレン系樹脂押出発泡体及びプロピレン系樹脂押出発泡体の製造方法
JP2008143147A (ja) プロピレン系樹脂押出発泡体およびその製造方法
JPWO2006054716A1 (ja) プロピレン系樹脂押出発泡体
JP2009221473A (ja) ポリプロピレン系押出発泡体およびその製造方法
KR20080023304A (ko) 넓은 분자량 분포를 갖는 프로필렌 중합체
JP2009241517A (ja) ポリプロピレン系押出発泡成形体およびその製造方法
JP2009275150A (ja) ポリプロピレン系押出発泡体、および、その製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080812

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120417

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120515

R150 Certificate of patent or registration of utility model

Ref document number: 4999463

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150525

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250