JPWO2005008755A1 - 温度制御方法、基板処理装置及び半導体製造方法 - Google Patents

温度制御方法、基板処理装置及び半導体製造方法 Download PDF

Info

Publication number
JPWO2005008755A1
JPWO2005008755A1 JP2005511785A JP2005511785A JPWO2005008755A1 JP WO2005008755 A1 JPWO2005008755 A1 JP WO2005008755A1 JP 2005511785 A JP2005511785 A JP 2005511785A JP 2005511785 A JP2005511785 A JP 2005511785A JP WO2005008755 A1 JPWO2005008755 A1 JP WO2005008755A1
Authority
JP
Japan
Prior art keywords
temperature
deviation
semiconductor substrate
wafer
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005511785A
Other languages
English (en)
Inventor
上野 正昭
正昭 上野
松田 充弘
充弘 松田
島田 真一
真一 島田
田中 和夫
和夫 田中
宮田 敏光
敏光 宮田
塚本 秀之
秀之 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Kokusai Electric Inc
Original Assignee
Hitachi Kokusai Electric Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Kokusai Electric Inc filed Critical Hitachi Kokusai Electric Inc
Publication of JPWO2005008755A1 publication Critical patent/JPWO2005008755A1/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/324Thermal treatment for modifying the properties of semiconductor bodies, e.g. annealing, sintering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67248Temperature monitoring

Abstract

本発明は、温度のみに対する制御により、半導体基板上の膜厚を均一にすることができる温度制御方法および半導体処理装置を提供することを目的とする。半導体基板の加熱温度を所定時間内に温度変化させたときに発生する基板端部の温度と中心部の温度との偏差と、基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための変化温度量Nを求め、変化温度量Nにより、半導体基板に対する加熱温度を制御する。

Description

本発明は、半導体基板に対して熱処理を行うための温度制御方法および半導体処理装置に関する。
例えば、特許文献1,2は、均一な熱処理を行えるように工夫された半導体処理方式を開示する。
しかしながら、これらの文献に開示された方式は、半導体基板上の膜厚を均一にするために、温度以外のパラメータを制御する必要がある。
特許公開公報2002−43300号(JP,2002−043300,A) 特許公開公報2002−43301号(JP,2002−043301,A)
本発明は、上述した背景からなされたものであり、温度のみに対する制御により、半導体基板上の膜厚を均一にすることができる温度制御方法を提供することを目的とする。
上記目的を達成するために、本発明に係る温度制御方法は、半導体基板の加熱温度を所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための変化温度量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御することを特徴とする。
好適には、前記変化温度量Nに基づき、温度設定補正値Zを求め、前記温度設定補正値Zを設定することにより、前記半導体基板に対する加熱温度を制御する。
好適には、前記温度設定補正値Zと温度設定値とを加算して設定することにより、前記半導体基板に対する加熱温度を制御する。
好適には、前記温度設定補正値Zは、第1の記憶部に記憶され、前記温度設定値は、第2の記憶部に記憶される。
また、本発明にかかる半導体処理装置は、半導体基板を処理する処理室と、前記処理室内を加熱する加熱手段と、所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための温度変化量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する制御手段とを備えたことを特徴とする。
また、本発明にかかる半導体処理方法は、半導体基板を処理する処理室と、前記処理室内を加熱する加熱手段と、所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための温度変化量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する制御手段とを備えた基板処理装置を用いる半導体製造方法であって、前記半導体基板の端部の温度と中心部の温度との定常偏差を求める工程と、前記半導体基板の加熱温度を、所定時間内に温度変化させたときに発生する前記半導体基板の端部の温度と中心部の温度との偏差を求める工程と、前記半導体基板の端部の温度と中心部の温度との定常偏差を用いて、所望の平均温度偏差Mを実現するための変化温度量Nを求める工程と、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する工程と、前記半導体基板に対する加熱温度を制御することにより、前記半導体基板を処理する工程とを有することを特徴とする。
以上説明したように、本発明に係る温度制御方法によれば、温度のみに対する制御により、半導体基板上の膜厚を均一にすることができる。
[図1]本発明が適応されうる半導体処理装置の全体構成を示す図である。
[図2]図1に示したボートおよびウエハを収容した状態の反応室を例示する図である。
[図3]図1,図2に示した反応室の周辺の構成部分、および、反応室に対する制御を行う第1の制御プログラムの構成を示す図である。
[図4]図1に示した制御部の構成を示す図である。
[図5]図2などに示したウエハおよびボートを例示する図である。
[図6]半導体処理装置(図1)における処理の対象となるウエハの形状を例示する図である。
[図7]ウエハ(図6)の端部と中心部との間の温度偏差の特性を例示する図であって、(A)はウエハの温度がTからT+ΔTに変化して、再びTに戻ったときの面内温度偏差量B,B’を示し、(B)はウエハの温度が2×ΔT変化したときの面内温度偏差量を示す。
[図8]ウエハ(図6)の端部と中心部との間に定常温度偏差A,A’が生じている場合の面内温度偏差量を、温度800℃付近で例示する図である。
[図9]本発明に係る半導体処理方法において用いられる第1の温度設定補正値Zを例示する図である。
[図10]図9に示した第1の温度設定補正値Zの設定に用いられるテーブルを例示する図である。
[図11]温度設定補正値Zにより補正されたウエハに対する温度設定値を例示する図である。
[図12]温度設定補正値Zを用いた補正を行わないときのウエハの面内温度偏差を、グラフ形式で示す図である。
[図13]図9,図10のウエハの平均温度偏差量Mを、−1℃になるように温度変化量Nを求め、求めたZを用いた補正を行ったときのウエハの面内温度偏差を、グラフ形式で示す図である。
[図14]ウエハの平均温度偏差量Mを、+1℃になるように温度変化量Nを求め、求めたZを用いた補正を行ったときのウエハの面内温度偏差を、グラフ形式で示す図である。
[図15]本発明に係る半導体処理方法において用いられる第2の温度設定補正値Zを例示する図である。
[図16]本発明に係る半導体処理方法において用いられる第3の温度設定補正値Zを例示する図である。
[図17]図16に示した第3の温度設定補正値Zの設定に用いられるテーブルを例示する図である。
[図18]図1,図2に示した反応室の周辺の構成部分、および、反応室3に対する制御を行う第2の制御プログラムの構成を示す図である。
[図19]図18に示した温度設定記憶部に記憶された処理レシピの温度設定値に対する補正処理を説明する図である。
[本発明の背景]
本発明の理解を助けるために、実施形態の説明に先立って、まず、本発明がなされるに至った背景を説明する。
[半導体処理装置1]
図1は、本発明が適応されうる半導体処理装置1の全体構成を示す図である。
図2は、図1に示したボート14およびウエハ12を収容した状態の反応室3を例示する図である。
図3は、図1,図2に示した反応室3の周辺の構成部分、および、反応室3に対する制御を行う第1の制御プログラム40の構成を示す図である。
半導体処理装置1は、いわゆる減圧CVD装置である。
図1に示すように、半導体処理装置1は、カセット授受ユニット100、カセット授受ユニット100の背面側に設けられたカセットストッカ102、カセットストッカ102の上方に設けられたバッファカセットストッカ104、カセットストッカ102の背面側に設けられたウエハ移動機106、ウエハ移動機106の背面側に設けられ、ウエハ12がセットされたボート14を搬送するボートエレベータ108、ウエハ移動機106の上方に設けられた反応室3、および、制御部2から構成される。
[反応室3]
図2に示すように、図1に示した反応室3は、中空のヒータ32、外管(アウタチューブ)360、内管(インナチューブ)362、ガス導入ノズル340、炉口蓋344、排気管346、回転軸348、例えばステンレスからなるマニホールド350、Oリング352およびガス流量調整器などその他の構成部分(図3を参照して後述)から構成され、断熱材300により覆われている。
アウタチューブ360は、例えば石英からなり、下部に開口を有する円筒状の形態に形成されている。
インナチューブ362は、例えば石英からなり、円筒状の形態に形成され、アウタチューブ360の内側に、これの同心円上に配設される。
従って、アウタチューブ360とインナチューブ362との間には円筒状の空間が形成される。
シールキャップ354は、例えばステンレスからなり、円盤状に形成されている。
ヒータ32は、それぞれに対する温度の設定および調節が可能な4つの温度調節部分(U,CU,CL,L)320−1〜320−4、温度調整部分320−1〜320−4とアウタチューブ360との間に配設される熱電対などの外部温度センサ322−1〜322−4、および、温度調整部分320−1〜320−4に対応してアウタチューブ360内に配設される熱電対などの内部温度センサ324−1〜324−4を含む。
ヒータ32の温度調整部分320−1〜320−4は、例えば、1つの連続したヒータ32の巻線から、複数のタップを引き出すことにより、あるいは、それぞれ独立した巻線を有する4個のヒータを設けることにより実現される。
温度調整部分320は、それぞれ円筒状に形成され、アウタチューブ360の外側に、これの同心円上に配設される。
また、図3に示すように、反応室3には、温度制御装置370、温度測定装置372、ガス流量制御装置(マスフローコントローラ;MFC)374、ボートエレベータ制御装置(エレベータコントローラ;EC)376、圧力センサ(PS)378、圧力調整装置(APC;Auto Pressure Control(valve))380および排気装置(EP)382が付加される。
温度制御装置370は、制御部2からの制御に従って温度調整部分320−1〜320−4それぞれを駆動する。
温度測定装置372は、温度センサ322−1〜322−4,324−1〜324−4それぞれの温度測定値を制御部2に対して出力する。
エレベータ制御装置(EC)376は、制御部2からの制御に従ってボートエレベータ108を駆動する。
圧力調整装置(以下、APC)380としては、例えば、APC、N2バラスト制御器などが用いられる。
また、EP382としては、例えば、真空ポンプなどが用いられる。
[制御部2]
図4は、図1に示した制御部2の構成を示す図である。
図4に示すように、制御部2は、CPU200、メモリ204、表示装置、タッチパネルおよびキーボード・マウスなどを含む表示・入力部22、および、HD・CDなどの記録部24から構成される。
つまり、制御部2は、半導体処理装置1を制御可能な一般的なコンピュータとしての構成部分を含む。
制御部2は、これらの構成部分により、減圧CVD処理用の制御プログラム(例えば、図3に示した制御プログラム40)を実行し、半導体処理装置1の各構成部分を制御して、半導体ウエハ12に対して、以下に述べる減圧CVD処理を実行させる。
[第1の制御プログラム40]
再び図3を参照する。
図3に示すように、制御プログラム40は、プロセス制御部400、温度制御部410、ガス流量制御部412、駆動制御部414、圧力制御部416、排気装置制御部418および温度測定部420から構成される。
制御プログラム40は、例えば、記録媒体240(図4)を介して制御部2に供給され、メモリ204にロードされて実行される。
温度設定値記憶部422は、ウエハ12に対する処理レシピの温度設定値を記憶し、プロセス制御部400に対して出力する。
プロセス制御部400は、制御部2の表示・入力部22(図4)に対するユーザの操作、あるいは、記録部24に記録された処理の手順(処理レシピ)などに従って、制御プログラム40の各構成部分を制御し、後述するように、ウエハ12に対する減圧CVD処理を実行する。
温度測定部420は、温度測定装置372を介して温度センサ322,324の温度測定値を受け入れ、プロセス制御部400に対して出力する。
温度制御部410は、プロセス制御部400から温度設定値および温度センサ322,324の温度測定値を受け、温度調整部分320に対して供給する電力をフィードバック制御して、アウタチューブ360内部を加熱し、ウエハ12を所望の温度とさせる。
ガス流量制御部412は、MFC374を制御し、アウタチューブ360内部に供給する反応ガスまたは不活性ガスの流量を調整する。
駆動制御部414は、ボートエレベータ108を制御して、ボート14およびこれに保持されたウエハ12の昇降を行わせる。
また、駆動制御部414は、ボートエレベータ108を制御して、回転軸348を介してボート14およびこれに保持されたウエハ122を回転させる。
圧力制御部416は、PS378によるアウタチューブ360内の反応ガスの圧力測定値を受け、APC380に対する制御を行い、アウタチューブ360内部の反応ガスを所望の圧力とする。
排気装置制御部418は、EP382を制御し、アウタチューブ360内部の反応ガスまたは不活性ガスを排気させる。
なお、以下の説明においては、温度調整部分320−1〜320−4など、複数ある構成部分のいずれかを特定せずに示す場合には、単に、温度調整部分320と略記することがある。
また、以下の説明において、温度調整部分320−1〜320−4など、構成部分の個数を示す場合があるが、構成部分の個数は、説明の具体化・明確化のために例示されたものであって、本発明の技術的範囲を限定することを意図して挙げられたものではない。
アウタチューブ360の下端とマニホールド350の上部開口部との間には環状のフランジが設けられ、このフランジの間にはOリング352が配設され、アウタチューブ360とマニホールド350との間は気密にシールされる。
アウタチューブ360の下方に位置するガス導入ノズル340を介して、不活性ガスあるいは反応ガスがアウタチューブ360内に導入される。
マニホールド350の上部には、PS378、APC380およびEP382に連結された排気管346が取り付けられている。
アウタチューブ360とインナチューブ362との間を流れる反応ガスは、排気管346、APC380およびEP382を介して外部に排出される。
APC380は、PS378によるアウタチューブ360内の圧力測定値に基づく制御に従って、アウタチューブ360が、予め設定された所望の圧力になるように、圧力制御部416の指示に従って調整する。
つまり、APC380は、アウタチューブ360内に常圧の不活性ガスが導入されるべき時には、アウタチューブ360内の不活性ガスが常圧になるように、圧力制御部416の指示に従って調整し、あるいは、アウタチューブ360内に低圧の反応ガスが導入されるべき時には、アウタチューブ360内の反応ガスが所望の低い圧力になるように、圧力制御部416の指示に従って調整する。
マニホールド350の下端には、シールキャップ354が取り付けられ、これらはOリング352を介して、着脱自在に気密にシールされる。
また、シールキャップ354には、回転軸348が連結され、回転軸348により、多数の半導体基板(ウエハ)12およびこれらを保持するボート14が回転させられる。
さらに、回転軸348は、ボートエレベータ108(図1)に連結され、ボートエレベータ108は、EC376を介した制御に従って、所定のスピードでボート14を昇降させる。
また、ボートエレベータ108は、回転軸348を介して、ウエハ12およびボート14を所定のスピードで回転させる。
被処理物のウエハ12は、ウエハカセット490(図1)に装填された状態で搬送され、カセット授受ユニット100に授載される。
カセット授受ユニット100は、このウエハ12を、カセットストッカ102またはバッファカセットストッカ104に移載する。
ウエハ移動機106は、カセットストッカ102からウエハ12を取り出し、ボート14に水平な状態で多段に装填する。
ボートエレベータ108は、ウエハ12が装填されたボート14を上昇させて反応室3内に導く。
また、ボートエレベータ108は、処理済みのウエハ12が装填されたボート14を下降させて反応室3内から取り出す。
[半導体処理装置1による減圧CVD処理の概要]
半導体処理装置1は、制御部2(図1,図4)上で実行される制御プログラム40(図3)の制御により、反応室3内に所定の間隔で並べられた半導体ウエハ12に対して、CVDにより、Si3N4膜、SiO2膜およびポリシリコン(Poly−Si)膜などの形成を行う。
反応室3を用いた膜形成をさらに説明する。
まず、ボートエレベータ108は、ボート14を下降させる。
下降したボート14には、処理の対象となるウエハ12が、所望の枚数、セットされ、ボート14は、セットされたウエハ12を保持する。
図5は、図2などに示したウエハ12およびボート14を例示する図である。
次に、ヒータ32の4つの温度調節部分320−1〜320−4それぞれは、設定に従って、アウタチューブ360の内部を加熱し、ウエハ12が予め設定された温度になるように加熱する。
このときには、温度センサ322−1〜322−4による温度測定値に基づくフィードバック制御が、適宜、行われる。
温度調整部分320−1〜320−4それぞれに対して温度を設定すると、図5に示すボート14の上段〜下段に保持されたウエハ12に形成される膜厚を均一にする温度制御を行うことができる。
次に、ガス導入ノズル340(図2)を介して、MFC374は、導入するガスの流量を調節して、アウタチューブ360内に不活性ガスを導入し、充填する。
ボートエレベータ108は、ボート14を上昇させ、ヒータ32により所望の処理温度に維持された不活性ガスが充填された状態のアウタチューブ360内に移動させる。
次に、アウタチューブ360内の不活性ガスはEP382により排気され、アウタチューブ360内部は真空状態とされ、ボート14およびこれに保持されているウエハ12は、回転軸348を介して回転させられる。
この状態で、ガス導入ノズル340を介して反応ガスがアウタチューブ360内に導入されると、導入された反応ガスは、アウタチューブ360内を上昇し、ウエハ12に対して均等に供給される。
EP382は、減圧CVD処理中のアウタチューブ360内から、排気管346を介して反応ガスを排気し、APC380は、アウタチューブ360内の反応ガスを、所望の圧力とする。
以上のように、ウエハ12に対して、減圧CVD処理が所定時間、実行される。
減圧CVD処理が終了すると、次のウエハ12に対する処理に移るべく、アウタチューブ360の内部の反応ガスが不活性ガスにより置換され、さらに常圧とされる。
この状態で、ボート14およびこれに保持された処理済みのウエハ12は、ボートエレベータ108により下降させられ、アウタチューブ360から取り出される。
ボートエレベータ108は、次に減圧CVD処理の対象となるウエハ12が保持されたボート14を上昇させ、アウタチューブ360内にセットする。
このようにセットされたウエハ12に対して、次の減圧CVD処理が実行される。
[ウエハ12上の温度偏差]
図6は、半導体処理装置1(図1)における処理の対象となるウエハ12の形状を例示する図である。
ウエハ12の面(以下、ウエハ12の面を、単にウエハ12とも記す)は、図6に示すような形状をしており、ボート14において、水平に保持され、ヒータ32は、アウタチューブ360の周囲から、アウタチューブ360内に収容されたウエハ12を加熱する。
このように、ウエハ12には、端部から熱量が供給されるので、ウエハ12の面の端部の温度は、その中心部の温度に比べて高くなる。
つまり、ヒータ32がウエハ12を周囲(端部)から加熱すると、例えば、ウエハ12の外周に近ければ近いほど温度が高く、中心部に近ければ近いほど温度が低いという、ウエハ12の端部から中心部にかけたすり鉢状の温度偏差が生じることになる。
また、反応ガスも、ウエハ12の外周側から供給されるので、ウエハ12に形成される膜の種類によっては、ウエハ12の端部と中心部とで反応速度が異なることがある。
従って、仮に、ウエハ12の端部と中心部との間に温度偏差が生じていないとしても、反応ガスのウエハ12の外周側からの供給に起因して、ウエハ12に形成される膜の厚さが、端部と中心部とで不均一になることがある。
このように、ウエハ12に、均一な膜を形成するためには、ウエハ12に生じる温度偏差を極力抑える必要がある。
また、ウエハ12に、均一な膜を形成するためには、さらに、ウエハ12上に膜を形成する反応速度に応じて、膜厚を調整するための温度制御を行う必要がある。
[半導体処理方法]
これらの必要を満たすために、本発明に係る半導体処理方法は、ボート14に保持された多数のウエハ12の温度制御を行うために、温度偏差を目標値設定項目としている。
この温度偏差には、ウエハ12が、図5に示したボート14の上段にあるか、下段にあるかなどによって生じる基板間の温度偏差と、図6に示したウエハ12の面内に生じる基板内の温度偏差とがある。
本発明に係る半導体処理方法においては、温度調整部分320(図2)それぞれに対する温度設定値の他に、温度偏差(基板間温度偏差および基板内温度偏差)が設定される。
温度調整部分320に対する温度制御が行われるときには、予め求められた温度変化量(N)と、平均温度偏差量(M)との関係式が使用されて、これらの値N,Mから、温度設定補正量(Z)が算出される。
温度調整部分320それぞれには、算出された温度設定補正量Zと、温度設定値との加算値が設定され、温度調整部分320それぞれは、ウエハ12が設定された温度になるように、アウタチューブ360の内部を加熱する。
図7は、ウエハ12(図6)の端部と中心部との間の温度偏差の特性を例示する図であって、(A)はウエハ12の温度がTからT+ΔTに変化して、再びTに戻ったときの面内温度偏差量B,B’を示し、(B)はウエハ12の温度が2×ΔT変化したときの面内温度偏差量C,C’を示す。
図8は、ウエハ12の端部と中心部との間に定常温度偏差A,A’が生じている場合の面内温度偏差量を、温度800℃付近で例示する図である。
温度変化量Nと平均温度偏差量Mとの関係式は、以下のウエハ12の端部と中心部との間の温度偏差の特性に基づいて導出される。
まず、図7(A)に示すように、ウエハ12の温度が、ある設定温度TからT+ΔTに上昇した場合、点線で示すウエハ12の端部の温度変化と、実線で示すウエハ12の中心部の温度変化との面内温度偏差量(B)の総和B−B’は0である。
従って、このときには、面内温度偏差量Bは、ウエハ12が設定温度Tで定常状態になっている場合と同じ値となる。
また、図7(B)に示すように、ウエハ12の端部と中心部との間の面内温度偏差量(C,C’)は、変化温度2×ΔTに対し、C=2Bとなり、変化温度ΔTに対し、面内温度偏差値C(C’)は比例することになる。
上記温度偏差の特性は、図7(A),(B)に示した変化温度ΔTが、設定温度Tに対して十分に小さく、また、図8に示すように、ウエハ12の端部と中心部との間に定常的に生じている定常温度偏差A,A’が、温度変化の前後で変化しないことを前提としている。
逆の見方をすると、図7(A),(B)に示した温度偏差の特性は、温度変化の前の定常温度偏差Aと、温度変化後の定常温度偏差A’とが大きく変化しない範囲で成り立つ。
従って、変化温度ΔTが100℃以上もあって、温度変化の前後の定常温度偏差A,A’に大きい変化が生じてしまうようなときには、図7(A),(B)に示した特性は成立しないことがある。
なお、図7(A),(B)に示した特性が成立しない範囲における温度変化量と温度偏差量との間の特性は、任意の温度帯ごとの実験・測定などにより調べられうる。
まず、図8に示したように、ボート14の上段、中上段、中下段および下段それぞれのウエハ12において、定常温度偏差A(℃・min/min)が測定される。
また、図8に示したように、ボート14の上段、中上段、中下段および下段それぞれのウエハ12において、0min〜tmin(図8においてt=10min)の間で温度をT℃からT+ΔT℃まで(図8においては800℃から810℃まで)変化させたときに、ウエハ12の端部と中心部との間に生じた温度偏差量Dが測定される。
この温度偏差量Dは、下式1に示すように定義される。
Figure 2005008755
Figure 2005008755
ここで、面内温度偏差量D’を、下式2−1,2−2に示すとおりに定義する。
Figure 2005008755
式2に示した面内温度偏差量D’を、下式3に示すように、変化温度ΔTで除算すると、1℃当たりの温度偏差量Kが求められる。
Figure 2005008755
変化温度ΔT(℃)を、温度変化量N(℃;N=ΔT)と書き換え、式3に代入して変形すると、下式4が得られる。
Figure 2005008755
ここで、式2−1の右辺第1項を線形近似可能で、また、図8に示した定常温度偏差A,A’が一定であるときには、D’=(D−A)×tと表される。
D’=(D−A)×tを、式4に代入すると、温度変化Nは、平均温度偏差量Mおよび定常温度偏差Aを用いて、下式5の通りに表される。
Figure 2005008755
式5を変形すると、平均温度偏差量Mは、下式6の通りに表される。
Figure 2005008755
例えば、成膜時間tが25min、定常偏差Aが0.2℃、単位面積内温度偏差量Kが0.75℃min/℃であるとき、平均温度偏差量Mを−1℃にして成膜を行いたいとすると、N=(M(−1)−A(0.2)×t(25))/K(0.75)=−40(N=±20)であり、温度変化量Nは±20℃となる。
つまり、t時間の間に、設定値+20℃とした後、設定値−20℃とすれば、平均温度偏差量Mが−1℃になる。
次に、上式5に、上述のように測定された定常温度偏差Aと、単位面内温度偏差量Kと、成膜時間tと、改善したい面内平均温度偏差量Mとが代入され、温度変化量N(℃)が算出される。
このように、温度変化量Nを変化させることにより、ウエハ12の中心部と端部の温度差を制御することができ、この温度差の制御を介して、ウエハ12上の膜厚を制御することができる。
なお、温度変化量Nは、温度変化の前後で温度偏差量Dの値が0になるように求められ、求められた温度変化量Nは、設定温度となるように2で除算され、±が付された形式で表される。
図9は、本発明に係る半導体処理方法において用いられる第1の温度設定補正値Zを例示する図である。
図10は、図9に示した第1の温度設定補正値Zの設定に用いられるテーブルを例示する図である。
レートは、温度変化量N/成膜時間t(図9においてはt=25min)で表され、任意の成膜処理前の温度整定時間(図9においては5min)と、成膜処理後の温度安定時間(図9においては5min)とが付加され、図9に示す温度設定補正値Zが得られる。
図9に示した温度設定補正値Zは、例えば、制御部2の表示・入力部22表示されたテーブルに対するユーザの操作に応じて、図10に示すように設定される。
図11は、温度設定補正値Zにより補正されたウエハ12に対する温度設定値を例示する図である。
なお、図10に示した温度設定補正値Zにより、処理レシピの温度設定値が補正され、実際には、ウエハ12に対して、図11に示すような温度設定がなされる。
以上説明したようにウエハ12に対する温度設定を行うことにより、所望の面内温度偏差を生じさせ、ウエハ12に形成される膜の厚さを均一にすることができる。
図12は、温度設定補正値Zを用いた補正を行わないときのウエハ12の面内温度偏差を、グラフ形式で示す図である。
図13は、図9,図10のウエハ12の平均温度偏差量Mを、−1℃になるように温度変化量Nを求め、求めたZを用いた補正を行ったときのウエハ12の面内温度偏差を、グラフ形式で示す図である。
図14は、ウエハ12の平均温度偏差量Mを、+1℃になるように温度変化量Nを求め、求めたZを用いた補正を行ったときのウエハ12の面内温度偏差を、グラフ形式で示す図である。
例えば、図3においては、図9.図10のように設定することにより、Mが−1℃になるように補正されている。
所望の温度変化量Nを求めて、温度設定補正値Zを、求めたZを用いて補正することにより、Mを任意に設定できる(ex.−1℃,−1℃)。
図15は、本発明に係る半導体処理方法において用いられる第2の温度設定補正値Zを例示する図である。
図16は、本発明に係る半導体処理方法において用いられる第3の温度設定補正値Zを例示する図である。
図17は、図16に示した第3の温度設定補正値Zの設定に用いられるテーブルを例示する図である。
なお、温度設定補正値Zは、全体としての温度補正量が一致すればよく、その変化の態様は自由に変更することができる。
例えば、図15に実線で示し、温度設定補正値Zを、全体としての温度補正量が同じになることを条件として、1段階で温度を変化させるようにしてもよい。
また、図15に点線で示すように、温度設定補正値Zを、全体としての温度補正量が同じになることを条件として、階段状に温度を変化させるようにしてもよい。
同様に、例えば、図16に示し、また、その設定値を図17に示すように、温度設定補正値Zにおいて、図9に示した場合よりも、全体としての温度補正量が同じになることを条件として、温度変化期間を短くしてもよい。
[第2の制御プログラム44]
図18は、図1,図2に示した反応室3の周辺の構成部分、および、反応室3に対する制御を行う第2の制御プログラム44の構成を示す図である。
なお、図18に示した第2の制御プログラム44の構成部分の内、図3に示した第1の制御プログラム40の構成部分と実質的に同じものには、同じ符号が付してある。
つまり、第2の制御プログラム44は、第1の制御プログラム40に、温度設定補正値記憶部442を付加した構成を採る。
制御プログラム44において、温度設定補正値記憶部442は、上述のように算出された温度設定補正値Zを記憶し、プロセス制御部400に対して出力する。
図19は、図18に示した温度設定記憶部422に記憶された処理レシピの温度設定値に対する補正処理を説明する図である。
図19に示すように、制御プログラム44において、プロセス制御部400は、温度設定記憶部422に記憶された温度設定値に、温度設定補正値記憶部442に記憶された温度設定補正値Z(図9,図10,図15〜図17)を加算して、補正された温度設定値(図11)とし、温度制御部410に設定する。
制御プログラム44において、温度制御部410は、ウエハ12が、プロセス制御部400から設定された温度になるように、温度調整部分320に対して供給する電力を制御する。
このように、制御プログラム40の代わりに制御プログラム44を用いることにより、半導体処理装置1(図1)において、本発明に係る半導体処理方法が実現される。
なお、本発明は、上記実施の形態に限定されるものではなく、その旨を逸脱しない範囲で種々に変形が可能である。
また、本実施の形態ではバッチ式の半導体処理装置の減圧CVD装置の場合について説明したが、本発明は、これに限らず、バッチ式の半導体装置の拡散装置などの熱処理装置や、枚葉装置、その他の基板処理装置全般に適応することができる。
本発明は、半導体基板の処理のために利用可能である。

Claims (9)

  1. 半導体基板の加熱温度を所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための変化温度量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する
    ことを特徴とする温度制御方法。
  2. 前記変化温度量Nに基づき、温度設定補正値Zを求め、前記温度設定補正値Zを設定することにより、前記半導体基板に対する加熱温度を制御する
    ことを特徴とする請求の範囲第1項に記載の温度制御方法。
  3. 前記温度設定補正値Zと温度設定値とを加算して設定することにより、前記半導体基板に対する加熱温度を制御する
    ことを特徴とする請求の範囲第2項に記載の温度制御方法。
  4. 前記温度設定補正値Zは、第1の記憶部に記憶され、
    前記温度設定値は、第2の記憶部に記憶される
    ことを特徴とする請求の範囲第3項に記載の温度制御方法。
  5. 半導体基板を処理する処理室と、
    前記処理室内を加熱する加熱手段と、
    所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための温度変化量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する制御手段とを備えた
    ことを特徴とする基板処理装置。
  6. 前記制御手段は、前記変化温度量Nに基づき、温度設定補正値Zを求め、前記温度設定補正値Zを設定することにより、前記半導体基板に対する加熱温度を制御する
    ことを特徴とする請求の範囲第5項に記載の基板処理装置。
  7. 前記制御手段は、前記温度設定補正値Zと温度設定値とを加算して設定することにより、前記半導体基板に対する加熱温度を制御する
    ことを特徴とする請求の範囲第6項に記載の基板処理装置。
  8. 前記温度設定補正値Zは、第1の記憶部に記憶され、
    前記温度設定値は、第2の記憶部に記憶される
    ことを特徴とする請求の範囲第7項に記載の基板処理装置。
  9. 半導体基板を処理する処理室と、前記処理室内を加熱する加熱手段と、所定時間内に温度変化させたときに発生する前記基板端部の温度と中心部の温度との偏差と、前記基板端部の温度と中心部の温度との定常偏差とを用いて、所望の平均温度偏差Mを実現するための温度変化量Nを求め、前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する制御手段とを備えた基板処理装置を用いる半導体製造方法であって、
    前記半導体基板の端部の温度と中心部の温度との定常偏差を求める工程と、
    前記半導体基板の加熱温度を、所定時間内に温度変化させたときに発生する前記半導体基板の端部の温度と中心部の温度との偏差を求める工程と、
    前記半導体基板の端部の温度と中心部の温度との定常偏差を用いて、所望の平均温度偏差Mを実現するための変化温度量Nを求める工程と、
    前記変化温度量Nにより、前記半導体基板に対する加熱温度を制御する工程と、
    前記半導体基板に対する加熱温度を制御することにより、前記半導体基板を処理する工程と
    を有することを特徴とする半導体製造方法。
JP2005511785A 2003-07-18 2004-06-01 温度制御方法、基板処理装置及び半導体製造方法 Pending JPWO2005008755A1 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2003198944 2003-07-18
JP2003198944 2003-07-18
PCT/JP2004/007522 WO2005008755A1 (ja) 2003-07-18 2004-06-01 温度制御方法、基板処理装置及び半導体製造方法

Publications (1)

Publication Number Publication Date
JPWO2005008755A1 true JPWO2005008755A1 (ja) 2006-09-07

Family

ID=34074394

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005511785A Pending JPWO2005008755A1 (ja) 2003-07-18 2004-06-01 温度制御方法、基板処理装置及び半導体製造方法

Country Status (2)

Country Link
JP (1) JPWO2005008755A1 (ja)
WO (1) WO2005008755A1 (ja)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101003446B1 (ko) * 2006-03-07 2010-12-28 가부시키가이샤 히다치 고쿠사이 덴키 기판 처리 장치 및 기판 처리 방법
US7727780B2 (en) 2007-01-26 2010-06-01 Hitachi Kokusai Electric Inc. Substrate processing method and semiconductor manufacturing apparatus
JP5312765B2 (ja) * 2007-01-26 2013-10-09 株式会社日立国際電気 基板処理方法及び半導体製造装置
JP5510991B2 (ja) * 2007-09-06 2014-06-04 株式会社日立国際電気 半導体製造装置及び基板処理方法
KR102263718B1 (ko) 2019-06-10 2021-06-11 세메스 주식회사 기판 처리 장치 및 기판 처리 방법

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4553227B2 (ja) * 2000-02-18 2010-09-29 東京エレクトロン株式会社 熱処理方法
JP4546623B2 (ja) * 2000-07-25 2010-09-15 東京エレクトロン株式会社 熱処理装置の制御条件決定方法
JP4222461B2 (ja) * 2000-11-07 2009-02-12 東京エレクトロン株式会社 バッチ式熱処理方法

Also Published As

Publication number Publication date
WO2005008755A1 (ja) 2005-01-27

Similar Documents

Publication Publication Date Title
JP5153614B2 (ja) 基板処理装置、半導体基板の処理方法、制御プログラム、制御プログラムが記録された記録媒体および基板処理方法
US20200333766A1 (en) Substrate processing apparatus, substrate processing method, semiconductor device manufacturing method, and control program
US7727780B2 (en) Substrate processing method and semiconductor manufacturing apparatus
JP6584352B2 (ja) 制御装置、基板処理システム、基板処理方法及びプログラム
KR20100110822A (ko) 열처리 장치 및 그 제어 방법
JP5647712B2 (ja) 基板処理方法、半導体装置の製造方法および半導体製造装置
US8642486B2 (en) Thin film forming method, thin film forming apparatus, and program
JP2013207256A (ja) 熱処理システム、熱処理方法、及び、プログラム
JP2009260262A (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
JP4712343B2 (ja) 熱処理装置、熱処理方法、プログラム及び記録媒体
JP5049302B2 (ja) 熱処理装置、熱処理装置の温度調整方法、及び、プログラム
EP1557873A1 (en) Heat treating system and heat treating method
JPWO2005008755A1 (ja) 温度制御方法、基板処理装置及び半導体製造方法
JP3764689B2 (ja) 半導体製造方法および半導体製造装置
JP2014194966A (ja) 処理方法及び処理装置
JP6736755B2 (ja) 基板処理装置、半導体装置の製造方法およびプログラム
JP7101718B2 (ja) 加熱部、温度制御システム、処理装置および半導体装置の製造方法
TWI613316B (zh) 基板處理裝置,半導體裝置的製造方法及加熱部
JP2007067196A (ja) 基板処理方法
JP2005136370A (ja) 基板処理装置
JP2005093747A (ja) 半導体処理装置
JP2003017434A (ja) 熱処理方法及び熱処理装置
JP2004200548A (ja) 半導体処理装置及び半導体装置の製造方法