JPS6390806A - 電圧非直線抵抗体 - Google Patents

電圧非直線抵抗体

Info

Publication number
JPS6390806A
JPS6390806A JP61236745A JP23674586A JPS6390806A JP S6390806 A JPS6390806 A JP S6390806A JP 61236745 A JP61236745 A JP 61236745A JP 23674586 A JP23674586 A JP 23674586A JP S6390806 A JPS6390806 A JP S6390806A
Authority
JP
Japan
Prior art keywords
bismuth
sintered body
phase
oxide
varistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP61236745A
Other languages
English (en)
Other versions
JPH0253932B2 (ja
Inventor
武志 鈴木
清 松田
桃木 孝道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marcon Electronics Co Ltd
Original Assignee
Marcon Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Marcon Electronics Co Ltd filed Critical Marcon Electronics Co Ltd
Priority to JP61236745A priority Critical patent/JPS6390806A/ja
Publication of JPS6390806A publication Critical patent/JPS6390806A/ja
Publication of JPH0253932B2 publication Critical patent/JPH0253932B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Thermistors And Varistors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。

Description

【発明の詳細な説明】 [発明の目的] (産業上の利用分野) 本発明は熱履歴に対して優れた安定性をもつビスマスを
含有する酸化亜鉛系の電圧非直線抵抗体(以下バリスタ
と称す)に関する。
(従来の技術) 昨今、各種バリスタの開発はめざましいものがあり、中
でもビスマスを含有した酸化亜鉛系のバリスタはその優
れた非直線性、サージ吸収性および定電圧性などの安定
性が認められ、雷サージおよび異常電圧に対する防護用
バリスタまたは定電圧バリスタとして広く用いられてい
る。しかしてこの種バリスタは、主成分としての酸化亜
鉛に添加物としてビスマス、コバルト。
マンガン、ニッケル、クロムなどを数種から10数種添
加混合し、迄精成形焼結してなる焼結体両面に銀ペース
トを塗布−焼付けするか、または電極金属をメタリコン
するかなどの手段を経て電極を形成し実用に供している
しかして、このようにして用いられるバリスタは、実用
上通常(正常)の電圧状態においてはアイドリング電流
(漏れ電流)が少なく、異常電圧、雷サージ吸収時はそ
の吸収能力が大きく、その後の電気的特性の変化がきわ
めて少ないことが要求されている。従来、このような要
求に応える技術として特公昭53−21509号公報、
または特公昭60−38841号公報に開示されたもの
がある。
特公昭53−21509号公報(以下前者と称す)に開
示された技術は、焼結体中に含まれるB12O3のうち
10%以上をγ−Bi2O3として含ませることにより
直流負荷に対して安定で、さらにパルス電流に対しても
安定で優れたバリスタ特性を発揮するようにしたもので
ある。
また特公昭60−38841号公報(以下後者と称す)
に開示された技術は、銀を含むホウケイ酸ビスマスガラ
スが添加され、焼結体中のBi2O3の90重量%以上
を体心立法品系酸化ビスマス(γ−Bi2O3)にする
ことによって、きわめて苛酷な課電条件下にJ3いても
長時間経過後の漏れ電流の経時変化がきわめて少なく、
しかも時間とともに減少するような特性をもつバリスタ
に関するものである。
すなわち前者は添加物の種類や仮焼条件、焼成条件など
によって焼結体にα−Bi203相。
β−Bi203相、γ−Bi2O3相の他にδ−8i2
03相が生成され、また焼成した時点ではγ−Bi2O
3相を含まない焼結体でも電極焼付、または使用中の再
加熱下などの熱履歴を経るとα−81203相、β−B
i203相、δ−Bi  O相がγ−Bi2O3相に変
態する場合のγ−Bi2O3相が10%以上のときに安
定なバリスタが得られることを究明したものである。後
者は銀を含むホウケイ酸ビスマスガラスを添加して得ら
れた酸化ビスマスを含む焼結体を構成する酸化ビスマス
は通常800〜900℃で反応を開始し、いったんはパ
イロクロア結晶相を形成し、ついで分解してスピネル結
晶相と酸化ビスマス(I[I)の液相を生じ、酸化亜鉛
の焼結が進行する過程で形成されるβ−3i203相、
δ−3i2Q3相を含む焼結体をジャーナル・オプ・ア
ブライズド・フィジックス(日本国)、15巻(197
6年)1847頁に記載の方法に準じて、大気中におい
て700℃で再焼成することによって焼結体中の酸化ビ
スマス(I[I)の90%以上をγ−B+、、03相に
相変化させることによって安定なバリスタが得られるこ
とを究明したものである。
本発明者らは以上に述べた技術を前提に種々検討を重ね
た結果、上記従来技術として開示されている前者、後者
とも焼結体中に含まれるα。
β、δそれぞれのBi2O3相を呈する酸化ビスマスが
製造工程中の熱履歴、すなわち電極焼付時、または電極
形成として熱履歴をともなわないメッキ、メタリコンの
ものでも実用時の電気エネルギーの累積熱履歴によって
γ−81203相に変態(相変化)し低電流領域で電圧
−電流(V−1)特性が低下する点がわかった。
しかして本発明者らは焼結体を構成する酸化亜鉛を主成
分とした結晶粒子の粒界偏析部に熱に安定なビスマス化
合物を生成させることによって粒界偏析部を構成するB
12o3相の熱による相変化を少なくすることができる
点に着目し種々開発を進め本発明にいたった。
(発明が解決しようとする問題点) 以上のように安定なバリスタを得るため、添加物の種類
や仮焼条件、焼成条件などによって焼結体中の結晶粒子
の粒界偏析部に形成されるBi2O3相中所望の量のγ
−Bi2O3相を得たとしても、残りのα、β、δそれ
ぞれのBi2O3相がその後の熱履歴、つまり電極焼付
および使用中の電気エネルギーによって相変化を起こし
、低電流領域でのV−1特性の低下を防止することがで
きない。
本発明は焼結体中の粒界偏析部に存在するBi2O3相
を減らすことによって、非直線性に優れ経時変化のない
きわめて安定性の高いバリスタを提供することを目的と
するものである。
[発明の構成] (問題点を解決するための手段) 本発明のバリスタは酸化亜鉛を主成分とし、添加物とし
て少なくとも鉛、ビスマス、スズ。
アンチモンを含み、該添加物中の鉛とビスマス。
スズとビスマスの関係が Pb/B i =0.05〜0.5゜ Sn/Bi=0.2 〜2.0 の範囲で、ビスマスをB12O3にFA搾して0.05
〜1.0モル%、アンチモンをSb2O3に換It、4
0.05〜3.0−E/L/%含有してなる焼結体にお
ける酸化亜鉛を主成分とする結晶粒子の粒界偏析部に、
前記焼結体中の全ビスマスの50%以上をパイロクロア
型化合物であるように構成してなるものである。
(作用) 以上のような構成になるバリスタによれば、焼結体中の
結晶粒子の粒界偏析部に介在する偏析物として全ビスマ
スの50%以上をパイロクロア型化合物にすることによ
って1000℃程度まで変態しない熱的に安定な物質と
して形成でき、熱履歴過程でγ−Bi2O3相に相変化
するBi2O3相が極力少なくなり、低電流領域でのV
−1特性の低下はきわめて少なく、従来では得ることの
できない優れた非直線特性を得ることができる。
(実施例) 以下、本発明の実論例につき詳細に説明する。
主成分としての酸化亜鉛(ZnO)に添加物として酸化
ビスマス(Bi  O)、  R化鉛(PbO)、  
酸化スズ(SnO)、  M化アンチモン(Sb  O
)、  M化コバルト(Coo)、  酸化クロム(C
r203)。
酸化ニッケル(Ni○)、酸化マンガン(MnO)の酸
化物の中から少なくとも酸化鉛。
酸化ビスマス、酸化スズ、酸化アンチモンを含み、該添
加物中の鉛とビスマス、スズとビスマスの関係が Pb/B i =0.05〜0.5゜ Sn/8 i =0.2〜2.0の範囲で、Bi  O
0,05〜1.0モル%。
Sb203 0.05〜3.0モル%を含有するセラミ
ック粉末を造粒成形し1000〜1300℃の温度で焼
成し、得た板状焼結体の両面に銀焼付、メッキまたはメ
タリコンなどを施し電極を形成してなるものである。
表は添加物の種類および添加量(モル%)のちがいによ
る銀焼付電極形成と同じ条件となる700℃熱処理を施
した焼結体のX線回折によるメインビーク強度比から求
めたZnO結晶粒子間を構成する粒界偏析部成分として
のパイロクロア型化合物に含まれるビスマス吊と、焼結
体自体の電気的特性を把握するために熱緩歴をともなわ
せないアルミニウムメタリコン電極形成によって測定し
たV100μA−VlmAのα、熱履歴をともなう銀焼
付電極形成によってよ1定したVloo μA−Vl 
mAのα、さらにはVl ff1A/mを示したもので
ある。
なお、試料として用いた焼結体の人ささば直径が14m
!R2厚さが1Mで、電極直径は13.4mである。
つぎに前記衣に示した結果をわかりやすくずるため、第
1図〜第9図を参照して説明する。
第1図および第3図はPb/BiまたはSn/3iと非
直線性α(V 100μA−VlmA)の関係を示すも
ので、第2図および第4図はPb/BiまたはSn/B
iとパイロクロア型化合物に含まれるビスマス量を示す
もので、第1図および第2図におけるSn/Biは1.
0、第3図および第4図におけるPb/Biは0.25
のときである。また第5図はパイロクロア型化合物に含
まれるビスマスmと700℃のアニールによるLC変動
との関係を示すもので、第6図はパイロクロア型化合物
に含まれるビスマス量と高温課電(105℃、DC2m
A。
100011)後によるLG変動との関係を示すもので
ある。なお、この試料はアルミニウムメタリコン電極に
よるものである。さらに第7図は前記表に示す実施例9
と従来例73のV100μA−VlmAの電圧−電流特
性を示ザものであり、第8図および第9図は第7図で用
いたものと同一試料のX線回折グラフを示すもので、第
8図は熱処理前、第9図は焼結体の熱処理(700℃)
後である。
前記表および第1図〜第4図から明らかなように、Pb
/B iおよびSn/Biが大きくなるほどパイロクロ
ア型化合物に含まれるビスマスの割合が増加する傾向を
示す中で、非直線性αが極大となるPb/Biおよび3
n/3iの範囲はPb/B i =0.05〜0.5゜
Sn/Bi=0.2〜2.0であることがわかる。すな
わち焼結体の粒界偏析部にパイロクロア型化合物に含ま
れるビスマス量の増加によってBi2O3が減少しすぐ
れた非直線性を示すが、pb/s +、sn/s tが
上限を越して大きくなりすぎるとパイロクロア化する反
応ステージが早くなりすぎ、焼結性を損うことによるも
のと推量される。また前記表はもとより第5図および第
6図から明らかなように、パイロクロア型化合物に含ま
れるビスマス量が50%以上となるものは熱履歴による
非直線性α特性の変化がきわめて少なくすぐれたバリス
タ特性を示している。さらに第7図から明らかなように
パイロクロア型化合物が存在しない従来例のものは低電
流領域での電圧低下が著しいのに対し、本発明のものは
電流が1μAという低電流領域でも電圧降下はわずかで
漏れ電流がきわめて小さい結果を示した。しかして、本
発明によるものが以上のようなすぐれた効果を発揮する
根拠については第8図および第9図によって明らかなよ
うに、焼結体の結晶粒子間の粒界偏析部にパイロクロア
型化合物を含み、該パイロクロア型化合物に焼結体中に
含まれる全ビスマスの50%以上を含有させ熱履歴によ
り相変化するBi2O3相を少なく抑制できることによ
るものである。
なお、ビスマスの一部は相変化しないガラス化ビスマス
として存在するものと推はされる。
[発明の効果] 以上述べたように本発明によれば、非直線性にすぐれ、
かつ熱履歴に対して特性劣化のないきわめて安定した実
用的価値の高いバリスタを得ることができる。
【図面の簡単な説明】
第1図はPb/Bi−α特性曲線図、第2図はPb/B
i−パイロクロア型化合物に含まれるビスマス量の相関
図、第3図はSn/Bi−α特性曲線図、第4図はSn
/Bi−パイロクロア型化合物に含まれるビスマス量の
相関図、第5図はパイロクロア型化合物に含まれるビス
マス蓬−アニールによるΔLC/LC特性曲線図、第6
図はパイロクロア型化合物に含まれるビスマスff1−
1:IAU課電によるΔLC/LC特性曲線図、第7図
は電流−電圧比特性曲線図、第8図は熱処理前の焼結体
のX線回折グラフ、第9図は熱処理後の焼結体のX線回
折グラフである。 特  許  出  願  人 マルコン電子株式会社 Pb/Bi 第  1  図 Pb/Bi 第  2  図 Sn/Bi 第  3  図 Sn/Bi 第  4  図 バイロクロア型化合物に含まれるビスマス旦 (%)第
5図 バイロクロア型化合物に含まれるビスマスF?!(%)
第  6  図 t  流 (1) 第  7  図 従  来  例 (7′5) 、。      実施例(9) 2θ((jeo) Dy:DVI”0CilOI’13 従  来  例 (ワ3) 実  施  例 (9) SD:5lnel

Claims (1)

  1. 【特許請求の範囲】  酸化亜鉛を主成分とし、少なくとも鉛、ビスマス、ス
    ズ、アンチモンの添加物を含み、該添加物中の鉛とビス
    マス、スズとビスマスの関係が Pb/Bi=0.05〜0.5、 Sn/Bi=0.2〜2.0 の範囲で、ビスマスをBi_2O_3に換算して0.0
    5〜1.0モル%、アンチモンを Sb_2O_3に換算して0.05〜3.0モル%含有
    してなる焼結体における結晶粒子の粒界偏析部に、前記
    焼結体中の全ビスマスの50%以上を化合したバイロク
    ロア型化合物を含有したことを特徴とする電圧非直線抵
    抗体。
JP61236745A 1986-10-03 1986-10-03 電圧非直線抵抗体 Granted JPS6390806A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP61236745A JPS6390806A (ja) 1986-10-03 1986-10-03 電圧非直線抵抗体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61236745A JPS6390806A (ja) 1986-10-03 1986-10-03 電圧非直線抵抗体

Publications (2)

Publication Number Publication Date
JPS6390806A true JPS6390806A (ja) 1988-04-21
JPH0253932B2 JPH0253932B2 (ja) 1990-11-20

Family

ID=17005158

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61236745A Granted JPS6390806A (ja) 1986-10-03 1986-10-03 電圧非直線抵抗体

Country Status (1)

Country Link
JP (1) JPS6390806A (ja)

Also Published As

Publication number Publication date
JPH0253932B2 (ja) 1990-11-20

Similar Documents

Publication Publication Date Title
JPS6243326B2 (ja)
US4535314A (en) Varistor includes oxides of bismuth, cobalt, manganese, antimony, nickel and trivalent aluminum
JP2510961B2 (ja) 電圧非直線抵抗体
JPS6390806A (ja) 電圧非直線抵抗体
JP2531586B2 (ja) 電圧非直線抵抗体
JPS6390805A (ja) 電圧非直線抵抗体
JPS6390803A (ja) 電圧非直線抵抗体
JPS6390802A (ja) 電圧非直線抵抗体
JPS6390807A (ja) 電圧非直線抵抗体
JPS63281405A (ja) 電圧非直線抵抗体
JPS62268102A (ja) 電圧非直線抵抗体
JPS6390804A (ja) 電圧非直線抵抗体
JP2625178B2 (ja) バリスタの製造方法
JP2830322B2 (ja) 電圧依存性非直線抵抗体磁器組成物およびバリスタの製造方法
JPH0379848B2 (ja)
JPH0379847B2 (ja)
JPH01289206A (ja) 電圧依存性非直線抵抗体素子及びその製造方法
JPH0253927B2 (ja)
JP2808777B2 (ja) バリスタの製造方法
JP2822612B2 (ja) バリスタの製造方法
JP2830321B2 (ja) 電圧依存性非直線抵抗体磁器組成物およびバリスタの製造方法
JP2003109806A (ja) 非直線抵抗体及びその製造方法
KR910001109B1 (ko) 고전압용 산화아연 바리스터의 제조방법
JP2737280B2 (ja) セラミックコンデンサ及びその製造方法
JPS63122101A (ja) 電圧非直線抵抗体