JPS6387771A - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JPS6387771A
JPS6387771A JP62178224A JP17822487A JPS6387771A JP S6387771 A JPS6387771 A JP S6387771A JP 62178224 A JP62178224 A JP 62178224A JP 17822487 A JP17822487 A JP 17822487A JP S6387771 A JPS6387771 A JP S6387771A
Authority
JP
Japan
Prior art keywords
type
regions
region
island region
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62178224A
Other languages
Japanese (ja)
Other versions
JPH0365026B2 (en
Inventor
Kiyoshi Sakai
潔 酒井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62178224A priority Critical patent/JPS6387771A/en
Publication of JPS6387771A publication Critical patent/JPS6387771A/en
Publication of JPH0365026B2 publication Critical patent/JPH0365026B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

PURPOSE:To improve high frequency characteristics and breakdown strength by preparing an N-type island region and at the same time making the thickness of an insulating film below a gate electrode thinner than those of insulating films at other parts. CONSTITUTION:Even though an arrangement of a N-type island region 7 makes P-type regions 5 and 5' deeper, it also makes a length between N-type source regions 6 and 6' of P-type base regions 5 and 5' that result in a real channel region below a gate electrode 9 and the N-type island region 7 shorter and further, makes a part below the N-type source regions 6 and 6' of the P-type regions 5 and 5' thicker. Since the real channel region is short and lower of the N-type source regions 6 and 6' of the p-type regions 5 and 5' can be thicker, the inner resistance can be reduced to obtain favorable high frequency characteristics. Subsequently, it is difficult for a depletion layer developed from the P-type regions 5 and 5' in the N-type island region 7 but the gate electrode 9 is so located on the island region 7 that it is easy for the depletion layer to extend in the island region. Then, in addition to permitting a drain current to be taken out by passing through the P-type regions 5 and 5', the above arrangement makes it possible to perform high breakdown strengthening.

Description

【発明の詳細な説明】 本発明は電界効果トランジスタに関する。[Detailed description of the invention] The present invention relates to field effect transistors.

電界効果トランジスタは本質的に周波数特性に秀れ、更
に熱的にも安定であることから高周波高出力用途として
の秀れた性能が得られている。
Field-effect transistors inherently have excellent frequency characteristics and are also thermally stable, allowing them to provide excellent performance for high-frequency, high-output applications.

電界効果トランジスタの一例として電荷を半導体基板の
厚さ方向に流す構造が提案されている。これは、例えば
、NW牛導体基板もしくはエピタキシャル層にベース領
域となるPm層を対向する部分を有するように設け、そ
れらPm層の対向する部分にそれぞれソース領域となる
N型層を形成し、各Nu層間の領域上にゲート酸化膜を
介してゲート電極を形成している。ドレイン電極は半導
体基板の裏直に竺成されている。本桐造による電界効へ 来トランジスタはゲート電極とドレイン電極との間の帰
還容量が小さく、高周波特性に優れており、ドレイン電
極を半導体基板の裏面から取り出しているので高耐圧・
高出力用途に適している。
As an example of a field effect transistor, a structure in which charges flow in the thickness direction of a semiconductor substrate has been proposed. For example, a NW conductor substrate or an epitaxial layer is provided with opposing portions of Pm layers serving as base regions, and N-type layers serving as source regions are formed in opposing portions of the Pm layers, respectively. A gate electrode is formed on the region between the Nu layers via a gate oxide film. The drain electrode is formed directly on the back side of the semiconductor substrate. The field-effect transistor by Motokiri has a small feedback capacitance between the gate electrode and the drain electrode, and has excellent high frequency characteristics.The drain electrode is taken out from the back side of the semiconductor substrate, so it can withstand high voltage.
Suitable for high power applications.

しかるに本構造における欠点として帰還容量のより低減
のためにはP型層を深くする必要があり、必然的にN型
半導体基板とソース領域であるN型領域との間の距離が
長くなり、ゲート電極下のチャンネル長が長くなる。
However, the disadvantage of this structure is that in order to further reduce the feedback capacitance, it is necessary to make the P-type layer deeper, which inevitably increases the distance between the N-type semiconductor substrate and the N-type region that is the source region. The channel length under the electrode becomes longer.

これは、周波数特性が態化することとなり、又内部抵抗
も増大し取り出し得る出力が低下する。又、ゲート電極
下のチャンネル長を短くするため、ソース領域であるN
型層を深く形成すると等価的にベース領域であるpmi
+のN型層下の部分が薄くなり、やはり内部抵抗が増大
し周波数特性が劣化する。
This results in a change in frequency characteristics, an increase in internal resistance, and a decrease in the output that can be extracted. In addition, in order to shorten the channel length under the gate electrode, the source region N
When the mold layer is formed deep, the base region pmi
The portion under the positive N-type layer becomes thinner, which also increases the internal resistance and deteriorates the frequency characteristics.

本発明の目的は、高周波特性に優れ高耐圧な電界効果ト
ランジスタを得ることにある。
An object of the present invention is to obtain a field effect transistor with excellent high frequency characteristics and high breakdown voltage.

本発明によれば、−導[!の半導体基板と、この半導体
基板の表面に形成された互いに所定の間隔で対向する部
分を有する他の導電型の第1の領域と、このglの領域
の前記対向する部分にそれぞれ形成された前記−導を型
の第2の領域と、第1の領域の前記対向する部分間の半
導体基板表面に形成された前記−導111mで半導体基
板よりも高不純物濃度の第3の領域と、第2の領域間の
第1の領域および第3の領域上に絶縁膜を介して連続的
に形成されたゲー)1!fflと、第2の領域に接続す
るソース電極と、半導体基板に形成されたドレイン電極
とを有する電界効果トランジスタを得る。
According to the present invention, - led [! a semiconductor substrate, a first region of another conductivity type formed on the surface of this semiconductor substrate and having portions facing each other at a predetermined interval; a second region of the semiconductor substrate with a -conductor formed on the surface of the semiconductor substrate between the opposing portions of the first region; (1) which is continuously formed on the first region and the third region between the regions with an insulating film interposed therebetween. ffl, a source electrode connected to the second region, and a drain electrode formed on the semiconductor substrate.

次に、図面を参照して本発明をより詳細に説明する。Next, the present invention will be explained in more detail with reference to the drawings.

第1図はN型Stエピタキシャルウェハーである。N+
型高不純物濃度の基板1(例えばN = 10” at
oms/cl/I以上)上にN−型エピタキシャル層2
(N=10”〜11014atoυ讐程度、厚さは数μ
ないし数+μμ程度が成長されている。このエピタキシ
ャルウェハー上に不純物拡散に対するマスク層3(例え
ば熱酸化膜等)を形成し更に部分的に開孔12.12’
、13をする。開孔12 、12’はす7グ状もしくは
櫛状をしており、互いに連続している。
FIG. 1 shows an N-type St epitaxial wafer. N+
type high impurity concentration substrate 1 (e.g. N = 10" at
oms/cl/I or more) on top of the N-type epitaxial layer 2
(N = 10” to 11014 atoms, thickness is several μ
The number of microorganisms has been increased to about 100,000 or more. A mask layer 3 (for example, a thermal oxide film, etc.) for impurity diffusion is formed on this epitaxial wafer, and further holes 12, 12' are partially opened.
, do 13. The openings 12 and 12' are in the shape of a ring or a comb, and are continuous with each other.

図示した長さaは数μ程度長さbは数μ〜数十μ程度で
b)2mである。
The illustrated length a is approximately several microns, and the length b is approximately several microns to several tens of microns, and b) is 2 m.

第2図に示すように、開孔13上更にイオン打込又は不
純物拡散工程におけるマスク層4を選択的に形成する。
As shown in FIG. 2, a mask layer 4 is selectively formed over the opening 13 in an ion implantation or impurity diffusion process.

マスク層4の材質はマスク層3と異なるものを用い、マ
スク層4を選択的に除去できるものく例えばフォトレヂ
ス)材、 81.N4等)を用いる。この工程において
は、位置合せ誤差は長さ1以下であれば良く、従来製造
技術にて何ら問題はない。しかるのち、イオン打込み又
は拡散にて、P型領域5を形成するイオン打込あるいは
その後の熱拡散によりP型領域5の深さを数μオーダー
に形成する。この深さが概ねチャンネル長り、に相当す
る。
81. The material of the mask layer 4 is different from that of the mask layer 3, and the mask layer 4 can be selectively removed (for example, photoresist); 81. N4 etc.) is used. In this step, the alignment error only needs to be 1 or less in length, and there is no problem with conventional manufacturing techniques. Thereafter, the depth of the P-type region 5 is formed on the order of several μm by ion implantation or diffusion to form the P-type region 5 or by subsequent thermal diffusion. This depth roughly corresponds to the channel length.

次に第3図に示すように、マスク層4を除去した後N型
不純物をイオン打込み又は拡散により導入して高不純物
濃度領域6.6′及び7を形成する。領fiR6,6’
がソース領域、領域7がアイランド領域となる。領域6
,6−と7との間隔がチャンネル長L1に相当し数μ程
度から1μ以下にすることも可能である。
Next, as shown in FIG. 3, after mask layer 4 is removed, N-type impurities are introduced by ion implantation or diffusion to form high impurity concentration regions 6,6' and 7. territoryfiR6,6'
is the source region, and region 7 is the island region. Area 6
, 6- and 7 corresponds to the channel length L1, and can be made from about several microns to 1 micron or less.

しかるのち所定の厚さのゲート絶縁膜8を領域6および
6′と7の間の領域5,5−の表面部分を含む領域、具
体的には領域6と6I間の表面領域上に連続に形成し、
更に電極9tlO+11をそれぞれ形成し、第4図に示
す素子が形成される。その他の詳細の説明は従来のMO
S  FETの製法から容易に類推できるので省く。こ
こに電極9はゲート電極、10はソニス電極、11はド
レイン電極である。
Thereafter, a gate insulating film 8 of a predetermined thickness is continuously formed on a region including the surface portions of regions 5 and 5- between regions 6 and 6' and 7, specifically, on the surface region between regions 6 and 6I. form,
Furthermore, electrodes 9tlO+11 are formed, respectively, and the element shown in FIG. 4 is formed. Other details are explained in the conventional MO
It is omitted because it can be easily inferred from the manufacturing method of S FET. Here, electrode 9 is a gate electrode, 10 is a sonis electrode, and 11 is a drain electrode.

ソース電極10はN型領域6,6′と2里領域5.5′
とに連続して接触している。
The source electrode 10 has N-type regions 6, 6' and 2-ri regions 5.5'.
are in continuous contact with.

かかる構造によればN型アイランド領域7を設けること
によって、P型領域5,5′を深くしても、ゲート電極
9下の実質的チャンネル領域となるP型ベース領域5゜
51のN型ソース領域6,6′とN型アイランド領域7
との間の長さを短かく、しかもP型領域5,5IのN型
ソース領域6,6′下の部分を厚くできる。実質的チャ
ンネル領域が短かいことおよびP型領域5,5′のNW
ソース領域6.61下を厚くできるので、内部抵抗を小
さくできることから良好な高周波特性を得ることがで會
る。また、N聾アイランド領域7内ではP型領域5.5
′からの空乏層が蔦びkくいが、その上にゲー)E極9
があることによが達成できる。N−チャンネル型の場合
について述べた′がP−チャンネル型の場合にも全く適
用可能であることは自明である。
According to this structure, by providing the N-type island region 7, even if the P-type regions 5, 5' are made deep, the N-type source of the P-type base region 5.51, which becomes a substantial channel region under the gate electrode 9, Regions 6, 6' and N-type island region 7
It is possible to shorten the length between the P-type regions 5 and 5I, and thicken the portions of the P-type regions 5 and 5I below the N-type source regions 6 and 6'. The substantial channel region is short and the NW of P-type regions 5, 5'
Since the area below the source region 6.61 can be made thicker, the internal resistance can be reduced and good high frequency characteristics can be obtained. In addition, in the N deaf island area 7, the P type area 5.5
The depletion layer from ' is revived, but on top of it
There is a lot that can be achieved. It is obvious that what is described for the N-channel type is also completely applicable to the P-channel type.

【図面の簡単な説明】[Brief explanation of the drawing]

第1〜4図は本発明の一実施例を製造工程順に示した断
面図である。 1・・・N  jl半導体基板、 2・・・N型エピタ
キシャル層、3.4・・・マスク層、 5,5r・・・
P型層、  6.6’・・・N型層、 7・・・アイラ
ンド領域、 8・・・ゲート酸化膜、9・・・ゲート1
ヱ極、  10・・・ソース電極、  11・・・ドレ
イン電極 第1 目 第2目
1 to 4 are cross-sectional views showing an embodiment of the present invention in the order of manufacturing steps. 1...N jl semiconductor substrate, 2...N type epitaxial layer, 3.4...mask layer, 5,5r...
P type layer, 6.6'... N type layer, 7... Island region, 8... Gate oxide film, 9... Gate 1
E electrode, 10... Source electrode, 11... Drain electrode 1st and 2nd

Claims (3)

【特許請求の範囲】[Claims] (1)一導電型の半導体基板と、該半導体基板の表面に
形成された互いに所定の間隔で対向する部分を有する他
の導電型の第1の領域と、該第1の領域の前記対向する
部分にそれぞれ形成された前記一導電型の第2の領域と
、前記第1の領域の前記対向する部分間の前記半導体基
板表面に形成された前記一導電型で前記半導体基板より
も高不純物濃度の第3の領域と、前記第2の領域間の前
記第1の領域および前記第3の領域上に絶縁膜を介して
連続的に形成されたゲート電極と、前記第2の領域に接
続するソース電極と、前記半導体基板に形成されたドレ
イン電極とを有することを特徴とする電果効果トランジ
スタ。
(1) a semiconductor substrate of one conductivity type; a first region of another conductivity type having portions formed on the surface of the semiconductor substrate that face each other at a predetermined interval; the second region of the one conductivity type formed in each portion, and the impurity concentration higher than that of the semiconductor substrate of the one conductivity type formed on the surface of the semiconductor substrate between the opposing portions of the first region; a third region, a gate electrode continuously formed on the first region and the third region between the second regions via an insulating film, and connected to the second region. A field effect transistor comprising a source electrode and a drain electrode formed on the semiconductor substrate.
(2)前記ソース電極は前記第1および第2の領域に接
続されていることを特徴とする特許請求の範囲第1項記
載の電界効果トランジスタ。
(2) The field effect transistor according to claim 1, wherein the source electrode is connected to the first and second regions.
(3)前記ゲート電極下の前記絶縁膜は他の部分の絶縁
膜よりも厚さの薄いことを特徴とする特許請求の範囲第
1項記載の電界効果トランジスタ。
(3) The field effect transistor according to claim 1, wherein the insulating film under the gate electrode is thinner than other parts of the insulating film.
JP62178224A 1987-07-17 1987-07-17 Field effect transistor Granted JPS6387771A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62178224A JPS6387771A (en) 1987-07-17 1987-07-17 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62178224A JPS6387771A (en) 1987-07-17 1987-07-17 Field effect transistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP5023277A Division JPS53135284A (en) 1977-04-30 1977-04-30 Production of field effect transistor

Publications (2)

Publication Number Publication Date
JPS6387771A true JPS6387771A (en) 1988-04-19
JPH0365026B2 JPH0365026B2 (en) 1991-10-09

Family

ID=16044759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62178224A Granted JPS6387771A (en) 1987-07-17 1987-07-17 Field effect transistor

Country Status (1)

Country Link
JP (1) JPS6387771A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318397A (en) * 2002-04-24 2003-11-07 Nissan Motor Co Ltd Field effect transistor and manufacturing method therefor
EP1873838A1 (en) * 2005-04-22 2008-01-02 Rohm, Co., Ltd. Semiconductor device and method for manufacturing same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185381A (en) * 1975-01-24 1976-07-26 Hitachi Ltd
JPS5374385A (en) * 1976-12-15 1978-07-01 Hitachi Ltd Manufacture of field effect semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5185381A (en) * 1975-01-24 1976-07-26 Hitachi Ltd
JPS5374385A (en) * 1976-12-15 1978-07-01 Hitachi Ltd Manufacture of field effect semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003318397A (en) * 2002-04-24 2003-11-07 Nissan Motor Co Ltd Field effect transistor and manufacturing method therefor
EP1873838A1 (en) * 2005-04-22 2008-01-02 Rohm, Co., Ltd. Semiconductor device and method for manufacturing same
EP1873838A4 (en) * 2005-04-22 2009-06-03 Rohm Co Ltd Semiconductor device and method for manufacturing same
US7888712B2 (en) 2005-04-22 2011-02-15 Rohm Co., Ltd. Semiconductor device and method for manufacturing same

Also Published As

Publication number Publication date
JPH0365026B2 (en) 1991-10-09

Similar Documents

Publication Publication Date Title
US20080290408A1 (en) Thin silicon-on-insulator double-diffused metal oxide semiconductor transistor
JPH02309678A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH0526352B2 (en)
JP3113426B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JPS6387771A (en) Field effect transistor
JP3448138B2 (en) Method for manufacturing semiconductor device
JPS62211955A (en) Manufacture of semiconductor device
JP2657820B2 (en) Method of manufacturing MOS field effect transistor
JPH0517713B2 (en)
JP2682088B2 (en) Field effect transistor and method of manufacturing the same
JPH09102604A (en) Semiconductor device
JPH0411740A (en) Manufacture of vertical-type mos field-effect transistor
JPH06181312A (en) Manufacture of semiconductor device
JPS63136669A (en) Semiconductor device
JPS61100975A (en) Junction type field-effect transistor
JPH02207534A (en) Semiconductor device
JPS62137870A (en) Manufacture of mis transistor
JPH0458537A (en) Insulated-gate field-effect transistor and manufacture thereof
JPS632365A (en) Manufacture of semiconductor integrated circuit
JPS63131584A (en) Manufacture of cut type insulated-gate electrostatic induction transistor
JPS59214263A (en) Double diffusion type insulated gate field-effect transistor
JPH0121570Y2 (en)
JPH0252469A (en) Semiconductor device and its manufacture
JP2893793B2 (en) Vertical MOS field-effect transistor
JPS60180172A (en) Integrated circuit