JPH0411740A - Manufacture of vertical-type mos field-effect transistor - Google Patents

Manufacture of vertical-type mos field-effect transistor

Info

Publication number
JPH0411740A
JPH0411740A JP11441590A JP11441590A JPH0411740A JP H0411740 A JPH0411740 A JP H0411740A JP 11441590 A JP11441590 A JP 11441590A JP 11441590 A JP11441590 A JP 11441590A JP H0411740 A JPH0411740 A JP H0411740A
Authority
JP
Japan
Prior art keywords
region
type
well region
forming
conductivity type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP11441590A
Other languages
Japanese (ja)
Other versions
JP2987875B2 (en
Inventor
Masanori Yamamoto
山本 正徳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP2114415A priority Critical patent/JP2987875B2/en
Publication of JPH0411740A publication Critical patent/JPH0411740A/en
Application granted granted Critical
Publication of JP2987875B2 publication Critical patent/JP2987875B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To increase a breakdown strength in a well region and to improve a load-resistant amount by a method wherein, after the well region is formed, a high-concentration region is formed selectively at the bottom of the well region by a high-energy ion implantation method. CONSTITUTION:An N<-> type epitaxial layer 2 is grown on the surface of an N<+> type semiconductor substrate 1; after that, an oxide film 3 is formed on its surface; a window 3a is opened in the film 3. Then, a P-type well region 4 is formed by making use of it as a mask; after that, a resist 5 is formed; the resist at the part of the window 3a is removed; high-energy ions are implanted through the window 3a; an N<+> region 6 is formed at the bottom of the region 4, i.e., at the boundary part to the layer 2. Since the high- concentration N<+> region exists at a P-N junction part of the region 4 to the layer 2, a breakdown strength at the region 4 is enhanced, and electric current hardly flows to an N<->-P-N<+> parasitic transistor constituted of the layer 2, the region 4 and an N<+> type source region 10, and a load-resistant amount is enhanced. Thereby, a breakdown strength is increased at a well region and the load-resistant a mount can be improved.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は縦型MOS電界効果トランジスタ(FET)の
製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method of manufacturing a vertical MOS field effect transistor (FET).

〔従来の技術〕[Conventional technology]

従来のこの種の縦型MOSFETの製造方法を第3図(
a)ないし第3図(d)に示す。先ず、第3図(a)の
ように、N゛型半導体基板1にNエピタキシャル層2を
成長させ、がっその表面に絶縁膜3を8000人〜2μ
m形成する。そして、フォトリソグラフィ技術を用いて
この絶縁膜3に窓3aをあけ、この窓3aを通してP型
不純物を導入してP型ウェル領域4を3〜5μmの深さ
に形成する。
The conventional manufacturing method of this type of vertical MOSFET is shown in Figure 3 (
Shown in a) to FIG. 3(d). First, as shown in FIG. 3(a), an N epitaxial layer 2 is grown on an N-type semiconductor substrate 1, and an insulating film 3 is formed on the surface of the N-type semiconductor substrate 1 with a thickness of 8,000 to 2 μm.
m form. A window 3a is formed in the insulating film 3 using photolithography, and a P-type impurity is introduced through the window 3a to form a P-type well region 4 to a depth of 3 to 5 μm.

次いで、第3図(b)のように、絶縁膜3を除去した後
、ゲート絶縁膜7を500〜2000人形成し、その上
にゲートポリシリコン8を6000人成長させ、フォト
リソグラフィ技術を用いて所定の形状にバターニングす
る。そして、このゲートポリシリコン8を用いてP型不
純物を導入し、P型ベース領域9を形成する。
Next, as shown in FIG. 3(b), after removing the insulating film 3, 500 to 2,000 gate insulating films 7 are formed, and 6,000 gate polysilicon films 8 are grown thereon using photolithography. and butter it into a predetermined shape. Then, using this gate polysilicon 8, a P type impurity is introduced to form a P type base region 9.

その後、第3図(C)のように、説明を省略するフォト
リソグラフィ技術を用いた選択拡散法により、前記P型
ベース領域9にN゛型ソース領域10とP°型パックゲ
ート?lJl域11を形成する。
Thereafter, as shown in FIG. 3(C), a selective diffusion method using photolithography technology, which will not be described further, is applied to form an N'-type source region 10 and a P'-type pack gate in the P-type base region 9. lJl region 11 is formed.

しかる上で、第3図(d)のように、眉間絶縁膜12を
5000人〜1μm形成し、これにフォトリソグラフィ
技術によりコンタクト窓12aを形成する。そして、例
えば1〜5μm程度のアルミニウムでソース電極13を
形成する。また、前記N゛型半導体基板1の裏面にドレ
イン電極14を形成している。
Then, as shown in FIG. 3(d), a glabellar insulating film 12 with a thickness of 5,000 to 1 μm is formed, and a contact window 12a is formed thereon by photolithography. Then, the source electrode 13 is formed of aluminum with a thickness of about 1 to 5 μm, for example. Further, a drain electrode 14 is formed on the back surface of the N'' type semiconductor substrate 1.

〔発明が解決しようとする課題〕[Problem to be solved by the invention]

ところで、このような構成の縦型MOSFETでは、P
型ベース領域9とP型ウェル領域4は片側階段接合に近
いため、その耐圧はN−型エピタキシャル層2の濃度に
より決定される。そして、このN−型エピタキシャル層
2の濃度は低いため、耐圧を大きくするには限界があり
、したがってN−P−N”寄生トランジスタを形成して
いるN型エピタキシャル層1−P型ベース領域9−N゛
型ソース領域10間に電流が流れ易くなり、この寄生ト
ランジスタがオンし易くなって負荷耐量が小さくなると
いう問題があった。
By the way, in a vertical MOSFET with such a configuration, P
Since the type base region 9 and the P-type well region 4 are close to a one-sided stepped junction, the breakdown voltage thereof is determined by the concentration of the N- type epitaxial layer 2. Since the concentration of this N-type epitaxial layer 2 is low, there is a limit to increasing the withstand voltage. There is a problem in that current tends to flow between the -N'' type source regions 10, and this parasitic transistor is easily turned on, resulting in a decrease in load withstand capacity.

本発明の目的は、負荷耐量を大きくした縦型MOSFE
Tの製造方法を提供することにある。
The object of the present invention is to provide a vertical MOSFE with increased load capacity.
An object of the present invention is to provide a method for manufacturing T.

〔課題を解決するための手段〕[Means to solve the problem]

本発明の縦型MOSFETの製造方法は、一導電型の半
導体基体に逆導電型のウェル領域を形成する工程と、こ
のウェル領域の底部に高エネルギのイオン注入法によっ
て一導電型の高濃度領域を選択的に形成する工程と、前
記半導体基体の表面にゲート絶縁膜とゲート電極を所要
パターンに形成する工程と、前記ウェル領域に逆導電型
のベース領域を形成する工程と、このベース領域に一導
電型のソース領域を形成する工程とを含んでいる。
The method for manufacturing a vertical MOSFET of the present invention includes the steps of forming a well region of an opposite conductivity type in a semiconductor substrate of one conductivity type, and a high concentration region of one conductivity type at the bottom of the well region by high-energy ion implantation. a step of selectively forming a gate insulating film and a gate electrode in a desired pattern on the surface of the semiconductor substrate; a step of forming a base region of an opposite conductivity type in the well region; forming a source region of one conductivity type.

さらに、好ましくは、前記一導電型の高濃度領域を形成
する工程の後に、この高濃度領域の直上に逆導電型の高
濃度領域を形成する工程を含んでいる。
Furthermore, preferably, after the step of forming the high concentration region of one conductivity type, the method includes a step of forming a high concentration region of the opposite conductivity type directly above the high concentration region.

〔作用〕[Effect]

本発明方法により製造される縦型MOSFETでは、ウ
ェル領域と半導体基体との接合部に高濃度領域が存在す
るため、ウェル領域における耐圧を大きくし、負荷耐量
を改善する。
In the vertical MOSFET manufactured by the method of the present invention, since a high concentration region exists at the junction between the well region and the semiconductor substrate, the withstand voltage in the well region is increased and the load withstand capacity is improved.

〔実施例〕〔Example〕

次に、本発明を図面を参照して説明する。 Next, the present invention will be explained with reference to the drawings.

第1図(a)ないし第1図(e)は本発明の製造方法の
一実施例を工程順に示す縦断面図である。
FIGS. 1(a) to 1(e) are vertical cross-sectional views showing an embodiment of the manufacturing method of the present invention in the order of steps.

なお、ここではNチャンネルMOSFETに本発明を適
用した例を示している。
Note that an example in which the present invention is applied to an N-channel MOSFET is shown here.

先ず、第1図(a)に示すように、N゛型半導体基板1
の表面にN−型エピタキシャル層2を成長し、このエピ
タキシャル層2の表面に絶縁膜3を8000人〜2μm
形成する。そして、この絶縁膜3に窓3aを開設した上
で、これをマスクにしてP型不純物を導入し、P型ウェ
ル領域4を形成する。
First, as shown in FIG. 1(a), an N-type semiconductor substrate 1 is
An N-type epitaxial layer 2 is grown on the surface of the epitaxial layer 2, and an insulating film 3 is formed on the surface of this epitaxial layer 2 with a thickness of 8,000 to 2 μm.
Form. After opening a window 3a in this insulating film 3, a P-type impurity is introduced using the window 3a as a mask to form a P-type well region 4.

その後、第1図(b)のように、レジスト5を形成し、
前記窓3a部分のレジストを除去した上で、該窓3aを
通して高エネルギでのイオン注入を行いP型ウェル領域
4の底部、つまりN−型エピタキシャル層2との境界部
にN゛領域6を形成する。この高エネルギのイオン注入
法では、例えば500にeV〜2 MeVのエネルギで
行う。
After that, as shown in FIG. 1(b), a resist 5 is formed,
After removing the resist in the window 3a, high-energy ions are implanted through the window 3a to form an N' region 6 at the bottom of the P-type well region 4, that is, at the boundary with the N-type epitaxial layer 2. do. This high-energy ion implantation method is performed at an energy of, for example, 500 eV to 2 MeV.

次いで、第1図(c)のように、前記絶縁膜3を除去し
た後、改めてゲート絶縁膜7を500〜2000人の厚
さに、ゲートポリシリコン8を6000人の厚さにそれ
ぞれ形成し、かつこれらを所要パターンに形成し、それ
ぞれをゲート絶縁膜およびゲート電極とする。さらに、
形成されたゲートポリシリコン8をマスクにしてP型不
純物を導入し、P型ベース領域9を形成する。
Next, as shown in FIG. 1(c), after the insulating film 3 is removed, a gate insulating film 7 is formed again to a thickness of 500 to 2000 nm, and a gate polysilicon 8 is formed to a thickness of 6000 nm. , and these are formed into a required pattern to serve as a gate insulating film and a gate electrode, respectively. moreover,
Using the formed gate polysilicon 8 as a mask, P type impurities are introduced to form a P type base region 9.

その後、第1図(d)のように、説明を省略する選択拡
散法によりN゛型ソース領域10.P’型ハックゲート
領域11を形成する。
Thereafter, as shown in FIG. 1(d), the N-type source region 10. A P' type hack gate region 11 is formed.

しかる上で、第1図(e)のように、層間絶縁膜12を
5000〜5ooo人の厚さに形成し、これにコンタク
ト穴12aをあけた上で、ソース電極13を1〜5μm
の厚さに形成する。また、N゛型半導体基板lの裏面に
ドレイン電極14を形成する。
Then, as shown in FIG. 1(e), an interlayer insulating film 12 is formed to a thickness of 5,000 to 500 mm, a contact hole 12a is formed therein, and a source electrode 13 is formed to a thickness of 1 to 5 μm.
Form to a thickness of . Further, a drain electrode 14 is formed on the back surface of the N-type semiconductor substrate l.

二のように形成された縦型MOSFETによれば、P型
ウェル領域4とN−型エピタキシャル層20PN接合部
においては、第1図(b)の工程で形成した高濃度のN
″領域6が存在しているため、P型ウェル領域4におけ
る耐圧が向上される。
According to the vertical MOSFET formed as shown in FIG.
'' region 6 exists, the withstand voltage in the P-type well region 4 is improved.

したがって、N−型エピタキシャル層2−P型ウエル領
域4−N゛゛ソース領域10で構成されるN−−P−N
”寄生トランジスタに電流が流れ難くなり、負荷耐量が
向上されることになる。
Therefore, N--P-N composed of N-type epitaxial layer 2-P-type well region 4-N'' source region 10
``It becomes difficult for current to flow through the parasitic transistor, and the load withstand capability is improved.

第2図は本発明の他の実施例を示しており、第1図(b
)の工程の後に新たな工程を付加して製造した半導体装
置、の縦断面図である。
FIG. 2 shows another embodiment of the present invention, and FIG.
) is a vertical cross-sectional view of a semiconductor device manufactured by adding a new process after the process.

すなわち、第1図(b)の工程の直後に、レジスト5を
そのまま利用して500KeV〜2MeV高エネルギー
イオン注入によりP型不純物を導入することで、直前に
形成したN゛型領領域6直上にP゛型領領域15形成す
る。
That is, immediately after the process shown in FIG. 1(b), P-type impurities are introduced by high-energy ion implantation of 500 KeV to 2 MeV using the resist 5 as it is, so that a P-type impurity is introduced directly above the N-type region 6 formed just before. A P-type region 15 is formed.

この工程を加えることにより、P型ウェル領域4とN−
型エピタキシャル層2とのPN接合部にN″領域6とP
″領域15からなるP″N゛N゛接合されることになり
、このP″N゛N゛接合てP型ウェル領域4の耐圧が決
定され、前記した負荷耐量をさらに向上することができ
る。
By adding this step, the P-type well region 4 and the N-
N″ region 6 and P at the PN junction with type epitaxial layer 2
A P''N'' junction consisting of the ''region 15'' is formed, and the withstand voltage of the P-type well region 4 is determined by this P''N'' junction, making it possible to further improve the load withstand capacity described above.

なお、前記実施例はNチャンネルMOSFETに本発明
を適用した例について示したが、PチャンネルMOSF
ETについても同様であることは言うまでもない。
Note that although the above embodiments have shown examples in which the present invention is applied to N-channel MOSFETs, P-channel MOSFETs
Needless to say, the same applies to ET.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明は、ウェル領域の形成後に高
エネルギのイオン注入法によって半導体基板に該基板と
同一導電型の不純物を高濃度に導入することにより、ウ
ェル領域の底部に高濃度領域を選択的に形成することが
でき、この高濃度領域によってウェル領域における耐圧
を大きくし、負荷耐量を改善した縦型MOSFETを製
造することができる。
As explained above, the present invention creates a high concentration region at the bottom of the well region by introducing impurities of the same conductivity type as the substrate into the semiconductor substrate at a high concentration by high-energy ion implantation after forming the well region. This high-concentration region can be formed selectively, and the withstand voltage in the well region can be increased, making it possible to manufacture a vertical MOSFET with improved load withstand capacity.

また、高濃度領域を形成した後に、ウェル領域と同一導
電型の不純物を高濃度に導入することにより、ウェル領
域の底部に高濃度のPN接合を形成することができ、ウ
ェル領域における耐圧をさらに大きくさせ、負荷耐量が
さらに改善された縦型MOSFETを製造することがで
きる。
In addition, by introducing impurities of the same conductivity type as the well region at a high concentration after forming the high concentration region, a high concentration PN junction can be formed at the bottom of the well region, further increasing the breakdown voltage in the well region. It is possible to manufacture a vertical MOSFET with increased load capacity and improved load capacity.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)ないしくe)は本発明の一実施例の製造方
法を工程順に示す縦断面図、第2図は本発明の他の製造
方法の工程一部を示す縦断面図、第3図(a)ないしく
d)は従来の製造方法を工程順に示す継断面図である。 1・・・N゛゛半導体基板、2・・・N−型エピタキシ
ャル層、3・・・絶縁膜、4・・・P型つェル頓域、5
・・・レジスト、6・・・N″領域7・・・ゲート絶縁
膜、8・・・ゲートポリシリコン、9・・・P型ベース
領域、10・・・N゛゛ソース領域、11・・・P゛゛
ハックゲート領域、12・・・層間絶縁膜、13・・・
ソース電極、14・・・ドレイン電極、15・・・P゛
領域第 図 第2 図
1(a) to e) are longitudinal cross-sectional views showing a manufacturing method according to an embodiment of the present invention in the order of steps; FIG. 3(a) to 3(d) are joint cross-sectional views showing the conventional manufacturing method in the order of steps. DESCRIPTION OF SYMBOLS 1...N゛゛semiconductor substrate, 2...N-type epitaxial layer, 3...Insulating film, 4...P-type melting region, 5
...Resist, 6...N'' region 7... Gate insulating film, 8... Gate polysilicon, 9... P type base region, 10... N'' source region, 11... P゛゛hack gate region, 12... interlayer insulating film, 13...
Source electrode, 14...Drain electrode, 15...P' region (Figure 2)

Claims (1)

【特許請求の範囲】 1、一導電型の半導体基体に逆導電型のウェル領域を形
成する工程と、このウェル領域の底部に高エネルギのイ
オン注入法によって一導電型の高濃度領域を選択的に形
成する工程と、前記半導体基体の表面にゲート絶縁膜と
ゲート電極を所要パターンに形成する工程と、前記ウェ
ル領域に逆導電型のベース領域を形成する工程と、この
ベース領域に一導電型のソース領域を形成する工程とを
含むことを特徴とする縦型MOS電界効果トランジスタ
の製造方法。 2、前記一導電型の高濃度領域を形成する工程の後に、
この高濃度領域の直上に逆導電型の高濃度領域を形成す
る工程を含む特許請求の範囲第1項記載の縦型MOS電
界効果トランジスタの製造方法。
[Claims] 1. A step of forming a well region of an opposite conductivity type in a semiconductor substrate of one conductivity type, and selectively forming a high concentration region of one conductivity type at the bottom of the well region by high-energy ion implantation. forming a gate insulating film and a gate electrode in a required pattern on the surface of the semiconductor substrate; forming a base region of opposite conductivity type in the well region; and forming a base region of one conductivity type in the base region. 1. A method for manufacturing a vertical MOS field effect transistor, the method comprising: forming a source region. 2. After the step of forming the high concentration region of one conductivity type,
2. The method of manufacturing a vertical MOS field effect transistor according to claim 1, further comprising the step of forming a high concentration region of an opposite conductivity type directly above the high concentration region.
JP2114415A 1990-04-28 1990-04-28 Method of manufacturing vertical MOS field effect transistor Expired - Fee Related JP2987875B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2114415A JP2987875B2 (en) 1990-04-28 1990-04-28 Method of manufacturing vertical MOS field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2114415A JP2987875B2 (en) 1990-04-28 1990-04-28 Method of manufacturing vertical MOS field effect transistor

Publications (2)

Publication Number Publication Date
JPH0411740A true JPH0411740A (en) 1992-01-16
JP2987875B2 JP2987875B2 (en) 1999-12-06

Family

ID=14637123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2114415A Expired - Fee Related JP2987875B2 (en) 1990-04-28 1990-04-28 Method of manufacturing vertical MOS field effect transistor

Country Status (1)

Country Link
JP (1) JP2987875B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
EP0956596A1 (en) * 1996-03-15 1999-11-17 SILICONIX Incorporated Vertical power mosfet having reduced sensitivity to variations in thickness of epitaxial layer

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5701023A (en) * 1994-08-03 1997-12-23 National Semiconductor Corporation Insulated gate semiconductor device typically having subsurface-peaked portion of body region for improved ruggedness
US5897355A (en) * 1994-08-03 1999-04-27 National Semiconductor Corporation Method of manufacturing insulated gate semiconductor device to improve ruggedness
WO1997016853A1 (en) * 1995-11-02 1997-05-09 National Semiconductor Corporation Insulated gate semiconductor devices with implants for improved ruggedness
KR100360079B1 (en) * 1995-11-02 2003-03-15 내셔널 세미콘덕터 코포레이션 Manufacturing method of insulated gate semiconductor device to improve robustness
EP0956596A1 (en) * 1996-03-15 1999-11-17 SILICONIX Incorporated Vertical power mosfet having reduced sensitivity to variations in thickness of epitaxial layer
EP0956596A4 (en) * 1996-03-15 1999-12-08

Also Published As

Publication number Publication date
JP2987875B2 (en) 1999-12-06

Similar Documents

Publication Publication Date Title
JPH0897411A (en) Lateral trench mos fet having high withstanding voltage and its manufacture
JP4986408B2 (en) Semiconductor device and manufacturing method thereof
JPH01183856A (en) Double diffusion type field-effect semiconductor device and manufacture thereof
JP3219045B2 (en) Manufacturing method of vertical MISFET
JPH04107877A (en) Semiconductor device and its production
JPH08288508A (en) Epitaxial channel mos transistor and manufacturing method thereof
JPH0621468A (en) Insulated gate semiconductor device
JPH0237777A (en) Vertical type field-effect transistor
JPH0411740A (en) Manufacture of vertical-type mos field-effect transistor
US6878997B2 (en) Compensation component and method for fabricating the component
JPH0346238A (en) Manufacture of semiconductor device
JPH05283687A (en) Production of semiconductor element
JPH0613606A (en) Semiconductor device
JPH07221296A (en) Vertical mos semiconductor device and its manufacture
WO1997011497A1 (en) Fabrication method of vertical field effect transistor
JP2605757B2 (en) Method for manufacturing semiconductor device
JPH11220128A (en) Mosfet and manufacture thereof
JPH10107266A (en) Manufacture of mosfet
JPS62109364A (en) Manufacture of semiconductor device
JPH0344075A (en) Manufacture of semiconductor device
JP5440169B2 (en) Semiconductor device and manufacturing method thereof
JPH06151858A (en) Semiconductor integrated circuit device
JPH06283713A (en) Semiconductor device and its manufacture
JPH01189175A (en) Double-diffusion type field effect semiconductor device
JPH1065149A (en) Mesfet and its manufacturing method

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees