JPH06283713A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPH06283713A
JPH06283713A JP6725693A JP6725693A JPH06283713A JP H06283713 A JPH06283713 A JP H06283713A JP 6725693 A JP6725693 A JP 6725693A JP 6725693 A JP6725693 A JP 6725693A JP H06283713 A JPH06283713 A JP H06283713A
Authority
JP
Japan
Prior art keywords
gate electrode
region
insulating film
gate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6725693A
Other languages
Japanese (ja)
Inventor
Toru Mogami
徹 最上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP6725693A priority Critical patent/JPH06283713A/en
Publication of JPH06283713A publication Critical patent/JPH06283713A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To realize a new MIS-type field-effect transistor which can suppress the short-channel effect. CONSTITUTION:A fixed electric charge whose polarity is the same as that of carriers passing a channel region in the continuity of a transistor is generated in a gate oxide film 3 directly under both ends of a gate electrode 4 adjacent to a source-drain region 6, and the threshold value at the end part of the gate electrode 4 is made higher than the threshold value in the central part of the gate electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置及びその製
造方法に関し、特にMIS型電界効果トランジスタ及び
その製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device and its manufacturing method, and more particularly to a MIS field effect transistor and its manufacturing method.

【0002】[0002]

【従来の技術】半導体集積回路の高集積化に伴い、集積
回路を構成するMOSFETのゲート長の微細化が進ん
でいる。微細ゲート長を有するMOSFETでは、しき
い値電圧のゲート長依存性が大きい、パンチスルーし易
い等の短チャネル効果が顕在化してきている。
2. Description of the Related Art With the high integration of semiconductor integrated circuits, the gate lengths of MOSFETs forming the integrated circuits are becoming finer. In a MOSFET having a fine gate length, short channel effects such as a large gate length dependency of a threshold voltage and easy punch-through are becoming apparent.

【0003】このような短チャネル効果を防ぐために、
従来種々のデバイス構造が検討されている。その1つと
して、ゲート電極に隣接するソース・ドレイン領域の端
部を覆うように接して形成したソース・ドレイン領域と
異なる導電型の不純物領域を有するポケット構造が、1
982年インターナショナル・エレクトロン・デバイス
セス・ミーティング(International E
lectron Devices Meeting)の
テクニカル・ダイジェスト(Technical Di
gest)第718頁から第721頁に提案されてい
る。図2は、従来のポケット構造のMOSFETの代表
的な一例を示す断面図である。
In order to prevent such a short channel effect,
Various device structures have been studied so far. As one of them, a pocket structure having an impurity region of a conductivity type different from that of the source / drain region formed so as to contact the end portion of the source / drain region adjacent to the gate electrode is formed.
982 International Electron Device Meeting (International E)
Technical Digest of Technical Devices (Technical Di)
best) proposed on pages 718 to 721. FIG. 2 is a sectional view showing a typical example of a conventional MOSFET having a pocket structure.

【0004】図2に示すように、n型シリコン基板1に
設けて素子形成領域を区画するフィールド酸化膜2と、
素子形成領域の表面に設けたゲート酸化膜3およびゲー
ト酸化膜3上に設けたゲート電極4と、ゲート電極4に
整合して素子形成領域に設けたp型のソース・ドレイン
領域6と、チャネル領域に隣接するソース・ドレイン領
域6の端部を覆うように設けたn型シリコン基板よりも
少し不純物濃度の高いn型不純物拡散領域8とを有して
構成され、このn型不純物拡散領域を存在させることに
より、ドレイン領域からチャネル領域への空乏層の広が
りが抑制され、短チャネル効果を緩和することが可能と
なった。
As shown in FIG. 2, a field oxide film 2 is provided on an n-type silicon substrate 1 to partition an element formation region,
A gate oxide film 3 provided on the surface of the element formation region, a gate electrode 4 provided on the gate oxide film 3, a p-type source / drain region 6 provided in the element formation region in alignment with the gate electrode 4, and a channel And an n-type impurity diffusion region 8 having a slightly higher impurity concentration than the n-type silicon substrate provided so as to cover the ends of the source / drain regions 6 adjacent to the region. By making it exist, the spread of the depletion layer from the drain region to the channel region is suppressed, and the short channel effect can be mitigated.

【0005】[0005]

【発明が解決しようとする課題】この従来の半導体装置
では、n型不純物拡散領域をソース・ドレイン領域の端
部のみに形成することが望ましいが、端部にのみ形成す
るにはマスク工程が必要となり、製造工程が複雑とな
る。
In this conventional semiconductor device, it is desirable to form the n-type impurity diffusion regions only at the ends of the source / drain regions, but a mask process is required to form the n-type impurity diffusion regions only at the ends. Therefore, the manufacturing process becomes complicated.

【0006】また、工程を簡略化するために、ソース・
ドレイン領域の接合面全面に接してn型不純物拡散領域
を形成すると、接合容量が増大し、デバイス特性の劣化
を生じるという問題点があった。また、ポケット構造形
成のために、基板内に局所的に不純物を導入する為に、
製造プロセスのマージンが大幅に減少するという問題点
もあった。
Further, in order to simplify the process, the source
When the n-type impurity diffusion region is formed in contact with the entire junction surface of the drain region, the junction capacitance increases, which causes a problem of deterioration of device characteristics. Further, in order to locally introduce impurities into the substrate to form a pocket structure,
There is also a problem that the margin of the manufacturing process is significantly reduced.

【0007】本発明の目的は、短チャネル効果を低減で
きる新規なMIS型電界効果トランジスタを提供するこ
とにある。
An object of the present invention is to provide a novel MIS type field effect transistor capable of reducing the short channel effect.

【0008】[0008]

【課題を解決するための手段】本発明の半導体装置は、
一導電型半導体の一主面に設けて素子形成領域を区画す
るフィールド絶縁膜と、前記素子形成領域の表面に設け
たゲート絶縁膜と、前記ゲート絶縁膜上に設けたゲート
電極と、前記ゲート電極に整合して前記素子形成領域に
設けた逆導電型のソース・ドレイン領域と、前記ソース
・ドレイン領域に隣接する前記ゲート電極の両端部直下
の前記ゲート絶縁膜内に局所的に設けた前記ゲート電極
下のチャネル領域を通過するキャリアと同じ極性の固有
電荷を有する。
The semiconductor device of the present invention comprises:
A field insulating film that is provided on one main surface of one conductivity type semiconductor to partition an element forming region, a gate insulating film provided on the surface of the element forming region, a gate electrode provided on the gate insulating film, and the gate The source / drain regions of the opposite conductivity type provided in the element formation region in alignment with the electrodes, and the locally provided in the gate insulating film immediately below both ends of the gate electrode adjacent to the source / drain regions. It has an intrinsic charge of the same polarity as the carriers passing through the channel region under the gate electrode.

【0009】本発明の半導体装置の製造方法は、一導電
型半導体基板の一主面に選択的にフィールド絶縁膜を設
けて素子形成領域を区画する工程と、前記素子形成領域
の表面に設けたゲート絶縁膜の上に選択的にゲート電極
を形成する工程と、前記ゲート電極をマスクとして斜め
イオン注入法により前記ゲート電極の両端部直下の前記
ゲート絶縁膜に不純物を注入して前記ゲート電極下のチ
ャネル領域を通過するキャリアと同じ極性の固定電荷を
局所的に形成する工程と、前記ゲート電極に整合して前
記素子領域に逆導電型のソース・ドレイン領域を形成す
る工程とを含んで構成される。
The method of manufacturing a semiconductor device according to the present invention comprises a step of selectively providing a field insulating film on one main surface of a one-conductivity-type semiconductor substrate to partition an element forming region, and a step of providing the element forming region on the surface. A step of selectively forming a gate electrode on the gate insulating film; and a step of implanting an impurity into the gate insulating film directly below both ends of the gate electrode by an oblique ion implantation method using the gate electrode as a mask to form the gate electrode And a step of locally forming a fixed charge having the same polarity as that of carriers passing through the channel region, and a step of forming source / drain regions of opposite conductivity type in the element region in alignment with the gate electrode. To be done.

【0010】[0010]

【作用】本発明によるトランジスタでは、ゲート電極形
成後に、斜めイオン注入法により、ゲート電極の両端部
直下のゲート絶縁膜中に局所的に固定電荷を導入するこ
とによって、トランジスタの閾値電圧を局所的に制御す
ることが可能である。また、イオン注入量と注入エネル
ギーを制御することにより、ソース・ドレイン領域近傍
のゲート電極端部の閾値をゲート電極中央部の閾値より
も高く設定することが可能であり、その結果、トランジ
スタにおいて、短チャネル効果を大幅に抑制することが
できる。
In the transistor according to the present invention, after the gate electrode is formed, a fixed charge is locally introduced into the gate insulating film immediately below both ends of the gate electrode by the oblique ion implantation method to locally change the threshold voltage of the transistor. It is possible to control. Further, by controlling the ion implantation amount and the implantation energy, it is possible to set the threshold value of the gate electrode end portion in the vicinity of the source / drain regions higher than the threshold value of the gate electrode central portion, and as a result, in the transistor, The short channel effect can be significantly suppressed.

【0011】図3は、MOSトランジスタの閾値電圧の
ゲート長依存性を示す特性図であり、従来のpチャネル
MOSFETと本発明によるpチャネルMOSFETと
を比較した結果である。図から明らかなように、本発明
によるトランジスタでは短チャネル効果が大幅に抑制さ
れていることがわかる。
FIG. 3 is a characteristic diagram showing the gate length dependence of the threshold voltage of a MOS transistor, which is the result of comparison between the conventional p-channel MOSFET and the p-channel MOSFET according to the present invention. As is clear from the figure, the short channel effect is significantly suppressed in the transistor according to the present invention.

【0012】[0012]

【実施例】次に、本発明について図面を参照して説明す
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings.

【0013】図1(a)〜(c)は本発明の一実施例の
製造方法を説明するための工程順に示した半導体チップ
の断面図である。
FIGS. 1A to 1C are sectional views of a semiconductor chip showing the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【0014】まず、図1(a)に示すように、n型シリ
コン基板1の一主面を選択的に酸化してフィールド酸化
膜2を形成し、素子形成領域を区画する。次に、この素
子形成領域の表面に設けたゲート酸化膜3の上に多結晶
シリコン膜を堆積してパターニングし、ゲート電極4を
形成する。
First, as shown in FIG. 1A, one main surface of an n-type silicon substrate 1 is selectively oxidized to form a field oxide film 2 to define an element forming region. Then, a polycrystalline silicon film is deposited on the gate oxide film 3 provided on the surface of the element forming region and patterned to form a gate electrode 4.

【0015】次に、図1(b)に示すように、ゲート電
極4をマスクとしてセシウムイオンを斜め方向よりイオ
ン注入(斜めイオン注入法)してゲート電極4の両端直
下のゲート酸化膜3中に性の極性を有する固定電荷5を
局所的に発生させる。
Next, as shown in FIG. 1B, cesium ions are obliquely ion-implanted (oblique ion-implantation method) using the gate electrode 4 as a mask in the gate oxide film 3 immediately below both ends of the gate electrode 4. A fixed charge 5 having a negative polarity is locally generated.

【0016】次に、図1(c)に示すように、ゲート電
極4及びフィールド酸化膜2をマスクとして二弗化ホウ
素をイオン注入しp型のソース・ドレイン領域6を形成
する。次に、ゲート電極4を含む表面に層間絶縁膜7を
堆積する。
Next, as shown in FIG. 1C, boron difluoride is ion-implanted using the gate electrode 4 and the field oxide film 2 as a mask to form p-type source / drain regions 6. Next, the interlayer insulating film 7 is deposited on the surface including the gate electrode 4.

【0017】本実施例では、pチャネルMOSFETの
場合について説明したが、nチャネルMOSFETの場
合にも同様に構成でき、ゲート電極の両端直下のゲート
酸化膜中にホウ素イオンを斜めイオン注入することによ
り、負の極性を有する固定電荷を局所的に発生できる。
In the present embodiment, the case of the p-channel MOSFET has been described, but the same structure can be applied to the case of the n-channel MOSFET, and boron ions are obliquely implanted into the gate oxide film directly below both ends of the gate electrode. A fixed charge having a negative polarity can be locally generated.

【0018】また、ゲート絶縁膜として酸化シリコン膜
以外に窒化シリコン等を用いても良く、さらに、シング
ル・ドレイン構造のMOSFET以外にLDD(lig
htly doped drain)構造のMOSFE
Tに適用しても同様の効果が得られる。
Besides the silicon oxide film, silicon nitride or the like may be used as the gate insulating film, and LDD (lig) other than the single drain structure MOSFET may be used.
MOSTE of html doped drain structure
Even when applied to T, the same effect can be obtained.

【0019】[0019]

【発明の効果】以上説明したように本発明は、ゲート電
極の両端直下のゲート絶縁膜中にチャネル領域を流れる
キャリアと同じ極性の固定電荷を局所的に設けることに
より、ソース・ドレイン領域近傍のゲート電極端部の閾
値をゲート電極中央部の閾値よりも高く設定することが
可能となり、従来のポケット構造のMOSFETのよう
に半導体基板内の不純物濃度を通常のMOSFETに対
して変化させることがなく、従って従来のポケット構造
のMOSFETのようにキャリアの移動度の劣化を生じ
ることなしに短チャネル効果を大幅に改善したMIS型
電界効果トランジスタを実現できるという効果を有す
る。
As described above, according to the present invention, a fixed charge having the same polarity as that of carriers flowing in the channel region is locally provided in the gate insulating film immediately below both ends of the gate electrode, so that the fixed charge in the vicinity of the source / drain region is provided. It is possible to set the threshold value at the end of the gate electrode higher than the threshold value at the center of the gate electrode, without changing the impurity concentration in the semiconductor substrate as compared with the normal MOSFET unlike the conventional pocket structure MOSFET. Therefore, there is an effect that it is possible to realize a MIS type field effect transistor in which the short channel effect is significantly improved without causing deterioration of carrier mobility, unlike the conventional pocket structure MOSFET.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の製造方法を説明するための
工程順に示した半導体チップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip showing the order of steps for explaining a manufacturing method according to an embodiment of the present invention.

【図2】従来の半導体装置の一例を示す半導体チップの
断面図。
FIG. 2 is a sectional view of a semiconductor chip showing an example of a conventional semiconductor device.

【図3】MOSFETの閾値電圧のゲート長依存性を示
す特性図。
FIG. 3 is a characteristic diagram showing the gate length dependence of a threshold voltage of a MOSFET.

【符号の説明】[Explanation of symbols]

1 n型シリコン基板 2 フィールド酸化膜 3 ゲート酸化膜 4 ゲート電極 5 固定電荷 6 ソース・ドレイン領域 7 層間絶縁膜 8 n型不純物拡散領域 1 n-type silicon substrate 2 field oxide film 3 gate oxide film 4 gate electrode 5 fixed charge 6 source / drain region 7 interlayer insulating film 8 n-type impurity diffusion region

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 一導電型半導体の一主面に設けて素子形
成領域を区画するフィールド絶縁膜と、前記素子形成領
域の表面に設けたゲート絶縁膜と、前記ゲート絶縁膜上
に設けたゲート電極と、前記ゲート電極に整合して前記
素子形成領域に設けた逆導電型のソース・ドレイン領域
と、前記ソース・ドレイン領域に隣接する前記ゲート電
極の両端部直下の前記ゲート絶縁膜内に局所的に設けた
前記ゲート電極下のチャネル領域を通過するキャリアと
同じ極性の固有電荷を有することを特徴とする半導体装
置。
1. A field insulating film provided on one main surface of a semiconductor of one conductivity type to partition an element forming region, a gate insulating film provided on a surface of the element forming region, and a gate provided on the gate insulating film. An electrode, a source / drain region of opposite conductivity type provided in the element formation region in alignment with the gate electrode, and locally in the gate insulating film immediately below both ends of the gate electrode adjacent to the source / drain region. A semiconductor device having an intrinsic charge of the same polarity as that of carriers passing through a channel region under the gate electrode, which is provided in a specific manner.
【請求項2】 一導電型半導体基板の一主面に選択的に
フィールド絶縁膜を設けて素子形成領域を区画する工程
と、前記素子形成領域の表面に設けたゲート絶縁膜の上
に選択的にゲート電極を形成する工程と、前記ゲート電
極をマスクとして斜めイオン注入法により前記ゲート電
極の両端部直下の前記ゲート絶縁膜に不純物を注入して
前記ゲート電極下のチャネル領域を通過するキャリアと
同じ極性の固定電荷を局所的に形成する工程と、前記ゲ
ート電極に整合して前記素子領域に逆導電型のソース・
ドレイン領域を形成する工程とを含むことを特徴とする
半導体装置の製造方法。
2. A step of selectively providing a field insulating film on one main surface of a one conductivity type semiconductor substrate to partition an element forming region, and a step of selectively forming a gate insulating film on the surface of the element forming region. A step of forming a gate electrode on the gate electrode, and a carrier passing through a channel region under the gate electrode by injecting an impurity into the gate insulating film immediately below both ends of the gate electrode by an oblique ion implantation method using the gate electrode as a mask. A process of locally forming fixed charges of the same polarity and a source of opposite conductivity type in the device region in alignment with the gate electrode.
And a step of forming a drain region.
JP6725693A 1993-03-26 1993-03-26 Semiconductor device and its manufacture Pending JPH06283713A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6725693A JPH06283713A (en) 1993-03-26 1993-03-26 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6725693A JPH06283713A (en) 1993-03-26 1993-03-26 Semiconductor device and its manufacture

Publications (1)

Publication Number Publication Date
JPH06283713A true JPH06283713A (en) 1994-10-07

Family

ID=13339688

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6725693A Pending JPH06283713A (en) 1993-03-26 1993-03-26 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPH06283713A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054357A (en) * 1996-12-20 2000-04-25 Hyundai Electronics Industries Co., Ltd. Semiconductor device and method for fabricating the same
US6521958B1 (en) * 1999-08-26 2003-02-18 Micron Technology, Inc. MOSFET technology for programmable address decode and correction
US6956772B2 (en) 2001-02-13 2005-10-18 Micron Technology, Inc. Programmable fuse and antifuse and method thereof

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174168A (en) * 1987-12-28 1989-07-10 Fuji Xerox Co Ltd Picture signal processing circuit
JPH01296670A (en) * 1988-05-25 1989-11-30 Toshiba Corp Semiconductor device
JPH02174168A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01174168A (en) * 1987-12-28 1989-07-10 Fuji Xerox Co Ltd Picture signal processing circuit
JPH01296670A (en) * 1988-05-25 1989-11-30 Toshiba Corp Semiconductor device
JPH02174168A (en) * 1988-12-26 1990-07-05 Nippon Telegr & Teleph Corp <Ntt> Mis field effect transistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054357A (en) * 1996-12-20 2000-04-25 Hyundai Electronics Industries Co., Ltd. Semiconductor device and method for fabricating the same
US6521958B1 (en) * 1999-08-26 2003-02-18 Micron Technology, Inc. MOSFET technology for programmable address decode and correction
US6700821B2 (en) 1999-08-26 2004-03-02 Micron Technology, Inc. Programmable mosfet technology and programmable address decode and correction
US6909635B2 (en) 1999-08-26 2005-06-21 Micron Technology, Inc. Programmable memory cell using charge trapping in a gate oxide
US6956772B2 (en) 2001-02-13 2005-10-18 Micron Technology, Inc. Programmable fuse and antifuse and method thereof
US7177193B2 (en) 2001-02-13 2007-02-13 Micron Technology, Inc. Programmable fuse and antifuse and method therefor

Similar Documents

Publication Publication Date Title
US6504218B1 (en) Asymmetrical N-channel and P-channel devices
US5930642A (en) Transistor with buried insulative layer beneath the channel region
US6316302B1 (en) Isotropically etching sidewall spacers to be used for both an NMOS source/drain implant and a PMOS LDD implant
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
JP2835216B2 (en) Method for manufacturing semiconductor device
EP0166167B1 (en) A process for manufacturing a semiconductor device comprising p-channel and n-channel misfets
US6514824B1 (en) Semiconductor device with a pair of transistors having dual work function gate electrodes
JPH01205470A (en) Semiconductor device and its manufacture
JPH10178104A (en) Method of manufacturing cmosfet
US6054357A (en) Semiconductor device and method for fabricating the same
JP2000077613A (en) Manufacture for semiconductor device
US6051459A (en) Method of making N-channel and P-channel IGFETs using selective doping and activation for the N-channel gate
JP3075225B2 (en) Method for manufacturing semiconductor device
US6451676B2 (en) Method for setting the threshold voltage of a MOS transistor
JPH06268215A (en) Mis type semiconductor device
US6051471A (en) Method for making asymmetrical N-channel and symmetrical P-channel devices
JPH05102179A (en) Semiconductor device and its manufacture
US5939751A (en) MOSFET having double junction structures in each of source and drain regions
JPH06283713A (en) Semiconductor device and its manufacture
JP2623902B2 (en) Semiconductor device and manufacturing method thereof
JP3708370B2 (en) Semiconductor device and manufacturing method thereof
US20040150014A1 (en) MOS transistor and method of manufacture
KR0167606B1 (en) Process of fabricating mos-transistor
US5937302A (en) Method of forming lightly doped drain region and heavily doping a gate using a single implant step
JPH07273212A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19960528