JPH06268215A - Mis type semiconductor device - Google Patents

Mis type semiconductor device

Info

Publication number
JPH06268215A
JPH06268215A JP4896093A JP4896093A JPH06268215A JP H06268215 A JPH06268215 A JP H06268215A JP 4896093 A JP4896093 A JP 4896093A JP 4896093 A JP4896093 A JP 4896093A JP H06268215 A JPH06268215 A JP H06268215A
Authority
JP
Japan
Prior art keywords
layer
region
semiconductor layer
threshold value
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4896093A
Other languages
Japanese (ja)
Inventor
Masabumi Miyamoto
正文 宮本
Tatsuya Ishii
達也 石井
Akira Nagai
亮 永井
Koichi Seki
浩一 関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP4896093A priority Critical patent/JPH06268215A/en
Publication of JPH06268215A publication Critical patent/JPH06268215A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the irregularity in threshold value due to the fluctuation in thickness of a semiconductor layer, and to improve the mobility of the semiconductor layer by a method wherein the region of channel edge of a thin film SOI is formed at high density, and the region is prevented from depletion even when an inverted layer is formed. CONSTITUTION:An element isolation region 18 is formed on a semiconductor layer 3 which is formed on an oxide film 2, and then the semiconductor layer is doped at low density by conducting ion-implanting and annealing operations. A gate oxide film 7 is formed by oxidation, and after polysilicon has been deposited and doped, it is processed into a required size, and a gate electrode 6 is formed. Then, a high density region 4 is formed using the gate electrode as a mask. The region 4 is formed in such a manner that the semiconductor layer is not depleted even when an inverted layer is formed and also it is formed in the size of 1.4X10<17>/cm<3> so that the threshold value can be determined by conductive impurity density. Then, a source/drain diffusion layer region 5 is formed by ion-implanting arsenic, and an interlayer insulating film 9 and a metal electrode 10 are formed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は絶縁膜上の半導体層に形
成された半導体装置に係り、特にその半導体層の膜厚変
動によるしきい値ばらつきをおさえ、移動度の向上を目
指したMIS型半導体装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device formed on a semiconductor layer on an insulating film, and more particularly to a MIS type device which aims to improve the mobility by suppressing the threshold variation due to the film thickness variation of the semiconductor layer. The present invention relates to a semiconductor device.

【0002】[0002]

【従来の技術】以下シリコン半導体を例にSOI(Silic
on On Insulatar)で説明するが、他の半導体材料でも動
作原理は同じである。絶縁膜上の半導体層を極めて薄く
してMOS反転層形成時にはチャネル領域の半導体層が
完全に空乏化する薄膜SOI型MOSトランジスタ(図
2)はパンチスルーの抑制、移動度の向上、接合容量の
低減等の効果がある。しかし、薄膜SOIの半導体層3
の厚さが0.1μm程度と極めて薄いためその厚さの制
御が難しく、±0.02μm程度の変動が存在する。薄
膜SOIのしきい値は完全空乏化したチャネル領域内の
電荷量で決定されるため、完全空乏化の状態にあるかぎ
り半導体層3の厚さにより変化する。すなわち、半導体
層3の厚さに比例して含まれる電荷量が増加し、その電
荷量に対応してしきい値が上昇する。このため、製造プ
ロセスの揺らぎによる半導体層3の膜厚変動によりチャ
ネル領域内の電荷量が変化し、しきい値のばらつきが起
こる問題がある。薄膜SOIのしきい値の半導体層膜厚
依存性を図3に示す。半導体層3の濃度を2.2×10
17/cm3に設定した場合、完全空乏化した状態でしき
い値を0.2Vに設定するためには半導体層の厚さは5
5nmにする必要があり、膜厚が±0.02μm程度変
動するとしきい値は±0.1V変動してしまう。このし
きい値のばらつきはMOSトランジスタで組んだ回路を
低電圧で動作させた場合に回路速度の大きな変動や回路
の動作の不良などの問題を引き起こす。
2. Description of the Related Art SOI (Silic
on On Insulatar), the operation principle is the same for other semiconductor materials. The thin-film SOI MOS transistor (FIG. 2) in which the semiconductor layer on the insulating film is extremely thin and the semiconductor layer in the channel region is completely depleted when the MOS inversion layer is formed is used for suppressing the punch-through, improving the mobility, and improving the junction capacitance. There are effects such as reduction. However, the thin film SOI semiconductor layer 3
The thickness is extremely thin, about 0.1 μm, so it is difficult to control the thickness, and there is a variation of about ± 0.02 μm. Since the threshold value of the thin film SOI is determined by the amount of charge in the fully depleted channel region, it varies depending on the thickness of the semiconductor layer 3 as long as it is in the fully depleted state. That is, the amount of charges contained increases in proportion to the thickness of the semiconductor layer 3, and the threshold value increases in accordance with the amount of charges. Therefore, there is a problem in that the amount of charge in the channel region changes due to the variation in the film thickness of the semiconductor layer 3 due to the fluctuation of the manufacturing process, and the threshold value varies. FIG. 3 shows the semiconductor layer thickness dependence of the threshold value of the thin film SOI. The concentration of the semiconductor layer 3 is 2.2 × 10
When it is set to 17 / cm 3 , the semiconductor layer has a thickness of 5 in order to set the threshold value to 0.2 V in the fully depleted state.
It is necessary to set the thickness to 5 nm, and if the film thickness fluctuates by about ± 0.02 μm, the threshold value fluctuates by ± 0.1 V. This variation in threshold value causes problems such as large fluctuations in circuit speed and defective circuit operation when a circuit formed of MOS transistors is operated at a low voltage.

【0003】薄膜SOIにおけるしきい値のばらつきを
対策した例としては、特開平3−297171号公報に
示されているものがある。薄膜半導体層3への導電不純
物の導入を低エネルギーのイオン打ち込みにより行い、
半導体層の内部にのみ導電不純物を導入することにより
全体の電荷を制御しようとするものである。この方法に
よれば半導体層3の膜厚変動に拘らずチャネル内の導電
不純物の量は一定と成るので完全空乏化しているかぎり
しきい値は半導体層膜厚に依存しなくなる。この方法は
素子構造の変更なしで薄膜SOIのしきい値を精度良く
制御できるが、厚さ0.1μmの半導体内部にのみイオ
ン打ち込みを行うことは技術的に難しいという問題点が
ある。
An example of measures against variations in threshold in thin film SOI is disclosed in Japanese Patent Laid-Open No. 3-297171. Conductive impurities are introduced into the thin film semiconductor layer 3 by low energy ion implantation,
By introducing conductive impurities only into the inside of the semiconductor layer, the entire charge is controlled. According to this method, the amount of conductive impurities in the channel is constant regardless of the variation in the thickness of the semiconductor layer 3, so that the threshold value does not depend on the thickness of the semiconductor layer as long as it is completely depleted. This method can accurately control the threshold value of the thin film SOI without changing the device structure, but it is technically difficult to implant ions only inside the semiconductor having a thickness of 0.1 μm.

【0004】[0004]

【発明が解決しようとする課題】従来の薄膜SOIでは
絶縁膜上の半導体層の厚さの変動によりしきい値にばら
つきが生じる問題点がある。
The conventional thin film SOI has a problem that the threshold value varies due to the variation in the thickness of the semiconductor layer on the insulating film.

【0005】本発明の目的は薄膜SOIの素子構造を工
夫することにより、半導体層の厚さの変動によるしきい
値ばらつきを低減し、さらに移動度の向上を計るMIS
型半導体装置を提供することにある。
An object of the present invention is to reduce the threshold variation due to the variation of the semiconductor layer thickness by devising the device structure of the thin film SOI, and to further improve the mobility.
Type semiconductor device.

【0006】[0006]

【課題を解決するための手段】上記の目的は、本発明の
基本的な実施例(図1)に示すように、薄膜SOIのチ
ャネル端の領域4を高濃度にしてこの領域では反転層形
成時も完全に空乏化はしないようにする。すなわち、こ
の領域のしきい値は導電不純物濃度で決定されるため、
薄膜半導体の厚さにかかわらずしきい値を決定すること
ができる。しきい値はチャネル端で決定されるので、そ
の他のチャネル領域3は完全空乏化させてパンチスルー
を低減すると共に極めて低濃度にして不純物散乱を低減
して移動度の向上を図る。
The above object is to increase the concentration of the region 4 at the channel end of the thin film SOI to form an inversion layer in this region as shown in the basic embodiment of the present invention (FIG. 1). Do not completely deplete the time. That is, since the threshold value of this region is determined by the conductive impurity concentration,
The threshold can be determined regardless of the thickness of the thin film semiconductor. Since the threshold value is determined at the channel edge, the other channel regions 3 are completely depleted to reduce punch-through and have an extremely low concentration to reduce impurity scattering to improve mobility.

【0007】[0007]

【作用】薄膜SOIのしきい値がSOI膜厚に依存する
のはチャネル領域が完全に空乏化しているためであるか
ら、完全空乏層化していない領域を設けてその領域でし
き位置が決定されるようにすればSOI膜厚に依存しな
いしきい値を得ることができる。本発明の基本的実施例
(図1)においてチャネル端の領域4の濃度は完全空乏
化しない状態でしきい値が所定の値になる濃度に設定し
てある。この実施例では図3に示すようにSOI膜厚は
120nmに設定し、チャネル端の濃度は1.4×10
17/cm3としてSOI膜厚の変動も含めて完全空乏化
の状態にならないように定めてある(図3)。従ってこ
の領域のしきい値はSOIの膜厚には依存せず一定のし
きい値を得ることができる。一方、チャネル中央の領域
3は完全に空乏化させるため低濃度(1×1016/cm
3)に設定している。しきい値はチャネル端の領域4と
比較して極めて低く、トランジスタ全体のしきい値を決
定する要因にはならない。また、半導体層3の表面から
絶縁膜2との界面まで完全に空乏化しているためパンチ
スルーを抑制できるとともに、導電不純物の量が少ない
ため不純物散乱が少なく高い移動度を達成することがで
きる。
The threshold of the thin film SOI depends on the SOI film thickness because the channel region is completely depleted. Therefore, a region not completely depleted is provided and the threshold position is determined in that region. By doing so, a threshold value independent of the SOI film thickness can be obtained. In the basic embodiment of the present invention (FIG. 1), the concentration of the region 4 at the channel end is set to a concentration at which the threshold value becomes a predetermined value without being completely depleted. In this embodiment, as shown in FIG. 3, the SOI film thickness is set to 120 nm and the channel edge concentration is 1.4 × 10 4.
It is set to 17 / cm 3 so as not to be in a fully depleted state including fluctuations in the SOI film thickness (FIG. 3). Therefore, the threshold value of this region does not depend on the SOI film thickness, and a constant threshold value can be obtained. On the other hand, since the region 3 at the center of the channel is completely depleted, a low concentration (1 × 10 16 / cm 2
3 ) is set. The threshold value is extremely lower than that of the region 4 at the channel end and does not become a factor that determines the threshold value of the entire transistor. Further, since the semiconductor layer 3 is completely depleted from the surface to the interface with the insulating film 2, punch-through can be suppressed, and since the amount of conductive impurities is small, impurity scattering is small and high mobility can be achieved.

【0008】[0008]

【実施例】本発明の第1の実施例を図1に示す。ウェー
ハボンディング法などにより酸化膜2上に形成された半
導体層3(厚さ120nm)にまず素子分離領域8をL
OCOS酸化により形成し、次にイオン打ち込みとアニ
ールによりにより半導体層を低濃度(1×1016/cm
3)ドープする。ゲート酸化膜7を酸化により形成し、
ポリシリコンを堆積してイオン打ち込みなどによりドー
プした後必要な大きさに加工してゲート電極6を形成す
る。その後、ゲート電極6をマスクとしたボロンの斜め
イオン打ち込みにより自己整合的に高濃度領域4を形成
する。領域4濃度は反転層形成時にも半導体層が完全に
空乏化せず、しきい値が導電不純物濃度のみで決定でき
るように1.4×1017/cm3に設定した(図3)。
ただしチャネル端ではソース/ドレインによる電界の影
響により、空乏層内電荷の一部がソース/ドレイン電界
により支配されるので、その分を考慮して通常のMOS
構造よりも高い濃度に定めてある。その後は砒素のイオ
ン打ち込みによりソース/ドレイン拡散層領域5を形成
し、通常のMIS型半導体装置の形成方法に従って層間
絶縁膜9と金属電極10を形成する。本実施例によれば
しきい値が領域4で決定されるため、半導体層の厚さが
100nmから140nmまで変動してもしきい値の変
化はない。また、チャネル中央領域4は1×1016/c
3と低濃度であるため、完全に空乏化してパンチスル
ーを押さえると共に、ゲート酸化膜7の界面における電
界の緩和と不純物散乱の減少により移動度の向上を図る
ことができる。
FIG. 1 shows a first embodiment of the present invention. First, an element isolation region 8 is formed on the semiconductor layer 3 (thickness: 120 nm) formed on the oxide film 2 by a wafer bonding method or the like.
It is formed by OCOS oxidation, and then the semiconductor layer is made to have a low concentration (1 × 10 16 / cm 2) by ion implantation and annealing.
3 ) Dope. Forming the gate oxide film 7 by oxidation,
A gate electrode 6 is formed by depositing polysilicon and doping it by ion implantation and then processing it to a required size. After that, the high-concentration region 4 is formed in a self-aligned manner by oblique ion implantation of boron using the gate electrode 6 as a mask. The concentration of the region 4 is set to 1.4 × 10 17 / cm 3 so that the semiconductor layer is not completely depleted even when the inversion layer is formed and the threshold value can be determined only by the concentration of the conductive impurities (FIG. 3).
However, at the channel end, part of the charge in the depletion layer is dominated by the source / drain electric field due to the effect of the electric field due to the source / drain.
It has a higher concentration than the structure. After that, the source / drain diffusion layer region 5 is formed by ion implantation of arsenic, and the interlayer insulating film 9 and the metal electrode 10 are formed according to the usual method for forming a MIS type semiconductor device. According to this embodiment, the threshold value is determined in the region 4, so that the threshold value does not change even if the thickness of the semiconductor layer changes from 100 nm to 140 nm. In addition, the channel central region 4 is 1 × 10 16 / c
Since the concentration is as low as m 3 , it is possible to completely deplete and suppress punch through, and to improve mobility by relaxing the electric field and reducing impurity scattering at the interface of the gate oxide film 7.

【0009】次に第2の実施例を図4に示す。チャネル
端を完全空乏化をさせずにしきい値を決定させるため、
高濃度の埋込層11を設けチャネル端の半導体層表面は
低濃度になるよう設定する。高濃度埋込層11の形成は
ゲート電極6をマスクとして斜めイオン打ち込みで形成
するが、イオン打ち込みのエネルギーを高くして濃度分
布のピークが半導体層と酸化膜2の界面に来るように設
定してある。本実施例によれば半導体層の膜厚に依存し
ないしきい値が得られると共に、チャネル端の表面も低
濃度になるので移動度の低下が抑えられトランジスタ全
体としてのの移動度を更に向上させることができる。
Next, a second embodiment is shown in FIG. In order to determine the threshold without completely depleting the channel edge,
The buried layer 11 having a high concentration is provided, and the semiconductor layer surface at the channel end is set to have a low concentration. The high-concentration buried layer 11 is formed by oblique ion implantation using the gate electrode 6 as a mask. The energy of ion implantation is increased to set the concentration distribution peak at the interface between the semiconductor layer and the oxide film 2. There is. According to this embodiment, a threshold value independent of the thickness of the semiconductor layer can be obtained, and since the surface of the channel end also has a low concentration, a decrease in mobility is suppressed and the mobility of the transistor as a whole is further improved. be able to.

【0010】本発明の第3の実施例を図5に示す。本実
施例では高濃度層4をソース側のみに設けて、しきい値
を制御している。この構造によればしきい値はソース側
の高濃度領域4で決定されるので、半導体層の厚さのば
らつきによらず一定のしきい値が得られると共に、ドレ
インとチャネル領域3の接合容量の低減を図ることがで
きる。なお、第2の実施例のように高濃度埋込層11を
ソース側のみに設けても同等の効果を得ることができ
る。
A third embodiment of the present invention is shown in FIG. In this embodiment, the high concentration layer 4 is provided only on the source side to control the threshold value. According to this structure, the threshold value is determined by the high-concentration region 4 on the source side, so that a constant threshold value can be obtained regardless of variations in the thickness of the semiconductor layer, and the junction capacitance between the drain and the channel region 3 Can be reduced. Even if the high-concentration buried layer 11 is provided only on the source side as in the second embodiment, the same effect can be obtained.

【0011】次に本発明を用いてCMOS構造を形成し
た第4の実施例を図6に、その形成方法を図7に示す。
通常基板のCMOSでは素子分離のウェル領域が必要で
あるが、薄膜SOIでは下地酸化膜2と素子分離領域8
によって完全に素子が絶縁分離されるため、ウェルは不
要となる。素子分離領域8を形成後、半導体層にドーピ
ングする際にマスクによりイオン打ち込みを振り分けN
MOS領域3はp形にPMOS領域12はn形にする
(図7a)。ゲート酸化膜形成後、ポリシリコンを堆積
してNMOS領域6には砒素を打ち込んでn形ポリシリ
コンとし、PMOS領域15にはボロンを打ち込んでp
形ポリシリコンとする。その後、ポリシリコンを加工し
て必要な大きさのゲートにして、ゲート電極をマスクと
した斜めイオン打ち込みにより高濃度領域4と14をそ
れぞれ形成する(図7b)。ここで斜めイオン打ち込み
のエネルギーを上げることにより第2の実施例と同じ埋
込層を形成することもできる。次にNMOS領域には砒
素、PMOS領域にはボロンをイオン打ち込みしてソー
ス/ドレイン領域(5,13)を形成する(図7c)。
後は通常のプロセスにより配線工程を通して完成する
(図7d)。本実施例よれば半導体層の膜厚変動によっ
ても回路性能の変化が少ないSOI−CMOS集積回路
を提供することができる。
Next, FIG. 6 shows a fourth embodiment in which a CMOS structure is formed by using the present invention, and FIG. 7 shows a forming method thereof.
Normally, CMOS of the substrate requires a well region for element isolation, but in the thin film SOI, the underlying oxide film 2 and the element isolation region 8 are used.
Since the element is completely insulated and isolated, the well is unnecessary. After forming the element isolation region 8, ion implantation is distributed by a mask when the semiconductor layer is doped N
The MOS region 3 is p-type and the PMOS region 12 is n-type (FIG. 7a). After forming the gate oxide film, polysilicon is deposited and arsenic is implanted into the NMOS region 6 to become n-type polysilicon, and boron is implanted into the PMOS region 15 to p.
Shaped polysilicon. Then, the polysilicon is processed into a gate having a required size, and high-concentration regions 4 and 14 are formed by oblique ion implantation using the gate electrode as a mask (FIG. 7B). Here, the same buried layer as in the second embodiment can be formed by increasing the energy of oblique ion implantation. Next, arsenic is ion-implanted in the NMOS region and boron is ion-implanted in the PMOS region to form source / drain regions (5, 13) (FIG. 7c).
After that, the wiring process is completed by a normal process (FIG. 7d). According to the present embodiment, it is possible to provide an SOI-CMOS integrated circuit in which the circuit performance changes little even if the semiconductor layer thickness changes.

【0012】次に本発明をダブルゲートのSOIに適用
した第5の実施例を図8に示す。薄膜SOIではチャネ
ル領域の下にバックゲート電極16を設けたダブルゲー
トSOI構造が用いられる場合がある。この場合、2つ
のゲートでチャネル領域をコントロールするので反転層
形成時の空乏層はチャネル領域の上下両側から伸びる。
したがって、半導体層の厚さは片側ゲートの場合の2倍
の厚さでも完全空乏化する。この場合でも半導体層の厚
さによりしきい値が変動する原理は変わらない。本実施
例ではチャネル端の高濃度領域4により反転層形成時の
空乏層の厚さの合計が半導体層の膜厚より小さいために
この領域では完全空乏化せず、しきい値は導電不純物濃
度で決定される。また、チャネル中央部3は低濃度で完
全に空乏化するため、パンチスルーの抑制、移動度の向
上ができる。形成方法はまず、通常の基板に素子分離領
域8ゲート酸化膜17、ゲート電極16を形成後、酸化
膜2をデポジションにより形成する。次に絶縁膜2を下
にして他の半導体基板1の上に貼り合わせる。素子分離
領域8をストッパとして半導体層を研磨して薄膜化す
る。次にゲート酸化膜7、ゲート電極6を形成して斜め
イオン打ち込みにより高濃度領域4を形成する。その後
は通常の配線工程により、層間膜9、電極10を形成す
る。本実施例によればダブルゲートのSOIにおいても
半導体層の膜厚の変動によってしきい値のばらつきがな
く、駆動電流の大きいMOSトランジスタを提供するこ
とができる。
Next, FIG. 8 shows a fifth embodiment in which the present invention is applied to a double gate SOI. In the thin film SOI, a double gate SOI structure in which the back gate electrode 16 is provided below the channel region may be used. In this case, since the channel region is controlled by the two gates, the depletion layer at the time of forming the inversion layer extends from both upper and lower sides of the channel region.
Therefore, the semiconductor layer is completely depleted even if it is twice as thick as the one-sided gate. Even in this case, the principle that the threshold varies depending on the thickness of the semiconductor layer does not change. In this embodiment, since the total concentration of the depletion layer at the time of forming the inversion layer is smaller than the thickness of the semiconductor layer due to the high concentration region 4 at the channel end, the region is not completely depleted and the threshold value is the conductive impurity concentration. Is determined by. In addition, since the central portion 3 of the channel is completely depleted at a low concentration, punch-through can be suppressed and mobility can be improved. The formation method is as follows. First, after forming the element isolation region 8 gate oxide film 17 and the gate electrode 16 on a normal substrate, the oxide film 2 is formed by deposition. Next, the insulating film 2 is faced down and bonded to another semiconductor substrate 1. The semiconductor layer is polished and thinned using the element isolation region 8 as a stopper. Next, the gate oxide film 7 and the gate electrode 6 are formed, and the high concentration region 4 is formed by oblique ion implantation. After that, the interlayer film 9 and the electrode 10 are formed by a normal wiring process. According to the present embodiment, it is possible to provide a MOS transistor having a large driving current without variation in the threshold value due to the variation in the film thickness of the semiconductor layer even in the double gate SOI.

【0013】次に縦型の薄膜SOIに本発明を適用した
第6の実施例を図9に示す。通常の半導体基板1をドラ
イエッチングにより加工して薄い壁(能動領域)を形成
し、その領域にダブルゲートのSOI型MOSトランジ
スタを形成する。ゲート電極を壁の両側に形成して、電
流を縦方向に流すものである。本実施例においてもドラ
イエッチの加工精度により壁の厚さが変動し、しきい値
にばらつきが生ずる。チャネル端に高濃度領域4を形成
することによりこの領域は完全空乏化せず、不純物濃度
でしきい値が決定できる。また、その他のチャネル領域
3は低濃度にして完全空乏化させることにより、パンチ
スルーを抑制し、移動度の向上を図ることができる。形
成方法はまず、半導体基板1にイオン打ち込みのエネル
ギを変えて高濃度領域4を2ヵ所に形成する。次にトラ
ンジスタとなる能動領域を残してドライエッチを行ない
薄い能動領域を形成する。酸化によりゲート酸化膜7を
形成後、ポリシリコンを全面にデポジションしてドライ
エッチを行なうことにより能動領域の側壁にゲート電極
を形成する。次に砒素の高濃度イオン打ち込みを行なう
と能動層の頂点と基板にソース、ドレイン領域5が自己
整合的に形成される。その後は通常の配線工程により、
層間膜9、電極10を形成する。本実施例によれば縦型
のダブルゲートのSOIにおいても半導体層の膜厚の変
動によるしきい値のばらつきがなく、駆動電流の大きい
MOSトランジスタを提供することができる。
Next, FIG. 9 shows a sixth embodiment in which the present invention is applied to a vertical type thin film SOI. A normal semiconductor substrate 1 is processed by dry etching to form a thin wall (active region), and a double gate SOI type MOS transistor is formed in the region. The gate electrodes are formed on both sides of the wall so that current flows in the vertical direction. Also in the present embodiment, the wall thickness varies depending on the precision of dry etching, and the threshold value varies. By forming the high-concentration region 4 at the channel end, this region is not completely depleted, and the threshold value can be determined by the impurity concentration. Further, the other channel regions 3 are made to have a low concentration to be completely depleted, so that punch-through can be suppressed and the mobility can be improved. First, the high-concentration regions 4 are formed on the semiconductor substrate 1 by changing the ion implantation energy. Next, a thin active region is formed by dry etching while leaving the active region to be a transistor. After forming the gate oxide film 7 by oxidation, polysilicon is deposited on the entire surface and dry etching is performed to form a gate electrode on the sidewall of the active region. Next, when high-concentration ion implantation of arsenic is performed, source / drain regions 5 are formed in a self-aligned manner on the top of the active layer and the substrate. After that, by the normal wiring process,
The interlayer film 9 and the electrode 10 are formed. According to the present embodiment, it is possible to provide a MOS transistor having a large driving current without variations in threshold value due to variations in the film thickness of the semiconductor layer even in the vertical double-gate SOI.

【0014】本発明を用いた回路例を図10に示す。本
発明のトランジスタはしきい値のばらつきが小さいので
差動アンプのようなしきい値ばらつきが出力のオフセッ
ト電圧に直接影響するような回路でも安定に動作させる
ことができる。
An example of a circuit using the present invention is shown in FIG. Since the transistor of the present invention has a small threshold variation, it can be stably operated even in a circuit such as a differential amplifier in which the threshold variation directly affects the output offset voltage.

【0015】また本発明の各実施例の電界効果トランジ
スタは、200K以下の低温で動作することにより、高
移動度を得ることができる。
The field effect transistor of each embodiment of the present invention can obtain high mobility by operating at a low temperature of 200 K or less.

【0016】[0016]

【発明の効果】以上説明したように本発明によれば薄膜
SOIの半導体層の厚さの変動によるしきい値ばらつき
を低減し、かつ、移動度の向上により高速度動作を可能
にする。しきい値の半導体層膜圧依存性を図3に示した
が、従来では±20nmの膜厚変動によりしきい値が±
0.1V変動するのに対し、本実施例ではしきい値の変
動は皆無である。従来例では半導体層の厚さのばらつき
により全チャネル長でしきい値が±0.1V変動するの
に対して、本発明では半導体層の厚さの変動があっても
しきい値の変化はない(図11)。また、短チャネルに
おけるしきい値の低下(短チャネル効果)は本発明にお
いても従来の完全空乏化SOIと同等の性能がある。
As described above, according to the present invention, the variation in the threshold value due to the variation in the thickness of the semiconductor layer of the thin film SOI is reduced, and the mobility is improved to enable the high speed operation. The dependency of the threshold voltage on the semiconductor layer film pressure is shown in FIG. 3. In the conventional case, the threshold value is ± 20 nm due to the film thickness variation of ± 20 nm.
In contrast to the fluctuation of 0.1 V, there is no fluctuation of the threshold value in this embodiment. In the conventional example, the threshold value fluctuates ± 0.1 V over the entire channel length due to the variation in the semiconductor layer thickness, whereas in the present invention, the threshold value does not change even if the semiconductor layer thickness fluctuates. (FIG. 11). Also, in the present invention, the lowering of the threshold value (short channel effect) in the short channel has the same performance as that of the conventional fully depleted SOI.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の基本的な実施例を示す1 shows a basic embodiment of the invention.

【図2】従来の薄膜SOI構造を例を示す。FIG. 2 shows an example of a conventional thin film SOI structure.

【図3】薄膜SOI型MOSトランジスタにおけるしき
い値の半導体層膜厚依存性を示す。
FIG. 3 shows a semiconductor layer film thickness dependence of a threshold value in a thin film SOI type MOS transistor.

【図4】高濃度埋込層を用いた第2の実施例を示す。FIG. 4 shows a second embodiment using a high-concentration buried layer.

【図5】ソース側のみに高濃度領域を設けた第3の実施
例を示す。
FIG. 5 shows a third embodiment in which a high concentration region is provided only on the source side.

【図6】本発明をCMOS構造に適用したの第4の実施
例を示す。
FIG. 6 shows a fourth embodiment in which the present invention is applied to a CMOS structure.

【図7】本発明の第4の実施例の形成方法を示す。FIG. 7 shows a forming method according to a fourth embodiment of the present invention.

【図8】本発明をダブルゲートSOIに適用した第5の
実施例を示す。
FIG. 8 shows a fifth embodiment in which the present invention is applied to a double gate SOI.

【図9】本発明を縦型SOIに適用した第6の実施例を
示す。
FIG. 9 shows a sixth embodiment in which the present invention is applied to the vertical SOI.

【図10】本発明を用いた差動アンプ回路例を示す。FIG. 10 shows an example of a differential amplifier circuit using the present invention.

【図11】しきい値のチャネル長依存性における本発明
の効果を示す。
FIG. 11 shows the effect of the present invention on the channel length dependence of the threshold value.

【符号の説明】[Explanation of symbols]

1…半導体基板、2…下地酸化膜、3…チャネル領域p
形半導体層、4…チャネル端p形半導体層、5…n形ソ
ース/ドレイン拡散層、6…n形ポリシリコンゲート電
極、7…ゲート酸化膜、8…フィールド酸化膜、9…層
間絶縁膜、10…アルミ電極層、11…チャネル端p形
高濃度埋込層、12…チャネル領域n形半導体層、13
…p形ソース/ドレイン拡散層、14…チャネル端n形
半導体層、15…p形ポリシリコンゲート電極、16…
n形ポリシリコンバックゲート電極、17…バックゲー
ト酸化膜。
1 ... Semiconductor substrate, 2 ... Base oxide film, 3 ... Channel region p
Type semiconductor layer, 4 ... Channel end p type semiconductor layer, 5 ... N type source / drain diffusion layer, 6 ... N type polysilicon gate electrode, 7 ... Gate oxide film, 8 ... Field oxide film, 9 ... Interlayer insulating film, Reference numeral 10 ... Aluminum electrode layer, 11 ... Channel end p-type high-concentration buried layer, 12 ... Channel region n-type semiconductor layer, 13
... p-type source / drain diffusion layer, 14 ... channel end n-type semiconductor layer, 15 ... p-type polysilicon gate electrode, 16 ...
n-type polysilicon back gate electrode, 17 ... Back gate oxide film.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 関 浩一 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Koichi Seki, Koichi Seki 1-280, Higashi Koikekubo, Kokubunji, Tokyo Inside the Central Research Laboratory, Hitachi, Ltd.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】絶縁膜上の半導体層に形成されたMIS型
半導体装置において前記半導体装置のチャネル端の導電
不純物濃度を高くして反転層形成時の空乏層の厚さが前
記半導体層の厚さよりも小さくなるように設定し、か
つ、その他のチャネル領域は反転層形成時の空乏層の広
がりにより前記半導体層表面から前記絶縁膜との界面ま
で完全に空乏化することを特徴とする半導体装置。
1. In a MIS type semiconductor device formed in a semiconductor layer on an insulating film, the concentration of conductive impurities at the channel edge of the semiconductor device is increased so that the thickness of the depletion layer when the inversion layer is formed is the thickness of the semiconductor layer. And the other channel regions are completely depleted from the surface of the semiconductor layer to the interface with the insulating film due to the spread of the depletion layer during formation of the inversion layer. .
【請求項2】絶縁膜上の半導体層に形成されたMIS型
半導体装置において前記半導体装置のチャネル端の表面
より深い領域に導電不純物濃度の高い埋込層を設けて反
転層形成時の空乏層の厚さが前記絶縁膜上の半導体層の
厚さよりも小さくなるように設定し、かつ、その他のチ
ャネル領域は反転層形成時の空乏層の広がりにより前記
半導体層表面から前記絶縁との膜界面まで完全に空乏化
することを特徴とする半導体装置。
2. A depletion layer at the time of forming an inversion layer by providing a buried layer having a high conductive impurity concentration in a region deeper than a surface of a channel end of the semiconductor device in a MIS type semiconductor device formed on a semiconductor layer on an insulating film. Is set to be smaller than the thickness of the semiconductor layer on the insulating film, and the other channel regions are separated from the surface of the semiconductor layer by the expansion of the depletion layer during the formation of the inversion layer, and the film interface with the insulation is formed. A semiconductor device characterized by being completely depleted.
【請求項3】請求項1及び請求項2に記載のMIS型半
導体装置においてチャネル端の片側のみに前記の高濃度
領域あるいは高濃度埋込層を設けたことを特徴とする半
導体装置。
3. A semiconductor device according to claim 1, wherein the high concentration region or the high concentration buried layer is provided only on one side of a channel end.
【請求項4】請求項1から請求項3までのいずれかに記
載のMIS型半導体装置を用いた半導体集積回路。
4. A semiconductor integrated circuit using the MIS type semiconductor device according to any one of claims 1 to 3.
【請求項5】200K以下の低温で動作させることを特
徴とする請求項1から請求項4までのいずれかに記載の
MIS型半導体装置および半導体集積回路。
5. The MIS type semiconductor device and the semiconductor integrated circuit according to claim 1, which are operated at a low temperature of 200 K or less.
JP4896093A 1993-03-10 1993-03-10 Mis type semiconductor device Pending JPH06268215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4896093A JPH06268215A (en) 1993-03-10 1993-03-10 Mis type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4896093A JPH06268215A (en) 1993-03-10 1993-03-10 Mis type semiconductor device

Publications (1)

Publication Number Publication Date
JPH06268215A true JPH06268215A (en) 1994-09-22

Family

ID=12817852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4896093A Pending JPH06268215A (en) 1993-03-10 1993-03-10 Mis type semiconductor device

Country Status (1)

Country Link
JP (1) JPH06268215A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
KR19990010661A (en) * 1997-07-18 1999-02-18 윤종용 Semiconductor memory device
EP1229576A2 (en) * 2001-02-02 2002-08-07 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
WO2002063697A1 (en) * 2001-02-07 2002-08-15 Sony Corporation Semiconductor device and its manufacturing method
US6486513B1 (en) 1999-07-23 2002-11-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
EP1294026A2 (en) * 2001-09-04 2003-03-19 Sharp Kabushiki Kaisha Method for adjusting ultra-thin SOI MOS transistor threshold voltages
WO2003032401A1 (en) * 2001-10-02 2003-04-17 Nec Corporation Semiconductor device and its manufacturing method
US6818496B2 (en) * 2000-08-29 2004-11-16 Micron Technology, Inc, Silicon on insulator DRAM process utilizing both fully and partially depleted devices
WO2004109810A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics N.V. Prevention of parasitic channel in an integrated soi process
US6919606B2 (en) 2000-12-26 2005-07-19 Kabushiki Kaisha Toshiba Semiconductor device comprising an insulating mask formed on parts of a gate electrode and semiconductor layer crossing an active region
US7109554B2 (en) 2002-03-11 2006-09-19 Nec Corporation Thin film semiconductor device and method for manufacturing same
JP2010062173A (en) * 2008-09-01 2010-03-18 Seiko Epson Corp Thin film transistor, manufacturing method thereof, electro-optic device, manufacturing method thereof and electronic apparatus

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0803911A3 (en) * 1996-04-25 1998-04-15 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
US5841170A (en) * 1996-04-25 1998-11-24 Sharp Kabushiki Kaisha Field effect transistor and CMOS element having dopant exponentially graded in channel
EP0803911A2 (en) 1996-04-25 1997-10-29 Sharp Kabushiki Kaisha Channel structure of field effect transistor and CMOS element
KR19990010661A (en) * 1997-07-18 1999-02-18 윤종용 Semiconductor memory device
US6486513B1 (en) 1999-07-23 2002-11-26 Mitsubishi Denki Kabushiki Kaisha Semiconductor device
US7358569B2 (en) 1999-07-23 2008-04-15 Renesas Technology Corp. Semiconductor device with semiconductor layer having various thickness
US6818496B2 (en) * 2000-08-29 2004-11-16 Micron Technology, Inc, Silicon on insulator DRAM process utilizing both fully and partially depleted devices
US6919606B2 (en) 2000-12-26 2005-07-19 Kabushiki Kaisha Toshiba Semiconductor device comprising an insulating mask formed on parts of a gate electrode and semiconductor layer crossing an active region
EP1229576A2 (en) * 2001-02-02 2002-08-07 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
US6627505B2 (en) * 2001-02-02 2003-09-30 Sharp Kabushiki Kaisha Method of producing SOI MOSFET having threshold voltage of central and edge regions in opposite directions
EP1229576A3 (en) * 2001-02-02 2004-10-27 Sharp Kabushiki Kaisha Method of producing SOI MOSFET
WO2002063697A1 (en) * 2001-02-07 2002-08-15 Sony Corporation Semiconductor device and its manufacturing method
US7253033B2 (en) 2001-02-07 2007-08-07 Sony Corporation Method of manufacturing a semiconductor device that includes implanting in multiple directions a high concentration region
US7378714B2 (en) 2001-02-07 2008-05-27 Sony Corporation Semiconductor device and its manufacturing method
KR100863921B1 (en) * 2001-02-07 2008-10-17 소니 가부시끼 가이샤 Semiconductor device and its manufacturing method
EP1294026A3 (en) * 2001-09-04 2005-03-30 Sharp Kabushiki Kaisha Method for adjusting ultra-thin SOI MOS transistor threshold voltages
EP1294026A2 (en) * 2001-09-04 2003-03-19 Sharp Kabushiki Kaisha Method for adjusting ultra-thin SOI MOS transistor threshold voltages
WO2003032401A1 (en) * 2001-10-02 2003-04-17 Nec Corporation Semiconductor device and its manufacturing method
US7485923B2 (en) 2001-10-02 2009-02-03 Nec Corporation SOI semiconductor device with improved halo region and manufacturing method of the same
US7109554B2 (en) 2002-03-11 2006-09-19 Nec Corporation Thin film semiconductor device and method for manufacturing same
WO2004109810A1 (en) * 2003-06-11 2004-12-16 Koninklijke Philips Electronics N.V. Prevention of parasitic channel in an integrated soi process
JP2010062173A (en) * 2008-09-01 2010-03-18 Seiko Epson Corp Thin film transistor, manufacturing method thereof, electro-optic device, manufacturing method thereof and electronic apparatus

Similar Documents

Publication Publication Date Title
US4935379A (en) Semiconductor device and method of manufacturing the same
US6861304B2 (en) Semiconductor integrated circuit device and method of manufacturing thereof
US8343836B2 (en) Recessed gate channel with low Vt corner
EP1006584A2 (en) Semiconductor device having SOI structure and manufacturing method thereof
JPH08153880A (en) Semiconductor device and fabrication thereof
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JP2002314091A (en) Semiconductor device and manufacturing method therefor
JPH1197674A (en) Semiconductor device and manufacture thereof
US20010052613A1 (en) Soi semiconductor device and method for manufacturing the same
US6166412A (en) SOI device with double gate and method for fabricating the same
JPH06268215A (en) Mis type semiconductor device
US6501135B1 (en) Germanium-on-insulator (GOI) device
JP2001156290A (en) Semiconductor device
US20020177286A1 (en) Method of producing SOI MOSFET
JP2000012851A (en) Field-effect transistor and manufacture thereof
US6407428B1 (en) Field effect transistor with a buried and confined metal plate to control short channel effects
JPH0571190B2 (en)
JPS60247974A (en) Semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH05235335A (en) Semiconductor device
JPH0613606A (en) Semiconductor device
JPH1012870A (en) Semiconductor device and its manufacture
JP2727590B2 (en) MIS type semiconductor device
JPWO2009113582A1 (en) Semiconductor device and manufacturing method thereof
JP2506947B2 (en) Semiconductor device and manufacturing method thereof