JPS60247974A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS60247974A
JPS60247974A JP10249884A JP10249884A JPS60247974A JP S60247974 A JPS60247974 A JP S60247974A JP 10249884 A JP10249884 A JP 10249884A JP 10249884 A JP10249884 A JP 10249884A JP S60247974 A JPS60247974 A JP S60247974A
Authority
JP
Japan
Prior art keywords
substrate
region
implanted
concentration
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10249884A
Other languages
Japanese (ja)
Inventor
Masamizu Konaka
小中 雅水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP10249884A priority Critical patent/JPS60247974A/en
Publication of JPS60247974A publication Critical patent/JPS60247974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Abstract

PURPOSE:To reduce the generation of hot electrons extremely by forming a low- concentration P<-> layer having the same conduction type as a substrate at a section where source-drain and a channel ion-implantation layer are in contact and making the position of an intensified power electric field to keep away from a channel current path. CONSTITUTION:A high resistance substrate 501 consisting of P type silicon is thermally oxidized to shape a gate insulating film 505. Boron ions for controlling a thershold are implanted to form an ion implantation layer 504. A polycrystalline silicon film 506 is deposited as a gate electrode, and patterned. Boron ions are implanted 507 while using these films as masks, phosphorus ions are implanted by employing said masks, and boron ions are implanted to the gate insulating film 505 and a section in the vicinity of a substrate interface again to shape a low impurity layer P<->. An insulating region 505' is formed, and phosphorus ions are implanted again to shape low-concentration N<-> regions 502, 503. As ions in the high quantity of doping are implanted to a section in the vicinity of a substrate surface to form an N<+> layer 509.

Description

【発明の詳細な説明】 〔発明の属する技術分野〕 本発明は絶縁ゲート型の微細素子構造に係り、特1こ、
ホットエレクトロンに対して優れた高信頼性の半導体装
置に関するものである。
[Detailed description of the invention] [Technical field to which the invention pertains] The present invention relates to an insulated gate type fine element structure, and particularly relates to:
The present invention relates to a highly reliable semiconductor device that is excellent against hot electrons.

し従来技術とその問題点〕 半導体素子の高速化、高集積化が進められている中で、
特fこ問題となることは、しきい値の変動パンチスルー
現象、ホットエレクトロン現象等1こよる信頼性の低下
である。夫々、種々の対策が構しられ、例えば、しきい
値電圧の問題に対しては第1図に示す如くゲート酸化膜
15 (tOX)を薄くし、ソース13及びドレイン1
2の接合深さxiを浅くすればよい。一方、パンチスル
ー現象を抑えるために、基板濃度を上げる方法があるが
、基板濃度の増大は、ソース・ドレインと基板間の接合
容量の増大及びしきい値電圧V、の基板バイアスV8U
B依存性が増大し、結果として、LSIの設計に不都合
さを招く。従来、これに対しては、高抵抗基板11を用
い、素子能動領域の深い位置に、高ドーズ量のイオン注
入を行い、基板と同導電形の高濃度層17を形成する。
[Conventional technology and its problems] As semiconductor devices become faster and more highly integrated,
A particular problem is a decrease in reliability due to fluctuations in the threshold value, punch-through phenomenon, hot electron phenomenon, etc. Various countermeasures have been taken, for example, as shown in FIG. 1, the gate oxide film 15 (tOX) is thinned, and the source 13 and drain 1
The junction depth xi of No. 2 may be made shallow. On the other hand, there is a method of increasing the substrate concentration to suppress the punch-through phenomenon, but increasing the substrate concentration increases the junction capacitance between the source/drain and the substrate and the substrate bias of the threshold voltage V
The dependence on B increases, resulting in inconvenience in LSI design. Conventionally, for this purpose, a high-resistance substrate 11 is used, and a high dose of ions is implanted deep into the element active region to form a highly doped layer 17 having the same conductivity type as the substrate.

第1図中14はしきい値電圧制御用のイオン注入層、又
、16はゲート電極のそれぞれである。しかし、この構
造の半導体素子にあっては、ドレイン12とイオン注入
層14及び17と接する接合位置付近における電界強度
が大きくなり、エレクトロンの衝突によって発生したホ
ール(n−chMO8’の場合)が基板11中を流れ、
基板電流1110Bが増大し基板電位のゆうぎの原因と
なり、LSIとしての信頼性を低下させるため好ましく
ない。又、第2図に示す絶縁ゲート型トランジスタ(以
下MOSトランジスタと略す)では、基板21に、ソー
ス%、ドレイン22及びゲート酸化膜5、そして、ゲー
ト電極26からなり、イオン注入層別及び27とドレイ
ン22.23間に、ソース・ドレインと同導電形の低濃
度から成るN一層22’、23’を設は前記、高電界と
なることを抑止し、ホットエレクトロン発生を防止して
いる。しかし、この構造のMOS )ランジスタでは電
流−電圧特性のトランスコンダクタンスgmが低下する
という欠点がある。第3図は、同様の目的からなされた
他の従来技術を示しだ図である。
In FIG. 1, 14 is an ion implantation layer for controlling threshold voltage, and 16 is a gate electrode. However, in a semiconductor element with this structure, the electric field strength near the junction position where the drain 12 contacts the ion-implanted layers 14 and 17 increases, and holes (in the case of n-ch MO8') generated by electron collisions are absorbed into the substrate. Flowing through 11,
This is undesirable because the substrate current 1110B increases, causing fluctuations in the substrate potential and reducing the reliability of the LSI. The insulated gate transistor (hereinafter abbreviated as MOS transistor) shown in FIG. 2 includes a substrate 21, a source 21, a drain 22, a gate oxide film 5, and a gate electrode 26. Between the drains 22 and 23, a low concentration N layer 22', 23' of the same conductivity type as the source and drain is provided to suppress the high electric field and prevent the generation of hot electrons. However, the MOS transistor having this structure has a drawback in that the transconductance gm of the current-voltage characteristic is reduced. FIG. 3 shows another conventional technique made for the same purpose.

31は高抵抗基板、32 、33はドレイン及びソース
、ア、37はイオン注入層、35はゲート絶縁膜、36
はゲート電極であり、そして、32′及びお′はソース
・ドレインと同導電型の低濃度層N−である。この構造
の電気的特性においても、前述の第2図と同様トランス
・コンダクタンスgmが低下する。次に、従来技術の他
の例を〔第4図〕に示す。41は高抵抗基板、42.4
3は低濃度N−ドレイン・ソース、祠はしきい値電圧制
御用イオン注入層、45はゲート絶縁膜、46はゲート
電極、47はパンチスルー防止用の私ポケットと呼ばれ
るとタイプ基板と同等電型の高濃度イオン注入層、45
′は側壁残し技術で形成した絶縁膜、そして、招はソー
ス・ドレイン及びゲート電極の低抵抗化のために形成し
たp−4−s。
31 is a high resistance substrate, 32 and 33 are drains and sources, 37 is an ion implantation layer, 35 is a gate insulating film, 36
is a gate electrode, and 32' and O' are low concentration layers N- of the same conductivity type as the source and drain. Also in the electrical characteristics of this structure, the trans conductance gm decreases as in FIG. 2 described above. Next, another example of the prior art is shown in FIG. 41 is a high resistance board, 42.4
3 is a low concentration N-drain/source, the shrine is an ion-implanted layer for threshold voltage control, 45 is a gate insulating film, 46 is a gate electrode, and 47 is a pocket for punch-through prevention, which has the same voltage as the type substrate. type high concentration ion implantation layer, 45
' is an insulating film formed using the sidewall leaving technique, and p-4-s is formed to lower the resistance of the source/drain and gate electrodes.

層である。この構造のMOSにあっては、低濃度N−ド
レイン42と基板より高濃度の1層47と接する部分で
の電界の最大値は、はぼゲート絶縁膜45と基板界面近
傍にあり、すなわち、チャネル電流の大半が流れる位置
に存在し、基板電流l81JBを低下させる観点から好
しい構造ではない。
It is a layer. In the MOS having this structure, the maximum value of the electric field at the portion where the lightly doped N-drain 42 contacts the single layer 47, which is more doped than the substrate, is near the interface between the gate insulating film 45 and the substrate, that is, It exists at a position where most of the channel current flows, and is not a preferable structure from the viewpoint of reducing the substrate current l81JB.

[発明の目的〕 本発明は、以上の問題点に鑑みてなされたものであり、
高信頼性のMOS )ランジスタで構成される微細化さ
れた半導体装置を提供するものである。
[Object of the invention] The present invention has been made in view of the above problems, and
The present invention provides a miniaturized semiconductor device composed of highly reliable MOS (MOS) transistors.

〔発明の概要〕[Summary of the invention]

低濃度のソース・ドレイン及びヒポケラトからなるMO
Sトランジスタにおいて、ソース・ドレインとチャネル
イオン・注入層と接する、部分、すなわちケント絶縁膜
と基板界面近傍に基板と同等電形の低濃度P″″層を形
成し、チャネル電流路より、強電界位置を逸し、ホット
エレクトロン発生をより減少させた半導体装置である。
MO consisting of low concentration source/drain and hypocerate
In an S transistor, a low-concentration P'' layer with the same electric type as the substrate is formed in the portion where the source/drain and the channel ion/implanted layer are in contact, that is, near the interface between the Kent insulating film and the substrate, and a strong electric field is generated from the channel current path. This is a semiconductor device that further reduces the generation of hot electrons.

〔発明の効果〕〔Effect of the invention〕

本発明により、ホットエレクトロン発生を極力低減し、
基板電流のより少ないMOS )ランジスタを得ること
が出来、LSIの信頼性を大幅に改良した。
The present invention reduces the generation of hot electrons as much as possible,
It was possible to obtain a MOS (MOS) transistor with a lower substrate current, and the reliability of LSI was greatly improved.

〔発明の実施例〕[Embodiments of the invention]

本発明の一実施例について、第5図の構造断面図をもっ
て以下に示す。第5図において、501は例えばP型シ
リコンの高抵抗(〜50Ω俤)基板であり、この基板を
熱酸化し、ゲート絶縁膜505を形成する。つづいて、
しきい値制御用のボロン・イオンを注入し、イオン注入
層504を形成する。次に、例えばゲート電極として、
多結晶シリコン膜506を堆積し、所望のゲート領域と
なる様に、前記、506 、504をパターニングする
。これらをマスクとして、まずボロンイオン注入507
を形成し、つづいて、同マスクを用い、リンイオンを注
入502’、503’を形成し、そして、ゲート絶縁膜
505と基板界面近傍に再度ボロンをイオン注入し、5
08を形成する。次に、全面にCVD 、 Sin、膜
を全面に堆積し、リアクティブイオン・エツチングによ
る側壁残し技術で第5図中に示す505′の絶縁領域を
形成する。この505’、506’領域及びゲート電極
506をマスクとして、再度リン・イオンを注入し、低
濃度のN−領域502 、503を形成する。更に、つ
づいて、基板界面近傍1こ高ドーズ量のA11イオンを
注入し8層509を形成し、この後通常のMOS )ラ
ンジスタ工程を経て本発明の半導体装置が完成する。
An embodiment of the present invention will be described below with reference to the structural cross-sectional view of FIG. In FIG. 5, reference numeral 501 is a high resistance (~50Ω) substrate made of, for example, P-type silicon, and this substrate is thermally oxidized to form a gate insulating film 505. Continuing,
Boron ions for threshold control are implanted to form an ion implantation layer 504. Next, for example, as a gate electrode,
A polycrystalline silicon film 506 is deposited, and the layers 506 and 504 are patterned to form a desired gate region. Using these as masks, first boron ion implantation 507
Then, using the same mask, phosphorus ions are implanted to form 502' and 503', and boron ions are implanted again near the interface between the gate insulating film 505 and the substrate.
08 is formed. Next, a CVD, Sin, film is deposited on the entire surface, and an insulating region 505' shown in FIG. 5 is formed using reactive ion etching to leave sidewalls intact. Using the 505' and 506' regions and the gate electrode 506 as a mask, phosphorus ions are implanted again to form low concentration N- regions 502 and 503. Further, next, A11 ions are implanted at a higher dose near the substrate interface to form eight layers 509, and then a normal MOS transistor process is carried out to complete the semiconductor device of the present invention.

ここで、第5図の動作説明をするために、ドレイン近僕
の拡大図を第7図に示す。この装置のドレンイン709
 、702に電圧を印加した場合、ドレイン先端部にお
ける空乏層は大半、低濃度のN−領域702′及びP−
とN−界面近傍Iこある。一方、チャネル電流の電流路
は図7に示す様にソース側ではゲート絶縁膜705と基
板界面近傍を流れ、そしてドレイン側ではその界面より
やや埋設し、突出しているN−702’ )こ向って流
れ易−く、従って、大半のチャネル電流は電界の強い位
置(×印)から逸れる様になる。この様1こして、ホッ
トエレクトロンの発生をより少くすることが出来る。本
発明による半導体装置の基板電流l8tl11と従来技
術によるそれとの比較した結果を第6図に示す。基板電
流111tlBの最大値で比較し、本発明ではその値が
約v10以上小さく、信頼性1こ優れた装置である。そ
れとの比較した結果を第6図1こ示す。基板電流l5u
aの最大値で比較して、約1.5オ一ダ一本発明の方が
少なく、信頼性に優れていることを示す。
Here, in order to explain the operation of FIG. 5, an enlarged view of the drain member is shown in FIG. 7. Drain in 709 of this device
, 702, most of the depletion layer at the drain tip is formed by the lightly doped N- region 702' and the P-
And there is I near the N-interface. On the other hand, as shown in FIG. 7, the channel current flows near the interface between the gate insulating film 705 and the substrate on the source side, and is slightly buried and protrudes from the interface on the drain side. Therefore, most of the channel current deviates from the location where the electric field is strong (x mark). In this way, the generation of hot electrons can be further reduced. FIG. 6 shows the results of a comparison between the substrate current l8tl11 of the semiconductor device according to the present invention and that according to the prior art. Comparing the maximum value of the substrate current 111tlB, in the present invention, the value is smaller by about v10 or more, and the device is superior in reliability by 1. The results of this comparison are shown in FIG. Substrate current l5u
When compared with the maximum value of a, the present invention has a smaller value of about 1.5 orders of magnitude, indicating that it is superior in reliability.

〔発明の他の実施例〕[Other embodiments of the invention]

本発明の一実施例では、Pボツット構造を例くことり示
したが第2図及び第3図の深いイオン注入層27及び3
6を用いた構造でも同様の効果があり、更に、ソース・
ドレインの低抵抗化に高不純物の8層509を用いたが
第4図に示したpt−s4層絽を用いた構造でもよい。
In one embodiment of the present invention, a P-bot structure is shown as an example, but deep ion implantation layers 27 and 3 in FIGS.
A structure using 6 has the same effect, and furthermore, the source
Although eight layers 509 of high impurities were used to lower the resistance of the drain, a structure using four PT-S layers as shown in FIG. 4 may also be used.

又、実施例ではN−ah MOSトランジスタ例1こと
り述べて来たが、P−ch MOSトランジスタへも通
用可能であり、基板はバルクシリコンのみならずSO8
、SOI等の絶縁基板上に形成してもよい。
In addition, although we have described N-ah MOS transistor example 1 in the embodiment, it can also be applied to P-ch MOS transistors, and the substrate is not only bulk silicon but also SO8.
, may be formed on an insulating substrate such as SOI.

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第2図、第3図及び第4図は従来技術1こよる
半導体装置の断面図、第5図は本発明1こよる半導体装
置の断面図、第6図は基板電流Ist+n lこついて
、従来特性と本発明1こよるものの特性とを比較した特
性UX第7図は本発明装置(第5図)のドレイン近傍を
拡大し、ドレイン電流路と最大電界との関係を示した特
性図である。 図において、 11.21.31.41.501.701・・・半導体
基板12.22,32,509.13,23.33,7
09・・・高濃度のドレイン・ソースN領域 14.24,34,44,504・・・しきい値制御用
イオン注入層15.25.35,45,505,705
・・・ゲート絶縁膜16.26.36,46,506,
706 ・・・ゲート電極17.27,37,47,5
07,707・・・基板と同導電形の高不純物濃度層
1, 2, 3, and 4 are cross-sectional views of a semiconductor device according to the prior art 1, FIG. 5 is a sectional view of a semiconductor device according to the present invention 1, and FIG. 6 is a sectional view of a semiconductor device according to the present invention 1. Figure 7 shows the characteristics UX comparing the conventional characteristics and the characteristics of the present invention 1. Figure 7 shows the relationship between the drain current path and the maximum electric field by enlarging the vicinity of the drain of the device of the present invention (Figure 5). It is a characteristic diagram. In the figure, 11.21.31.41.501.701... semiconductor substrate 12.22, 32, 509.13, 23.33, 7
09... High concentration drain/source N region 14.24, 34, 44, 504... Ion implantation layer for threshold control 15.25.35, 45, 505, 705
...gate insulating film 16.26.36,46,506,
706...Gate electrode 17.27, 37, 47, 5
07,707...High impurity concentration layer of the same conductivity type as the substrate

Claims (1)

【特許請求の範囲】[Claims] 第1導電形を有する半導体領域の1主面に面して、第2
導電形の第1及び第2領域が互に、所要の間隔を保持し
て、形成され上記第1及び第2領域間のチャネルを形成
すべき部分上1こ絶縁膜が形成され、該絶縁膜上にゲー
ト電極が形成されて成る絶縁ゲート型トランジスタにお
いて、第1又は第2領域のチャネルに沿う横方向の先端
部分の深い領域では、基板と同導電形の基板より濃い不
純物濃度領域が設けられ、上記濃い不純物濃度で包まれ
る様に、第2導電形の低濃度不純物領域が設けられ、更
に、基板表面の浅い領域では、チャネル直下の第1導繊
形の不純物濃度より低い濃度領域が設けられ、そして、
側壁残し技術により、前記ケント電極の側壁1こ、マス
クとなる領域を形成し、このマスクを用いて、前記、深
い領域の第1又は第2領域と向き合う一部分の前記、基
板より濃い不純物濃度領域と基板表面の低不純物領域を
残し、第2導電形の深い領域及び基板表面に第2導電形
の高濃度不純物濃度領域が設けられて成ることを特徴と
する半導体装置。
facing one main surface of the semiconductor region having the first conductivity type;
First and second conductive regions are formed with a required distance from each other, an insulating film is formed over a portion where a channel is to be formed between the first and second regions, and the insulating film is In an insulated gate transistor having a gate electrode formed thereon, an impurity concentration region higher in depth than that of a substrate having the same conductivity type as the substrate is provided in a deep region at the tip in the lateral direction along the channel of the first or second region. , a low concentration impurity region of the second conductivity type is provided so as to be surrounded by the high impurity concentration, and a region with a lower concentration of impurity than the impurity concentration of the first conductivity type directly below the channel is provided in a shallow region of the substrate surface. and,
Using the sidewall leaving technique, a region serving as a mask is formed on the sidewall of the Kent electrode, and using this mask, a region with an impurity concentration higher than that of the substrate is formed in a portion facing the first or second deep region. A semiconductor device characterized in that a deep region of a second conductivity type and a high concentration impurity concentration region of a second conductivity type are provided on the surface of the substrate, leaving a low impurity concentration region on the surface of the substrate.
JP10249884A 1984-05-23 1984-05-23 Semiconductor device Pending JPS60247974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10249884A JPS60247974A (en) 1984-05-23 1984-05-23 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10249884A JPS60247974A (en) 1984-05-23 1984-05-23 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS60247974A true JPS60247974A (en) 1985-12-07

Family

ID=14329074

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10249884A Pending JPS60247974A (en) 1984-05-23 1984-05-23 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS60247974A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
EP0197501A2 (en) * 1985-04-12 1986-10-15 General Electric Company Extended drain concept for reduced hot electron effect
EP0481559A2 (en) * 1990-10-18 1992-04-22 Koninklijke Philips Electronics N.V. A method of fabricating a field-effect transistor
EP0530644A2 (en) * 1991-08-30 1993-03-10 Texas Instruments Incorporated Non-Volatile memory cell and fabrication method
US5349225A (en) * 1993-04-12 1994-09-20 Texas Instruments Incorporated Field effect transistor with a lightly doped drain
JPH06318699A (en) * 1993-05-01 1994-11-15 Nec Corp Structure and manufacture of semiconductor
WO1997041604A1 (en) * 1996-04-29 1997-11-06 Siemens Aktiengesellschaft Lightly doped drain (ldd) mosfet
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
EP0197501A2 (en) * 1985-04-12 1986-10-15 General Electric Company Extended drain concept for reduced hot electron effect
EP0481559A2 (en) * 1990-10-18 1992-04-22 Koninklijke Philips Electronics N.V. A method of fabricating a field-effect transistor
EP0530644A2 (en) * 1991-08-30 1993-03-10 Texas Instruments Incorporated Non-Volatile memory cell and fabrication method
US5264384A (en) * 1991-08-30 1993-11-23 Texas Instruments Incorporated Method of making a non-volatile memory cell
US5482880A (en) * 1991-08-30 1996-01-09 Texas Instruments Incorporated Non-volatile memory cell and fabrication method
US5349225A (en) * 1993-04-12 1994-09-20 Texas Instruments Incorporated Field effect transistor with a lightly doped drain
JPH06318699A (en) * 1993-05-01 1994-11-15 Nec Corp Structure and manufacture of semiconductor
WO1997041604A1 (en) * 1996-04-29 1997-11-06 Siemens Aktiengesellschaft Lightly doped drain (ldd) mosfet
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Similar Documents

Publication Publication Date Title
US6518138B2 (en) Method of forming Self-aligned lateral DMOS with spacer drift region
JP3082671B2 (en) Transistor element and method of manufacturing the same
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
EP0596468A2 (en) MOSFET of LDD type and a method for fabricating the same
US6358783B1 (en) Semiconductor device and method of manufacturing the same
KR910002037B1 (en) Semiconductor device and manufacture thereof
EP0718892A2 (en) Semiconductor device including insulated gate bipolar transistor and method of fabricating the same
JPH025479A (en) Mos transistor with improved radiation strength
US6376870B1 (en) Low voltage transistors with increased breakdown voltage to substrate
US6204543B1 (en) Semiconductor device having LDD structure and method for producing the same
JPS6050960A (en) Semiconductor device
JPS61160975A (en) Mos field effect transistor
JPS60247974A (en) Semiconductor device
JPH06268215A (en) Mis type semiconductor device
JPH02203566A (en) Mos type semiconductor device
JPH04264776A (en) Semiconductor device
JPH04212467A (en) Semiconductor device and manufacture thereof
JPH0656855B2 (en) Insulated gate type field effect transistor
JPS63168050A (en) Semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JPH02305443A (en) Manufacture of semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH067556B2 (en) MIS type semiconductor device
JP2904081B2 (en) Method for manufacturing semiconductor device
JP2506947B2 (en) Semiconductor device and manufacturing method thereof