JPH067556B2 - MIS type semiconductor device - Google Patents

MIS type semiconductor device

Info

Publication number
JPH067556B2
JPH067556B2 JP5172185A JP5172185A JPH067556B2 JP H067556 B2 JPH067556 B2 JP H067556B2 JP 5172185 A JP5172185 A JP 5172185A JP 5172185 A JP5172185 A JP 5172185A JP H067556 B2 JPH067556 B2 JP H067556B2
Authority
JP
Japan
Prior art keywords
diffusion region
region
gate electrode
semiconductor device
type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP5172185A
Other languages
Japanese (ja)
Other versions
JPS61210673A (en
Inventor
義明 豊島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP5172185A priority Critical patent/JPH067556B2/en
Priority to DE8585309209T priority patent/DE3581797D1/en
Priority to EP85309209A priority patent/EP0187016B1/en
Publication of JPS61210673A publication Critical patent/JPS61210673A/en
Priority to US07/319,873 priority patent/US4935379A/en
Publication of JPH067556B2 publication Critical patent/JPH067556B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7836Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a significant overlap between the lightly doped extension and the gate electrode

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、MIS型半導体装置に関し、特にドレイン領
域の構造を改良したMIS型半導体装置に係る。
TECHNICAL FIELD OF THE INVENTION The present invention relates to a MIS semiconductor device, and more particularly to a MIS semiconductor device having an improved drain region structure.

〔発明の技術分野〕[Technical Field of the Invention]

最近、MIS型半導体装置(例えばMOS型半導体集積
回路)の高集積化が進行し、そのトランジスタがより微
細化されるに伴なってドレイン領域近傍の高電界を緩和
し、耐圧を向上するために、ドレイン領域を低濃度及び
高濃度の拡散領域の二重構造とした、いわゆるLDD
(Light Doped Drain)構造が開発、実用化されてい
る。
Recently, in order to alleviate a high electric field in the vicinity of the drain region and improve the breakdown voltage, the MIS type semiconductor device (for example, a MOS type semiconductor integrated circuit) is highly integrated and the transistor is further miniaturized. , The so-called LDD in which the drain region has a double structure of low-concentration and high-concentration diffusion regions
(Light Doped Drain) structure has been developed and put to practical use.

〔背景技術の問題点〕[Problems of background technology]

しかしながら、LDD構造の低濃度拡散領域はドレイン
電界を緩和することによりホットキャリアの発生を抑制
する反面、ホットキャリアによってゲート絶縁膜中に生
成された電界の影響を受けて、該低濃度拡散領域の表面
が空乏化し易くなる。その結果、LDD構造のトランジ
スタは低濃度拡散領域による寄生抵抗が増大し、電流駆
動能力が低下するという特有の劣化現象を生じる。LD
D構造において、ドレイン電界緩和効果は低濃度拡散領
域の濃度が低い程大きいが、上述した特有の劣化現象も
濃度が低くなる程大きくなり、相反する要求により低濃
度拡散領域の濃度選択範囲は小さくなるという問題があ
った。
However, while the low-concentration diffusion region of the LDD structure suppresses the generation of hot carriers by relaxing the drain electric field, the low-concentration diffusion region of the LDD structure is affected by the electric field generated in the gate insulating film by the hot carriers, The surface is easily depleted. As a result, the LDD-structured transistor has a peculiar deterioration phenomenon in which the parasitic resistance due to the low-concentration diffusion region increases and the current driving capability decreases. LD
In the D structure, the drain electric field relaxation effect is greater as the concentration of the low-concentration diffusion region is lower, but the above-mentioned characteristic deterioration phenomenon is also greater as the concentration is lower, and the concentration selection range of the low-concentration diffusion region is small due to conflicting requirements. There was a problem of becoming.

〔発明の目的〕[Object of the Invention]

本発明は、LDD構造の低濃度拡散領域によるドレイン
電界緩和効果を維持しつつ、該拡散領域による寄生抵抗
の増加に伴う電流駆動能力の低下に防止した高性能で高
信頼性のMIS型半導体装置を提供しようとするもので
ある。
The present invention provides a high-performance and highly reliable MIS semiconductor device that maintains the drain electric field relaxation effect of the low-concentration diffusion region of the LDD structure and prevents the current driving capability from being lowered due to the increase of parasitic resistance due to the diffusion region. Is to provide.

〔発明の概要〕[Outline of Invention]

本発明は、第1導電型の半導体基板と、この基板表面に
互に電気的に分離して設けられた第2導電型のソース,
ドレイン領域と、これら領域間のチャンネル領域を含む
基板表面にゲート絶縁膜を介して設けられたゲート電極
とを具備したMIS型半導体装置において、前記ゲート
電極の側面に幅の異なる二重の絶縁材料からなる壁体を
設け、かつ前記ソース,ドレイン領域のうち少なくとも
ドレイン領域を前記ゲート電極、第1の壁体、第2の壁
体に対して自己整合的に形成された第2導電型の第1,
第2,第3の拡散領域により構成すると共に、該第3拡
散領域を第2拡散領域より高濃度に、第2拡散領域を第
1拡散領域より高濃度に設定したことを特徴とするもの
である。かかる本発明によれば、既述の如くLDD構造
の低濃度拡散領域によるドレイン電界緩和効果を維持し
つつ、該拡散領域による寄生抵抗の増大に伴う電流駆動
能力の低下を防止した高性能で高信頼性のMIS型半導
体装置を得ることができる。
The present invention relates to a semiconductor substrate of a first conductivity type and a source of a second conductivity type, which are electrically isolated from each other on the surface of the substrate.
In a MIS type semiconductor device comprising a drain region and a gate electrode provided on a substrate surface including a channel region between these regions via a gate insulating film, a double insulating material having different widths on the side surface of the gate electrode. And a second conductivity type second wall formed by self-aligning at least the drain region of the source and drain regions with the gate electrode, the first wall body, and the second wall body. 1,
It is characterized in that it is composed of second and third diffusion regions, and that the third diffusion region is set to have a higher concentration than the second diffusion region and the second diffusion region is set to have a higher concentration than the first diffusion region. is there. According to the present invention, as described above, while maintaining the drain electric field relaxation effect of the low-concentration diffusion region of the LDD structure, it is possible to prevent the deterioration of the current drivability due to the increase of the parasitic resistance due to the diffusion region and to achieve high performance and high performance. It is possible to obtain a reliable MIS type semiconductor device.

〔発明の実施例〕Example of Invention

以下、本発明をnチヤンネルMOSICに適用した例に
ついて第1図〜第4図の製造方法を併記して説明する。
Hereinafter, an example in which the present invention is applied to an n-channel MOSIC will be described together with the manufacturing method shown in FIGS.

まず、p型シリコン基板1に、選択酸化によりフィール
ド酸化膜2を形成した後、熱酸化処理を施して該フィー
ルド酸化膜2で分離された島状の基板1領域表面に厚さ
250A°のゲート酸化膜3を形成した。つづいて、全
面に厚さ4000A°の多結晶シリコン膜を堆積し、P
OClの雰囲気中でリン拡散を行なって該多結晶シリ
コン膜にリンをドープし低抵抗化させた後、フォトエッ
チング技術によりパターニングしてゲート電極4を形成
した。ひきつづき、ゲート電極4をマスクとしてリンを
加速電圧35KeV、ドーズ量2×1015cm-2の条件でイオ
ン注入し、活性化して基板1表面にゲート電極4に対し
て自己整合的にn型拡散領域(第1拡散領域)5
を形成した(第1図図示)。
First, a field oxide film 2 is formed on a p-type silicon substrate 1 by selective oxidation, and then a thermal oxidation process is performed to form a gate with a thickness of 250 A ° on the surface of the island-shaped substrate 1 region separated by the field oxide film 2. The oxide film 3 was formed. Subsequently, a polycrystalline silicon film with a thickness of 4000 A ° is deposited on the entire surface, and P
Phosphorus was diffused in an atmosphere of OCl 3 to dope the polycrystalline silicon film with phosphorus to reduce the resistance, and then the gate electrode 4 was formed by patterning with a photoetching technique. Subsequently, using the gate electrode 4 as a mask, phosphorus is ion-implanted under the conditions of an accelerating voltage of 35 KeV and a dose amount of 2 × 10 15 cm −2 , and activated to self-align with the gate electrode 4 on the surface of the substrate 1 and n type. Diffusion area (first diffusion area) 5 1 ,
5 2 was formed (Figure 1 shown).

次いで、熱酸化処理を施して多結晶シリコンからなるゲ
ート電極4の上面及び側面に厚さ1000A゜の酸化膜
(第1の壁体)6を形成した。つついて、ゲート電極4
及び酸化膜6をマスクとして拡散係数の比較的小さい砒
素を加速電極35KeV、ドーズ量1×1014cm-2の条件
でイオン注入し、活性化して基板1表面にゲート電極4
側面の酸化膜6に対して自己整合的に前記拡散領域
,5より高濃度のn型拡散領域7,7を形成
した(第2図図示)。
Then, a thermal oxidation process was performed to form an oxide film (first wall body) 6 having a thickness of 1000 A ° on the upper surface and the side surface of the gate electrode 4 made of polycrystalline silicon. Poking, gate electrode 4
Also, using the oxide film 6 as a mask, arsenic having a relatively small diffusion coefficient is ion-implanted under the conditions of an acceleration electrode 35 KeV and a dose amount of 1 × 10 14 cm -2 , and activated to activate the gate electrode 4 on the surface of the substrate 1.
To form a self-aligned manner with said diffusion region 5 1, 5 2 higher concentrations of n-type diffusion regions 7 1, 7 2 against oxidation film 6 side (FIG. 2 shown).

次いで、全面に厚さ2000A°のSiO膜を堆積
し、反応性イオンエッチング法により全面エッチングを
行なってゲート電極4側面に対応する酸化膜6のSiO
からなる第2の壁体8を形成した。つづいで、ゲート
電極4、酸化膜6及び第2の壁体8をマスクとして砒素
を加速電圧40KeV、ドーズ量5×1015cm-2の条件
でイオン注入し、活性化して基板1表面に第2の壁体8
に対して自己整合的にn型拡散領域7,7より高濃
度のn型拡散領域(第3拡散領域)9,9を形成
した。この工程によりn型拡散領域5、n型拡散領
域7及びn型拡散領域9からなるソース領域10
が形成されると共に、n型拡散領域5、n型拡散領
域7及びn型拡散領域9からなるドレイン領域1
1が形成された(第3図図示)。
Then, a SiO 2 film having a thickness of 2000 A ° is deposited on the entire surface, and the entire surface is etched by the reactive ion etching method to form the SiO 2 film of the oxide film 6 corresponding to the side surface of the gate electrode 4.
A second wall body 8 of 2 was formed. Subsequently, using the gate electrode 4, the oxide film 6 and the second wall body 8 as a mask, arsenic is ion-implanted under the conditions of an acceleration voltage of 40 KeV and a dose amount of 5 × 10 15 cm −2 , activated, and then activated on the surface of the substrate 1. 2 walls 8
To form a self-aligned manner n-type diffusion regions 7 1, 7 2 higher concentrations of n + -type diffusion region (third diffusion region) 9 1, 9 2 against. By this step, the source region 10 including the n type diffusion region 5 1 , the n type diffusion region 7 1 and the n + type diffusion region 9 1 is formed.
Together but are formed, n - type diffusion region 5 2, drain region 101 made of n-type diffusion region 7 2 and the n + -type diffusion region 9 2
1 was formed (shown in FIG. 3).

次いで、全面にCVD−SiO膜12を堆積し、該C
VD−SiO膜12及びゲート酸化膜3等にフォトエ
ッチング技術によりコンタクトホール13を開孔した
後、Al膜の蒸着、パターニングを行なうことにより前
記ソース,ドレイン領域10,11のn+型拡散領域9
,9及びゲート電極4とコンタクトホール13を通
して接続するAl配線14,15,16を形成してnチ
ャンネルMOSICを製造した(第4図図示)。
Then, a CVD-SiO 2 film 12 is deposited on the entire surface, and the C
After forming a contact hole 13 in the VD-SiO 2 film 12 and the gate oxide film 3 by a photo-etching technique, an Al film is deposited and patterned to form the n + type diffusion regions of the source and drain regions 10 and 11. 9
1, 9 to form a 2 and Al wires 14, 15, 16 to be connected through the gate electrode 4 and the contact hole 13 was prepared n-channel MOSIC with (FIG. 4 shown).

しかして、本発明のMOSICは第4図に示すようにゲ
ート電極4の側面に厚さの異なる第1の壁体(酸化膜)
6及び第2の壁体8を設け、p型シリコン基板1表面に
ゲート電極4、第1の壁体6、第2の壁体8に対して自
己整合的にn型拡散領域(第1拡散領域)5
、n型拡散領域(第2拡散領域)7,7、n+
型拡散領域(第3拡散領域)9,9を設け、これら
拡散領域5,7,9によりソース領域10を、拡
散領域5,7,9によりドレイン領域11を構成
したLDD構造をなす。従って、ドレイン領域11のn
型拡散領域5によりホットキャリアの発生を抑制し
てドレイン電界を緩和することができる。また、ホット
キャリアによってゲート酸化膜3中に生成した電界の影
響によるn型拡散領域5付近への空乏化を、それに
隣接するn型拡散領域7により緩和でき、ひいては電
界駆動能力の低下を抑制できる。
Therefore, as shown in FIG. 4, the MOSIC of the present invention has a first wall body (oxide film) having a different thickness on the side surface of the gate electrode 4.
6 and the second wall body 8 are provided, and the n -type diffusion region (the first wall body 4 and the first wall body 6 and the second wall body 8 are self-aligned on the surface of the p-type silicon substrate 1 in a self-aligned manner). Diffusion area) 5 1 ,
5 2 , n-type diffusion region (second diffusion region) 7 1 , 7 2 , n +
Type diffusion regions (third diffusion regions) 9 1 and 9 2 are provided, and the diffusion regions 5 1 , 7 1 and 9 1 form a source region 10 and the diffusion regions 5 2 , 7 2 and 9 2 form a drain region 11. The LDD structure is formed. Therefore, n of the drain region 11
- it is possible to relieve the drain electric field to suppress the generation of hot carriers by diffusion region 5 2. Further, n due to the influence of the electric field generated in the gate oxide film 3 by a hot carrier - depletion in the diffusion region 5 2 vicinity, it can be mitigated by n-type diffusion region 7 2 adjacent thereto, thus lowering the electric field driving capability Can be suppressed.

更に、n型拡散領域5,5及びn型拡散領域
,7の幅は、第1,第2の壁体6,8により容易
に制御できるため、前記二つの相反する問題を解消する
のに適した濃度、幅をもつn型,n型の拡散領域
,5,7,7を形成できる。
Furthermore, since the widths of the n type diffusion regions 5 1 and 5 2 and the n type diffusion regions 7 1 and 7 2 can be easily controlled by the first and second wall bodies 6 and 8, the above two contradictory problems are encountered. It is possible to form n type and n type diffusion regions 5 1 , 5 2 , 7 1 , 7 2 having concentrations and widths suitable for eliminating the above.

なお、上記実施例ではソース領域をも3つの濃度の異な
る拡散領域で形成したが、ドレイン領域のみ3つの濃度
の異なる拡散領域で形成してもよい。
Although the source region is also formed of three diffusion regions having different concentrations in the above embodiment, only the drain region may be formed of three diffusion regions having different concentrations.

また、第1〜第3の拡散領域としてのn型拡散領域、
n型拡散領域、n型拡散領域の形成条件は上記実施例
に限定されず、本発明の目的を達する範囲内で自由に変
更できる。
Further, an n type diffusion region as the first to third diffusion regions,
The conditions for forming the n-type diffusion region and the n + -type diffusion region are not limited to those in the above embodiment, and can be freely changed within the range where the object of the present invention is achieved.

上記実施例では、nチャンネルMOSICに適用した例
について説明したが、CMOSIC又はMNOS等のゲート絶縁膜
として酸化膜以外の材料を使用したMIS型ICにも同
様に適用できる。
In the above-mentioned embodiment, the example applied to the n-channel MOSIC has been described, but the present invention can be similarly applied to a MIS type IC using a material other than an oxide film as a gate insulating film such as CMOSIC or MNOS.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く、本発明によればLDD構造の低濃度
拡散領域によるドレイン電界緩和効果を維持しつつ、該
拡散領域による寄生抵抗の増加に伴う電流駆動能力の低
下を抑制した高性能で高信頼性のMIS型半導体装置を
提供できる。
As described above in detail, according to the present invention, while maintaining the drain electric field relaxation effect of the low-concentration diffusion region of the LDD structure, it is possible to achieve high performance with high performance by suppressing the decrease of the current driving capability due to the increase of parasitic resistance due to the diffusion region. A reliable MIS semiconductor device can be provided.

【図面の簡単な説明】[Brief description of drawings]

第1図〜第4図は本発明の実施例におけるnチャンネル
MOSICを得るための製造工程をす断面図である。 1…p型シリコン基板、2…フィールド酸化膜、3…ゲ
ート酸化膜、4…ゲート電極、5,5…n型拡散
領域(第1拡散領域)、6…酸化膜(第1の壁体)、7
,7…n型拡散領域(第2拡散領域)、8…第2の
壁体、9,9…n型拡散領域(第3拡散領域)、
10…ソース領域、11…ドレイン領域、14〜16…
Al配線。
1 to 4 are sectional views showing manufacturing steps for obtaining an n-channel MOSIC in the embodiment of the present invention. 1 ... p-type silicon substrate, 2 ... field oxide film, 3 ... gate oxide film, 4 ... gate electrode, 5 1, 5 2 ... n - -type diffusion region (first diffusion region), 6 ... oxide film (first Wall), 7
1 , 7 2 ... N type diffusion region (second diffusion region), 8 ... Second wall body, 9 1 , 9 2 ... N + type diffusion region (third diffusion region),
10 ... Source region, 11 ... Drain region, 14-16 ...
Al wiring.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型の半導体基板と、この基板表面
に互に電気的に分離して設けられた第2導電型のソー
ス,ドレイン領域と、これら領域間のチャンネル領域を
含む基板表面にゲート絶縁膜を介して設けられたゲート
電極とを具備したMIS型半導体装置において、前記ゲ
ート電極の側面に幅の異なる二重の絶縁材料からなる壁
体を設け、かつ前記ソース,ドレイン領域のうち少なく
ともドレイン領域を前記ゲート電極、第1の壁体、第2
の壁体に対して自己整合的に形成された第2導電型の第
1,第2,第3の拡散領域により構成すると共に、該第
3拡散領域を第2拡散領域より高濃度に、第2拡散領域
を第1拡散領域より高濃度に設定したことを特徴とする
MIS型半導体装置。
1. A substrate surface including a semiconductor substrate of a first conductivity type, source and drain regions of a second conductivity type electrically isolated from each other on the substrate surface, and a channel region between these regions. In a MIS type semiconductor device having a gate electrode provided via a gate insulating film, a wall made of a double insulating material having different widths is provided on a side surface of the gate electrode, and At least a drain region of the gate electrode, the first wall body, and the second wall
Of the second conductivity type first, second, and third diffusion regions formed in a self-aligning manner with respect to the wall body of the second diffusion region, the third diffusion region having a higher concentration than the second diffusion region, 2. A MIS type semiconductor device characterized in that the second diffusion region is set to have a higher concentration than the first diffusion region.
JP5172185A 1984-12-27 1985-03-15 MIS type semiconductor device Expired - Lifetime JPH067556B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP5172185A JPH067556B2 (en) 1985-03-15 1985-03-15 MIS type semiconductor device
DE8585309209T DE3581797D1 (en) 1984-12-27 1985-12-18 MISFET WITH LOW-DOPED DRAIN AND METHOD FOR THE PRODUCTION THEREOF.
EP85309209A EP0187016B1 (en) 1984-12-27 1985-12-18 Misfet with lightly doped drain and method of manufacturing the same
US07/319,873 US4935379A (en) 1984-12-27 1989-03-01 Semiconductor device and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5172185A JPH067556B2 (en) 1985-03-15 1985-03-15 MIS type semiconductor device

Publications (2)

Publication Number Publication Date
JPS61210673A JPS61210673A (en) 1986-09-18
JPH067556B2 true JPH067556B2 (en) 1994-01-26

Family

ID=12894749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5172185A Expired - Lifetime JPH067556B2 (en) 1984-12-27 1985-03-15 MIS type semiconductor device

Country Status (1)

Country Link
JP (1) JPH067556B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02250331A (en) * 1989-03-24 1990-10-08 Hitachi Ltd Semiconductor device and its manufacture
JP2789109B2 (en) * 1989-05-25 1998-08-20 三菱電機株式会社 Semiconductor device and manufacturing method thereof
FR2654258A1 (en) * 1989-11-03 1991-05-10 Philips Nv METHOD FOR MANUFACTURING A MITTED TRANSISTOR DEVICE HAVING A REVERSE "T" SHAPE ELECTRODE ELECTRODE
FR2654257A1 (en) * 1989-11-03 1991-05-10 Philips Nv METHOD FOR MANUFACTURING A MOUNTED TRANSISTOR DEVICE HAVING A DEPTHING GRID ON PORTIONS OF LOW DOPED SOURCE AND DRAIN REGIONS.
KR930010124B1 (en) * 1991-02-27 1993-10-14 삼성전자 주식회사 Semiconductor transistor structure and making method thereof

Also Published As

Publication number Publication date
JPS61210673A (en) 1986-09-18

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
JP3337953B2 (en) SOI MOSFET and manufacturing method thereof
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH02250331A (en) Semiconductor device and its manufacture
JPH10223771A (en) Semiconductor device and fabrication thereof
KR100391959B1 (en) Semiconductor apparatus and method of manufacture
JP2002124671A (en) Semiconductor device and its manufacturing method
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JPH0557741B2 (en)
JPH067556B2 (en) MIS type semiconductor device
JP2635096B2 (en) Semiconductor device and manufacturing method thereof
JP2834058B2 (en) Method for manufacturing semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2569171B2 (en) Semiconductor device
JP2007123519A (en) Semiconductor device and method for manufacturing the same
JP3326990B2 (en) Bipolar transistor and method of manufacturing the same
JP3123140B2 (en) Field effect transistor
JPH0744276B2 (en) MIS type semiconductor device
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JP3274254B2 (en) Semiconductor device and manufacturing method thereof
JP2001007331A (en) Semiconductor device and its manufacture
JPS61154173A (en) Mis type semiconductor device
JPH09199716A (en) Semiconductor device and its manufacture
JPH042168A (en) Mos type field effect transistor and manufacture thereof
JP3272596B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term