JP3123140B2 - Field effect transistor - Google Patents

Field effect transistor

Info

Publication number
JP3123140B2
JP3123140B2 JP03240067A JP24006791A JP3123140B2 JP 3123140 B2 JP3123140 B2 JP 3123140B2 JP 03240067 A JP03240067 A JP 03240067A JP 24006791 A JP24006791 A JP 24006791A JP 3123140 B2 JP3123140 B2 JP 3123140B2
Authority
JP
Japan
Prior art keywords
insulating film
drain
source
channel
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP03240067A
Other languages
Japanese (ja)
Other versions
JPH0582779A (en
Inventor
竹内潔
武雄 松木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP03240067A priority Critical patent/JP3123140B2/en
Publication of JPH0582779A publication Critical patent/JPH0582779A/en
Application granted granted Critical
Publication of JP3123140B2 publication Critical patent/JP3123140B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Insulated Gate Type Field-Effect Transistor (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電界効果トランジスタ
に関する。
The present invention relates to a field effect transistor.

【0002】[0002]

【従来の技術】金属−絶縁膜−半導体電界効果トランジ
スタ(Metal−Insulator−Semico
nductor Field Effect Tran
sistor;MISFET)は、集積回路(IC)を
構成する主要な能動素子である。集積回路の処理速度と
機能は、そこで用いられるFETの寸法の縮小と回路の
高密度化により著しく向上させることができるため、F
ETの微細化が進められており、近年ではそのゲート長
(ゲート電極の長さ)が0.5μm以下という極めて微
細なものが実用化されようとしている。
2. Description of the Related Art Metal-insulator-semiconductor field effect transistors (Metal-Insulator-Semico)
nductor Field Effect Tran
A MISFET is a main active element constituting an integrated circuit (IC). The processing speed and function of integrated circuits can be significantly improved by reducing the size of FETs used therein and increasing the density of the circuits.
The miniaturization of ET has been promoted, and in recent years, an extremely fine one having a gate length (length of a gate electrode) of 0.5 μm or less has been put to practical use.

【0003】FETの微細化を進めていくにつれ、短チ
ャネル効果(チャネル長が短くなるとFETがオフ状態
になりにくくなる現象)を抑えることが次第に困難とな
ってきた。短チャネル効果を抑えるには基板の不純物濃
度を上げ、ゲート絶縁膜を薄くすればよいのだが、FE
Tの微細化の進展にともない、第1の方法では素子のし
きい値電圧が高くなりすぎ、第2の方法ではゲート絶縁
膜の信頼性確保が難しくなる。また、製造上チャネル長
はばらつくが、微細化によりそのばらつきの大きさが素
子の設計チャネル長に比べて無視できなくなっているこ
とも短チャネル効果抑圧を困難にしている。
[0003] As the miniaturization of FETs is advanced, it has become increasingly difficult to suppress the short channel effect (the phenomenon that the FET is less likely to be turned off when the channel length becomes shorter). To suppress the short-channel effect, it is necessary to increase the impurity concentration of the substrate and reduce the thickness of the gate insulating film.
With the progress of miniaturization of T, the threshold voltage of the device becomes too high in the first method, and it becomes difficult to secure the reliability of the gate insulating film in the second method. In addition, although the channel length varies in manufacturing, the fact that the size of the variation cannot be ignored compared to the design channel length of the element due to miniaturization also makes it difficult to suppress the short channel effect.

【0004】上記の困難に対応するため、通常は半導体
基板内部に形成されるソースとドレインを、基板上に堆
積された半導体領域に形成することが提案されている。
このような素子の試作に関する発表としては、例えば1
984年の国際電子素子会議(Internation
al Electron DevicesMeetin
g)におけるワング(S.S.Wang)らの発表(同
会議予稿集p.634)、1988年の国際電子素子会
議におけるヤマダ(T.Yamada)らの発表(同会
議予稿集p.35)がある。
To cope with the above difficulties, it has been proposed to form a source and a drain usually formed inside a semiconductor substrate in a semiconductor region deposited on the substrate.
As a presentation on the trial production of such a device, for example,
International Electronic Device Conference of 984 (International
al Electron DevicesMeetin
g.) (S. Wang, et al., Proceedings of the Conference p. 634), and the presentation of T. Yamada, et al. at the 1988 International Electron Devices Conference (P. 35). There is.

【0005】上述の提案によるソース・ドレインせり上
げ型FETの例を図2を参照して説明する。ソース・ド
レインせり上げ型FETの断面図を図2(A)に示し
た。また比較のため、通常使用されている、せり上げ構
造を有しない、低濃度ソース・ドレイン(Lightl
y Doped source and Drain;
LDD)領域を持つFETを図2(B)に示した。本願
の図面では、層間絶縁膜、配線といった本発明と本質的
に関係しない部分は省略した。ソース・ドレインせり上
げ型FETにおいては、通常基板内部に形成される高濃
度のソース10とドレイン11を基板70の表面75よ
り上に持ち上げる形で形成する。ソース10とドレイン
11の不純物は製造の過程で基板中にも広がり、ソース
とドレインが基板内に広がった領域10b、11bが存
在する。本構造においては基板内のソース10bと基板
内のドレイン11bの基板表面からの深さおよびその横
方向の広がりを製造上小さくすることができる。すなわ
ち、ソース10とドレイン11への不純物導入をイオン
注入により行う場合は、領域10aと11aの厚さ分だ
け領域10bと11bの深さが減少し、ソース領域10
とドレイン領域11への不純物導入を領域10aと11
aの堆積と同時に行う場合は、領域10bと11bは領
域10aと11aからの不純物の固相拡散によって形成
されるため、その深さは直接イオン注入を行う従来構造
の素子と比べて抑えられる。従って図2(A)の構造に
おいては短チャネル効果が図2(B)の従来構造の素子
と比較して抑えられる。なおLDD領域32と33は、
元来電界の集中を緩和してホットキャリアの発生による
素子の長期的な劣化を抑えるために導入されたものだ
が、図2(A)においてはゲート絶縁膜42直下のチャ
ネル領域と、ソース10およびドレイン11とを電気的
に接続する働きを担っている。また図中の40はゲート
側面絶縁膜、43はキャップ絶縁膜、60はLOCOS
酸化膜である。
An example of the source / drain lift type FET according to the above proposal will be described with reference to FIG. FIG. 2A is a cross-sectional view of the source / drain lift-up type FET. For comparison, a low-concentration source / drain (Lightl) having no raised structure, which is generally used, is used.
y Doped source and Drain;
An FET having an LDD) region is shown in FIG. In the drawings of the present application, parts that are not essentially related to the present invention, such as an interlayer insulating film and wiring, are omitted. In the source / drain lift type FET, a high concentration source 10 and a drain 11 usually formed inside the substrate are formed to be raised above a surface 75 of the substrate 70. The impurities of the source 10 and the drain 11 also spread in the substrate during the manufacturing process, and there are regions 10b and 11b where the source and the drain spread in the substrate. In this structure, the depth of the source 10b in the substrate and the drain 11b in the substrate from the substrate surface and the lateral spread thereof can be reduced in manufacturing. That is, when impurities are introduced into the source 10 and the drain 11 by ion implantation, the depths of the regions 10b and 11b are reduced by the thickness of the regions 10a and 11a, and
And doping the impurity into the drain region 11 with the regions 10a and 11
When the deposition is performed at the same time as the deposition of a, the regions 10b and 11b are formed by solid-phase diffusion of impurities from the regions 10a and 11a, so that the depth is suppressed as compared with a device having a conventional structure in which direct ion implantation is performed. Therefore, in the structure of FIG. 2A, the short channel effect is suppressed as compared with the device having the conventional structure of FIG. 2B. The LDD regions 32 and 33 are
Although originally introduced to alleviate the concentration of the electric field and suppress the long-term deterioration of the device due to the generation of hot carriers, in FIG. 2A, the channel region immediately below the gate insulating film 42, the source 10 and It has a function of electrically connecting the drain 11. In the figure, 40 is a gate side surface insulating film, 43 is a cap insulating film, and 60 is LOCOS.
It is an oxide film.

【0006】[0006]

【発明が解決しようとする課題】ソースとドレインを基
板表面より上にせり上げた図2(A)の構造は、短チャ
ネル効果をある程度軽減することができる。しかし、こ
の構造は本質的に高濃度のソースとドレインを浅くする
だけであり、素子のチャネル長はゲート長より長くなる
ことはなく、その効果には限界がある。
The structure shown in FIG. 2A in which the source and the drain are raised above the substrate surface can reduce the short channel effect to some extent. However, this structure essentially only makes the high-concentration source and drain shallower, and the channel length of the device does not become longer than the gate length, and its effect is limited.

【0007】[0007]

【0008】[0008]

【課題を解決するための手段】 本発明の電界効果トラ
ンジスタは、半導体基板と、前記基板上面に形成された
ゲート絶縁膜と、前記ゲート絶縁膜上面に形成されたゲ
ート電極と、前記ゲート電極の側面の全部または一部を
覆う側面絶縁膜と、前記側面絶縁膜の側面と前記半導体
基板の上面とに接する半導体領域と、前記半導体領域
と接する半導体領域と、を有し、前記半導体領域
がソースまたはドレイン電極として働き、前記半導体領
が前記半導体領域と異なる伝導型であることを特
徴とする。
According to the present invention, there is provided a field effect transistor comprising: a semiconductor substrate; a gate insulating film formed on the upper surface of the substrate; a gate electrode formed on the upper surface of the gate insulating film; A side surface insulating film covering all or a part of the side surface; a semiconductor region A in contact with a side surface of the side surface insulating film and an upper surface of the semiconductor substrate;
A in contact with the semiconductor region B, and the semiconductor region B
Function as a source or drain electrode, and the semiconductor region A has a conductivity type different from that of the semiconductor region B.

【0009】[0009]

【作用】本発明による電界効果トランジスタは、LDD
領域あるいはチャネル領域が基板内のみならずゲート電
極側面に沿って上方にまで拡張された構造を有する。こ
のため、一定のゲート長で比較して、その実質的な素子
の長さを、従来の平面型トランジスタおよび高濃度のソ
ースとドレインのみをせり上げたトランジスタより長く
することが出来る。また、ゲート電極側方の半導体領域
の厚さを選択することにより、LDD領域あるいはチャ
ネル領域の拡張量、従って短チャネル効果を抑制する効
果の大きさ、を自由に設定することができる。
The field effect transistor according to the present invention has an LDD
It has a structure in which a region or a channel region is extended not only in the substrate but also upward along the side surface of the gate electrode. Therefore, as compared with a fixed gate length, the substantial element length can be made longer than that of a conventional planar transistor and a transistor in which only a high concentration source and drain are raised. Further, by selecting the thickness of the semiconductor region on the side of the gate electrode, the amount of expansion of the LDD region or the channel region, that is, the magnitude of the effect of suppressing the short channel effect, can be freely set.

【0010】[0010]

【実施例】以下、本発明の参考例を、図1を参照して説
明する。図2(A)に示した従来のせり上げ型トランジ
スタとの違いは、高濃度のソース10およびドレイン1
1とシリコン基板70との間に、ソース・ドレインと同
一伝導型(nチャネル素子であればn型、pチャネル素
子であればp型)でその正味の不純物濃度がソース10
とドレイン11より低い半導体領域、すなわちせり上げ
LDD領域20と21が挿入されている点である。LD
D領域は短チャネル効果を抑える効果があり、その効果
はLDD領域が長いほど大きい。本実施例では、同一ゲ
ート電極長で従来より大きなLDD領域長が得られるた
め、効果的に短チャネル効果を抑えることができる。各
領域の典型的な値としては高濃度ソース10、ドレイン
11は濃度102 0 cm- 3 、せり上げLDD領域2
0、21は濃度3×101 8 cm- 3 、厚さ100n
m、側面絶縁膜40は厚さ75nm、ゲート電極底面の
長さ0.25μm、せり上げ部−チャネル間接続領域3
0、31の濃度3×1018 cm- 3 である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS Hereinafter, a reference example of the present invention will be described with reference to FIG. The difference from the conventional lift-up transistor shown in FIG.
1 and the silicon substrate 70, the source 10 has the same conductivity type as the source / drain (n-type for an n-channel device, p-type for a p-channel device) and the net impurity concentration.
And the semiconductor region lower than the drain 11, that is, the raised LDD regions 20 and 21 are inserted. LD
The D region has an effect of suppressing the short channel effect, and the effect is larger as the LDD region is longer. In this embodiment, a longer LDD region length than that of the related art can be obtained with the same gate electrode length, so that the short channel effect can be effectively suppressed. As typical value of each region heavily doped source 10, drain 11 Concentration 10 2 0 cm - 3, elevated LDD region 2
0 and 21 have a concentration of 3 × 10 18 cm −3 and a thickness of 100 n.
m, the thickness of the side insulating film 40 is 75 nm, the length of the bottom surface of the gate electrode is 0.25 μm, and the raised portion-channel connection region 3 is formed.
The concentration of 0, 31 is 3 × 10 18 cm −3 .

【0011】せり上げ部−チャネル間接続領域30と3
1は、ソース・ドレインと同一の伝導型となるよう不純
物を導入した基板領域である。これらは図2(A)にお
けるLDD領域32、33と同様に、せり上げLDD領
域20および22とゲート直下のチャネル部分とを電気
的に接続する働きをする。ゲート側面絶縁膜40が十分
薄く、ゲート電極からの電界で側面絶縁膜40の下の基
板表面に反転層が形成される場合には接続領域30と3
1とを設けないことも可能である。
Lift-to-channel connection regions 30 and 3
Reference numeral 1 denotes a substrate region into which impurities are introduced so as to have the same conductivity type as the source / drain. These function to electrically connect the lifted LDD regions 20 and 22 and the channel portion immediately below the gate, similarly to the LDD regions 32 and 33 in FIG. When the gate side insulating film 40 is sufficiently thin and an inversion layer is formed on the substrate surface below the side insulating film 40 by an electric field from the gate electrode, the connection regions 30 and 3
1 may not be provided.

【0012】以上ではソース側とドレイン側を同一構造
とする例を示したが、非対称構造としたり、ソース側と
ドレイン側のうち一方を従来構造とすることも可能であ
る。
In the above, an example in which the source side and the drain side have the same structure has been described. However, an asymmetric structure or one of the source side and the drain side may have a conventional structure.

【0013】本発明の実施例をやはり図1を参照して説
明する。本実施例では高濃度のソース10およびドレイ
ン11との間に、ソース・ドレインと異なる伝導型(n
チャネル素子ではp型または真性、pチャネル素子では
n型または真性)の半導体領域、すなわちせり上げチャ
ネル領域22と23が挿入される。本実施例では、これ
らせり上げチャネル領域22と23の、ゲート側面絶縁
膜40と接する界面には、ゲート電極50に電圧を印加
したとき反転層が形成される必要がある。そこで領域2
2と23の不純物濃度、および側面絶縁膜40の厚さと
材質を、通常MISFETのチャネル部分を設計するの
と同様の方法により適切に選択する。本実施例では、チ
ャネル領域をゲート電極の側面に沿って拡張することに
より、同一ゲート寸法でチャネル長を自由に延ばすこと
ができ、短チャネル効果から逃れることができる。せり
上げチャネル領域22、23の典型的な値は濃度1×1
1 6 cm- 3 、厚さ100nm、このときの側面絶縁
膜40はSiO2 を用いた場合厚さ30nmで、他の領
域の値は参考例と同じである。せり上げ部−チャネル間
接続領域30と31を設ける理由は参考例の場合と同じ
である。また領域30と31とを設けないことも同様に
可能である。また、ソース側とドレイン側の構造を非対
称とすること、ソース側とドレイン側のうち一方を従来
構造とすることも可能である。
An embodiment of the present invention will be described with reference to FIG. In the present embodiment, a conductive type (n
A p-type or intrinsic semiconductor region for a channel element and an n-type or intrinsic semiconductor region for a p-channel element, ie, elevated channel regions 22 and 23 are inserted. In this embodiment, an inversion layer needs to be formed at the interface between the lift-up channel regions 22 and 23 and the gate side surface insulating film 40 when a voltage is applied to the gate electrode 50. So area 2
The impurity concentrations of 2 and 23 and the thickness and material of the side surface insulating film 40 are appropriately selected by the same method as that for designing the channel portion of the normal MISFET. In this embodiment, by extending the channel region along the side surface of the gate electrode, the channel length can be freely extended with the same gate size, and the short channel effect can be avoided. A typical value of the raised channel regions 22 and 23 is 1 × 1
0 16 cm −3 , thickness 100 nm, the side insulating film 40 at this time is 30 nm thick when SiO 2 is used, and the values of other regions are the same as those of the reference example . The reason for providing the raised portions and the inter-channel connection regions 30 and 31 is the same as that of the reference example . It is also possible that the regions 30 and 31 are not provided. It is also possible to make the structure on the source side and the drain side asymmetric, and to make one of the source side and the drain side a conventional structure.

【0014】なお本発明はSOI(emicondu
ctor nsulator)MISFETに対
しても用いることができる。
[0014] The present invention is SOI (S emicondu
It can also be used for ctor o n I nsulator) MISFET.

【0015】[0015]

【発明の効果】以上説明したように、本発明によるトラ
ンジスタはLDD領域またはチャネル領域をゲート電極
の側面に沿って上方に延長するため、実質的に素子の長
さをゲート電極底面の平面寸法(ゲート長)より長くし
短チャネル効果を抑えることができる。このため、しき
い値電圧が高くなりすぎる、ゲート絶縁膜が薄く成りす
ぎるといった短チャネル効果抑制の副作用を避けなが
ら、トランジスタの占有面積を縮小することができる。
As described above, in the transistor according to the present invention, the LDD region or the channel region extends upward along the side surface of the gate electrode. Gate length) to suppress the short channel effect. Therefore, the area occupied by the transistor can be reduced while avoiding the side effect of suppressing the short-channel effect such that the threshold voltage becomes too high and the gate insulating film becomes too thin.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例を説明するための断面図であ
る。
FIG. 1 is a cross-sectional view for explaining an embodiment of the present invention.

【図2】従来のソース・ドレインせり上げ型MISFE
Tおよび比較のための通常LDD・MISFETの断面
図である。
FIG. 2 shows a conventional source / drain lift type MISFE.
FIG. 4 is a cross-sectional view of T and a normal LDD MISFET for comparison.

【符号の説明】[Explanation of symbols]

10 高濃度ソース 11 高濃度ドレイン 20、21 せり上げLDD領域 22、23 せり上げチャネル領域 30、31 せり上げ部−チャネル間接続領域 32、33 LDD領域 40 ゲート側面絶縁膜 42 ゲート絶縁膜 43 キャップ絶縁膜 50 ゲート電極 60 素子分離絶縁膜 70 半導体基板 75 半導体基板表面 REFERENCE SIGNS LIST 10 high-concentration source 11 high-concentration drain 20, 21 raised LDD region 22, 23 raised channel region 30, 31 raised portion-channel connection region 32, 33 LDD region 40 gate side insulating film 42 gate insulating film 43 cap insulating Film 50 gate electrode 60 element isolation insulating film 70 semiconductor substrate 75 semiconductor substrate surface

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−255970(JP,A) 特開 昭63−93150(JP,A) 特開 昭63−107170(JP,A) 特開 昭63−115376(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01L 29/78 ──────────────────────────────────────────────────続 き Continuation of front page (56) References JP-A-63-255970 (JP, A) JP-A-63-93150 (JP, A) JP-A-63-107170 (JP, A) JP-A-63-107170 115376 (JP, A) (58) Field surveyed (Int. Cl. 7 , DB name) H01L 29/78

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 半導体上面に形成されたゲート絶縁膜
と、前記ゲート絶縁膜上面に形成されたゲート電極と、
前記ゲート電極の側面の全部または一部を覆う側面絶縁
膜と、前記側面絶縁膜の側面と前記半導体上面とに接す
る半導体領域と、前記半導体領域と接する半導体領
と、を有し、前記半導体領域がソースまたはドレ
イン電極として働き、前記半導体領域が前記半導体領
と異なる伝導型であることを特徴とする電界効果ト
ランジスタ。
A gate insulating film formed on an upper surface of the semiconductor; a gate electrode formed on the upper surface of the gate insulating film;
A side surface insulating film covering all or a part of a side surface of the gate electrode, a semiconductor region A in contact with the side surface of the side surface insulating film and the semiconductor upper surface, and a semiconductor region B in contact with the semiconductor region A ; the semiconductor region B serves as a source or drain electrode, said field effect transistor, wherein the semiconductor region a is different from the conduction type of the semiconductor region B.
JP03240067A 1991-09-20 1991-09-20 Field effect transistor Expired - Lifetime JP3123140B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP03240067A JP3123140B2 (en) 1991-09-20 1991-09-20 Field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP03240067A JP3123140B2 (en) 1991-09-20 1991-09-20 Field effect transistor

Publications (2)

Publication Number Publication Date
JPH0582779A JPH0582779A (en) 1993-04-02
JP3123140B2 true JP3123140B2 (en) 2001-01-09

Family

ID=17053998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP03240067A Expired - Lifetime JP3123140B2 (en) 1991-09-20 1991-09-20 Field effect transistor

Country Status (1)

Country Link
JP (1) JP3123140B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323525B1 (en) 1997-09-18 2001-11-27 Kabushiki Kaisha Toshiba MISFET semiconductor device having relative impurity concentration levels between layers

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339476A (en) * 2005-06-03 2006-12-14 Elpida Memory Inc Semiconductor device and manufacturing method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6323525B1 (en) 1997-09-18 2001-11-27 Kabushiki Kaisha Toshiba MISFET semiconductor device having relative impurity concentration levels between layers

Also Published As

Publication number Publication date
JPH0582779A (en) 1993-04-02

Similar Documents

Publication Publication Date Title
US7400016B2 (en) Semiconductor device realizing characteristics like a SOI MOSFET
US6238985B1 (en) Semiconductor device and method for fabricating the same
US6440788B2 (en) Implant sequence for multi-function semiconductor structure and method
JP3057436B2 (en) Semiconductor device and manufacturing method thereof
KR900008153B1 (en) Semiconductor device and its manufacturing method
US6885066B2 (en) SOI type MOSFET
JPH0653513A (en) Semiconductor device and semiconductor integrated circuit device
JP3123140B2 (en) Field effect transistor
JP2000012851A (en) Field-effect transistor and manufacture thereof
JP2635096B2 (en) Semiconductor device and manufacturing method thereof
JPH0389555A (en) Semiconductor device and manufacture thereof
JPH1012870A (en) Semiconductor device and its manufacture
JPH067556B2 (en) MIS type semiconductor device
JPS6025028B2 (en) Manufacturing method of semiconductor device
JP2776891B2 (en) Semiconductor integrated circuit device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JP2001007331A (en) Semiconductor device and its manufacture
JPH09199716A (en) Semiconductor device and its manufacture
KR100201779B1 (en) Semiconductor device and method of manufacturing the same
KR100257709B1 (en) Method for manufacturing transistor soi device
KR19990057338A (en) MOS field effect transistor and manufacturing method of S.O.I device
JP2557876B2 (en) Semiconductor device and manufacturing method thereof
JPH065795A (en) Semiconductor device
JP2003258249A (en) Semiconductor integrated circuit
JPH06196642A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20000926

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071027

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081027

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091027

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101027

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111027

Year of fee payment: 11

EXPY Cancellation because of completion of term