JP2557876B2 - Semiconductor device and manufacturing method thereof - Google Patents

Semiconductor device and manufacturing method thereof

Info

Publication number
JP2557876B2
JP2557876B2 JP62086978A JP8697887A JP2557876B2 JP 2557876 B2 JP2557876 B2 JP 2557876B2 JP 62086978 A JP62086978 A JP 62086978A JP 8697887 A JP8697887 A JP 8697887A JP 2557876 B2 JP2557876 B2 JP 2557876B2
Authority
JP
Japan
Prior art keywords
source
drain
semiconductor device
region
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62086978A
Other languages
Japanese (ja)
Other versions
JPS63253669A (en
Inventor
勝一 三村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP62086978A priority Critical patent/JP2557876B2/en
Publication of JPS63253669A publication Critical patent/JPS63253669A/en
Application granted granted Critical
Publication of JP2557876B2 publication Critical patent/JP2557876B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明はMOSFETを集積形成してなる半導体装置とその
製造方法に係わるもので、特にソース、ドレイン拡散領
域における寄生抵抗の軽減に効果のあるような半導体装
置及びその製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION (Industrial field of application) The present invention relates to a semiconductor device formed by integrating MOSFETs and a method for manufacturing the same, and in particular to the parasitic resistance in the source and drain diffusion regions. The present invention relates to a semiconductor device that is effective in reducing the noise and a method for manufacturing the semiconductor device.

(従来の技術) 従来のMOSFETの構造を第2図に従がって説明する。P
タイプのシリコンの基板1(ここではNチャネルMOSFET
を説明する。Pチャネルの場合は反対の導電型を考えれ
ば良い)にゲート酸化膜5を介してゲート電極2が形成
されている。ソース3、ドレイン4は基板の反導電型の
不純物が含まれNタイプとなっている。このソース、ド
レインの不純物分布はほぼ一様であるかあるいは表面か
ら離れた端部で薄くなる構造が普通である。あるいは微
細化にともなう内部強電界効果に起因するホットエレク
トロン問題を回避するために第3図に示すような低濃度
のソース領域33、低濃度のドレイン領域44を具備してい
る構造もある。
(Prior Art) The structure of a conventional MOSFET will be described with reference to FIG. P
Type silicon substrate 1 (here N-channel MOSFET
Will be explained. In the case of the P channel, the opposite conductivity type may be considered), and the gate electrode 2 is formed via the gate oxide film 5. The source 3 and the drain 4 are of N type because they contain impurities of anti-conductivity type of the substrate. The impurity distribution of the source and drain is generally uniform, or the structure is usually thinned at the end away from the surface. Alternatively, there is also a structure having a low-concentration source region 33 and a low-concentration drain region 44 as shown in FIG. 3 in order to avoid the hot electron problem caused by the internal strong electric field effect due to miniaturization.

更に、ソース3、ドレイン4は通常アルミニウムで形
成される電極8に接続されている。以上の構造は広く知
られているものである。
Further, the source 3 and the drain 4 are connected to an electrode 8 usually made of aluminum. The above structure is widely known.

第2図,第3図に示されるいずれの場合にもいわゆる
MOS反転領域としてチャネル電流が流れる領域10は非常
に薄く、ソース、ドレイン間のゲート酸化膜近くの基板
表面近傍に局在している。又は内部のうすい領域に限ら
れる。従ってソースにおける電流流路を書くと(ドレイ
ンの場合は矢印を逆にすれば良い)第4図の矢印の様に
なりチャネル隣接部分において電流が混み合う現象が起
っている。電流が混み合う、すなわち電流密度が大き
い、とその部分の抵抗による電圧降下が大きくなりしい
てはMOSFETの特性の劣化、すなわち電流駆動力の低下が
顕著となってくる。
In both cases shown in FIG. 2 and FIG.
A region 10 in which a channel current flows as a MOS inversion region is very thin and is localized near the substrate surface near the gate oxide film between the source and drain. Or, it is limited to the thin area inside. Therefore, when the current flow path in the source is written (in the case of the drain, the arrow should be reversed), it becomes like the arrow in FIG. 4, and there is a phenomenon in which the currents are crowded in the channel adjacent portion. If the currents are crowded, that is, the current density is large, and the voltage drop due to the resistance in that portion becomes large, the deterioration of the characteristics of the MOSFET, that is, the reduction of the current driving force becomes remarkable.

ソース、ドレイン領域の抵抗はチャネル抵抗に較べて
小さく最近まではあまり問題とならなかったがLSI素子
であるMOSFETの微細化により相対的にチャネル抵抗が小
さくなってきたためにソース、ドレイン領域の抵抗がFE
Tの電流を規定する効果が出てきた。特に上記の電流の
混み合いによるFET特性劣化が目立ってきた。
The resistance of the source and drain regions is smaller than that of the channel resistance and has not been a problem until recently.However, the resistance of the source and drain regions has become relatively small because the channel resistance has become relatively small due to the miniaturization of MOSFET which is an LSI element. FE
The effect of defining the current of T came out. In particular, the deterioration of FET characteristics due to the above-mentioned current crowding has become noticeable.

(発明が解決しようとする問題点) チャネル領域に隣接したソース、ドレインの領域にお
いて電流密度が高くなり、その部分の電圧降下が大きい
という問題点があった。その事態を回避するためにチャ
ネル隣接のソース、ドレインの一部領域を低抵抗化する
必要がある。
(Problems to be Solved by the Invention) There has been a problem that the current density becomes high in the source and drain regions adjacent to the channel region, and the voltage drop at that portion is large. In order to avoid this situation, it is necessary to reduce the resistance of a part of the source and drain regions adjacent to the channel.

〔発明の構成〕[Structure of Invention]

(問題点を解決するための手段) 第1図−aに示すようにチャネル領域に隣接するソー
ス3、ドレイン4領域の一部により高濃度のNタイプの
領域13,14を形成する。
(Means for Solving the Problems) As shown in FIG. 1A, high-concentration N type regions 13 and 14 are formed by a part of the source 3 and drain 4 regions adjacent to the channel region.

(作用) 高濃度の領域は低濃度領域に較べて比抵抗が低いこと
は広く知られている。従って第1図−a 13あるいは14に
おける電圧降下は低減される。これはソース、ドレイン
において主に電流密集部で起る電圧降下が低減されるこ
とである。このためにMOSFETの特性劣化を回避できるも
のである。
(Function) It is widely known that the high-concentration region has a lower specific resistance than the low-concentration region. Therefore, the voltage drop in FIG. 1-a 13 or 14 is reduced. This is to reduce the voltage drop mainly occurring in the current crowding portion at the source and drain. Therefore, the deterioration of the MOSFET characteristics can be avoided.

ソース、ドレインを全面的に高濃度とすることは基板
との間の寄生容量を増大させLSIの動作速度低下をもた
らすために好ましくない構造である。
It is an unfavorable structure to make the source and drain of high concentration all over because it increases the parasitic capacitance between the source and the drain and reduces the operation speed of the LSI.

(実施例) この発明の構造は〔第1図〕のチャネル隣接のソー
ス、ドレインの一部を高濃度領域とするものである。従
来技術の第3図に説明したホットエレクトロン問題を回
避する構造は濃度の薄い33,44領域をもち、LDD(Lighly
Doped/Source)とよばれるが本発明はHDD(Highly Dop
ed Drain/Source)ともよばれるべき構造である。
(Embodiment) In the structure of the present invention, a part of the source and drain adjacent to the channel shown in FIG. 1 is a high concentration region. The structure for avoiding the hot electron problem described in FIG. 3 of the prior art has 33,44 regions of low concentration, and LDD (Lighly
This is called Doped / Source), but the present invention is HDD (Highly Dop)
ed Drain / Source) is a structure that should also be called.

以下に製造方法の実施例を説明する。第1図−cに示
す如くP型シリコン基板1に従来知られている方法に従
い素子分離酸化膜6により素子分離された領域にゲート
酸化膜5を介してゲート電極2が形成され、更にリン又
は砒素のイオン注入によりN型のソース3、ドレイン4
を形成する。次にリン又は砒素を含むCVDSiO2膜を付着
し良く知られた異方性エッチングにより第1図−dに示
すようなゲート側壁部にCVDSiO215膜を残すことができ
る。この側壁に残ったCVDSiO2膜を拡散源とすれば容易
に第1図−aに示す高濃度領域13,14を形成することが
できる。そのあとは通常の工程に従がってMOFSETを製作
する。
Examples of the manufacturing method will be described below. As shown in FIG. 1-c, the gate electrode 2 is formed on the P-type silicon substrate 1 in a region isolated by the device isolation oxide film 6 through the gate oxide film 5 according to a conventionally known method. N-type source 3 and drain 4 by ion implantation of arsenic
To form. Then, a CVDSiO 2 film containing phosphorus or arsenic is deposited and well-known anisotropic etching is performed to leave the CVDSiO 2 15 film on the side wall of the gate as shown in FIG. 1-d. If the CVD SiO 2 film remaining on the side wall is used as a diffusion source, the high concentration regions 13 and 14 shown in FIG. 1A can be easily formed. After that, MOFSET is manufactured according to the normal process.

〔発明の効果〕〔The invention's effect〕

チャネル隣接部分のソース、ドレイン一部領域が高濃
度となって低抵抗化されているために電流が高密度とな
るこの部分で顕著であった電圧降下が緩和され寄生抵抗
効果による特性劣化の少いMOSFETが実現される。特に微
細化MOSFETでは効果が顕著である。
The current density is high because the source and drain partial regions near the channel have a high concentration and a low resistance, so the voltage drop that was noticeable in this part is alleviated and the characteristic deterioration due to the parasitic resistance effect is reduced. A high quality MOSFET is realized. The effect is particularly remarkable in miniaturized MOSFETs.

【図面の簡単な説明】[Brief description of drawings]

第1図(a)は本発明を示したMOSFETの断面図、第1図
(b)は平面図、第1図(c),第1図(d)は製造方
法の実施例を説明する図、第2図は従来のMOSFETの構造
図、第3図はホットキャリア問題に対処した従来例の
図、第4図は従来例におけるソースの電流流路を示す図
である。 図中 1……基板、2……ゲート電極、3……ソース、4……
ドレイン、5……ゲート酸化膜、6……素子分離酸化
膜、7……絶縁膜、8……アルミニウム配線、9……コ
ンタクト部、13……高濃度ソース領域、14……高濃度ド
レイン領域、33……低濃度ソース領域、44……低濃度ド
レイン領域。
FIG. 1 (a) is a cross-sectional view of a MOSFET showing the present invention, FIG. 1 (b) is a plan view, and FIGS. 1 (c) and 1 (d) are views for explaining an embodiment of a manufacturing method. 2, FIG. 2 is a structural diagram of a conventional MOSFET, FIG. 3 is a diagram of a conventional example which copes with a hot carrier problem, and FIG. 4 is a diagram showing a current flow path of a source in the conventional example. In the figure, 1 ... Substrate, 2 ... Gate electrode, 3 ... Source, 4 ...
Drain, 5 ... Gate oxide film, 6 ... Element isolation oxide film, 7 ... Insulating film, 8 ... Aluminum wiring, 9 ... Contact part, 13 ... High concentration source region, 14 ... High concentration drain region , 33 …… low concentration source region, 44 …… low concentration drain region.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】複数のMOSFETを集積してなる半導体装置に
おいて、FETのソース、ドレイン領域のチャネル隣接部
分にソース、ドレインと同導電型の少なくともソース、
ドレインよりも高濃度の領域を持つことを特徴とする半
導体装置。
1. A semiconductor device in which a plurality of MOSFETs are integrated, wherein the source and drain of the FET are adjacent to the channel, and the source is at least the same conductivity type as the drain.
A semiconductor device having a higher concentration region than a drain.
【請求項2】ゲート電極形成後、ゲート電極をマスクと
してソース、ドレイン領域として基板と反導電型の拡散
領域を形成する工程と、 ゲート電極側壁部に自己整合的に基板と反導電型の不純
物を含むCVDSiO2膜を形成し、このCVDSiO2膜からソー
ス、ドレイン領域のチャネル側の不純物をドープして、
前記、ソース、ドレイン拡散領域に重なりなおかつ前記
拡散領域より高濃度の拡散領域を形成する工程を備えた
ことを特徴とする半導体装置の製造方法。
2. A step of forming a diffusion region of anti-conductivity type with the substrate as source and drain regions using the gate electrode as a mask after forming the gate electrode, and impurities of anti-conductivity type with the substrate self-aligned with the side wall of the gate electrode. Forming a CVD SiO 2 film containing, and doping impurities on the channel side of the source and drain regions from this CVD SiO 2 film,
A method of manufacturing a semiconductor device, comprising the step of forming a diffusion region having a higher concentration than the diffusion region, the diffusion region overlapping the source and drain diffusion regions.
JP62086978A 1987-04-10 1987-04-10 Semiconductor device and manufacturing method thereof Expired - Lifetime JP2557876B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62086978A JP2557876B2 (en) 1987-04-10 1987-04-10 Semiconductor device and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62086978A JP2557876B2 (en) 1987-04-10 1987-04-10 Semiconductor device and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPS63253669A JPS63253669A (en) 1988-10-20
JP2557876B2 true JP2557876B2 (en) 1996-11-27

Family

ID=13901961

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62086978A Expired - Lifetime JP2557876B2 (en) 1987-04-10 1987-04-10 Semiconductor device and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2557876B2 (en)

Also Published As

Publication number Publication date
JPS63253669A (en) 1988-10-20

Similar Documents

Publication Publication Date Title
US6518138B2 (en) Method of forming Self-aligned lateral DMOS with spacer drift region
JP3462301B2 (en) Semiconductor device and manufacturing method thereof
EP0422129B1 (en) Enclosed buried channel transistor
US6160288A (en) Vertical type misfet having improved pressure resistance
KR100248507B1 (en) A silicon-on-insulator transistors and fabricating method of the same
JP2700955B2 (en) Semiconductor device with field effect transistor
JPH06204469A (en) Field-effect transistor and manufacture thereof
WO2005020325A1 (en) Semiconductor device and manufacturing method thereof
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
US5238857A (en) Method of fabricating a metal-oxide-semiconductor device having a semiconductor on insulator (SOI) structure
JP5253874B2 (en) Thin film SOI high voltage transistor with auxiliary gate and method of manufacturing the same
JPH06268215A (en) Mis type semiconductor device
JP2519608B2 (en) Semiconductor device and manufacturing method thereof
JP2000012851A (en) Field-effect transistor and manufacture thereof
JP2557876B2 (en) Semiconductor device and manufacturing method thereof
JPH04254335A (en) Semiconductor device and its manufacture
GB2395602A (en) MOS transistor
JPS61255069A (en) Insulated gate field-effect transistor
JP3320476B2 (en) Method for manufacturing semiconductor device
JP3708370B2 (en) Semiconductor device and manufacturing method thereof
JPH08330578A (en) High breakdown voltage field-effect transistor and its manufacture
JP3123140B2 (en) Field effect transistor
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPS6038878A (en) Mis-type semiconductor device
KR930006853B1 (en) Manufacturing method of semiconductor device with source/drain self-aligned type