KR100257709B1 - Method for manufacturing transistor soi device - Google Patents

Method for manufacturing transistor soi device Download PDF

Info

Publication number
KR100257709B1
KR100257709B1 KR1019970075701A KR19970075701A KR100257709B1 KR 100257709 B1 KR100257709 B1 KR 100257709B1 KR 1019970075701 A KR1019970075701 A KR 1019970075701A KR 19970075701 A KR19970075701 A KR 19970075701A KR 100257709 B1 KR100257709 B1 KR 100257709B1
Authority
KR
South Korea
Prior art keywords
transistor
oxide film
silicon layer
upper silicon
buried oxide
Prior art date
Application number
KR1019970075701A
Other languages
Korean (ko)
Other versions
KR19990055746A (en
Inventor
이종욱
오민록
Original Assignee
김영환
현대전자산업주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 김영환, 현대전자산업주식회사 filed Critical 김영환
Priority to KR1019970075701A priority Critical patent/KR100257709B1/en
Publication of KR19990055746A publication Critical patent/KR19990055746A/en
Application granted granted Critical
Publication of KR100257709B1 publication Critical patent/KR100257709B1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66742Thin film unipolar transistors
    • H01L29/66772Monocristalline silicon transistors on insulating substrates, e.g. quartz substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/107Substrate region of field-effect devices
    • H01L29/1075Substrate region of field-effect devices of field-effect transistors
    • H01L29/1079Substrate region of field-effect devices of field-effect transistors with insulated gate
    • H01L29/1083Substrate region of field-effect devices of field-effect transistors with insulated gate with an inactive supplementary region, e.g. for preventing punch-through, improving capacity effect or leakage current

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE: A method for manufacturing a transistor of an SOI(silicon on insulator) device is provided to remove a lateral conduction by increasing a threshold voltage of a side channel. CONSTITUTION: A buried oxide layer(13) is formed on a semiconductor substrate(11). An upper silicon layer(15) is formed on the buried oxide layer(13), thereby forming an SOI substrate. A pad oxide layer and a nitride layer are formed on the SOI substrate. A photoresist film pattern is formed on the nitride layer by performing an etching process. Then, the photoresist film pattern is removed, and a field oxide layer(23) is formed in a thickness of 2500 to 3500Å by oxidizing the upper silicon layer(15). After removing the pad insulating layer pattern, a gate electrode is formed.

Description

에스.오.아이. 소자의 트랜지스터 제조방법S. Oh. Method of manufacturing transistor of device

본 발명은 에스.오.아이. 소자의 트랜지스터 제조방법에 관한 것으로, 특히 트랜지스터가 안정적으로 동작할 수 있도록 트랜지스터의 측면 전도를 제거함으로써 메모리소자의 주변회로, 고속 저전압 회로, 주뮨자형 반도체소자 및 엠.엠.엘. ( merged memory logic, 이하에서 MML 이라 함 ) 회로 등등에 사용 가능한 에스.오.아이. 반도체를 형성하는 기술에 관한 것이다.The present invention is S. O. I. The present invention relates to a method of manufacturing a transistor of a device, and in particular, by eliminating side conduction of a transistor so that the transistor can operate stably, a peripheral circuit of a memory device, a high-speed low voltage circuit, a pin-shaped semiconductor device and an M.M.L. (merged memory logic, hereinafter referred to as MML). A technique for forming a semiconductor.

상기 SOI 소자는 반도체기판위에 절연 역할을 하는 실리콘 산화막을 형성하고, 그 위에 실제 사용되는 반도체기판 예를들어 단결정 실리콘층을 형성하고, 상기 단결정 실리콘층의 상부에 반도체소자를 제조하는 방법으로 소자의 분리 기술이 용이하고, 소자의 전기적인 특성이 우수하여 널리 연구 되고 있다.The SOI device is a method of forming a silicon oxide film that insulates a semiconductor substrate, an actual semiconductor substrate, for example, a single crystal silicon layer is formed on the semiconductor substrate, and a semiconductor device on top of the single crystal silicon layer. The separation technology is easy and the electrical characteristics of the device are excellent, and it has been widely studied.

일반적으로, 상기 SOI 소자는 두 웨이퍼를 붙인 후 하나의 웨이퍼를 얇게 만드는 비.이 (Bond & Etch, 이하에서 BE 라 함)법과, 반도체기판 상부에 산소 임플란트 (oxigen implasted) 후 열처리에 의해 베리드 산화막 ( buried oxide ) 과 실리콘막을 형성하는 시목스 ( Separation By IMplated Oxygen, 이하에서 SIMOX 라 함 ) 법이 사용되고 있다.In general, the SOI device is bonded by two wafers and then thinned by one wafer (Bond & Etch, BE hereafter), and then buried by heat treatment after oxygen implant (oxigen implasted) on the semiconductor substrate. The Separation By IMplated Oxygen (hereinafter referred to as SIMOX) method of forming a buried oxide and a silicon film is used.

상기 SOI 구조의 MOSFET는, 벌크( bulk ) 모스전계효과 트랜지스터 ( metal oxide semconduct field effect transistor, 이하 MOSFET 라 함 ) 가 게이트, 소오스, 드레인, 반도체기판의 4 - 터미널(terminal) 구조인데 비하여, 반도체기판에 대한 콘택 및 관련배선에 대한 연결이 필요없기 때문에 게이트, 소오스, 드레인의 3 - 터미널 구조를 가져 칩(chip)의 크기를 소형화할 수 있다.In the SOI structure MOSFET, a bulk MOS field effect transistor (hereinafter referred to as MOSFET) is a four-terminal structure of a gate, a source, a drain, and a semiconductor substrate. Since there is no need for contacts to and associated wiring, the three-terminal structure of the gate, source, and drain can be used to reduce the size of the chip.

또한, CMOS를 구현하는 데 있어 웰을 형성하지 않으며, 각각의 MOSFET의 활성영역이 서로 절연되어 있기 때문에 래치-업(latch up)을 방지할 수 있다.In addition, CMOS does not form a well, and since the active regions of each MOSFET are isolated from each other, latch-up can be prevented.

그리고, 얇은 실리콘박막에 제작되는 SOI 소자는 소오스/드레인 접합이 필름 두께 전체에 형성되므로, 소오스/드레인의 면 접합 용량(area junction capacitance)이 거의 없고, 페리미터(perimeter)에 의한 접합용량만이 존재한다. 따라서, SOI 소자는 벌크 MOSFET에 비해 고속, 저전력 특성을 갖는다.In the SOI device fabricated in the thin silicon thin film, since the source / drain junction is formed over the entire film thickness, there is almost no area junction capacitance of the source / drain, and only the junction capacitance by the perimeter exist. Thus, SOI devices have high speed and low power characteristics compared to bulk MOSFETs.

그 밖에도, 상기 SOI 소자는 전체적인 아이.씨. 칩(IC chip)의 회로적 요소와 CMOS 회로의 래치-업 사이에서 발생되는 캐패시터 커플링(capacitive coupling)을 감소시키며, 칩 크기 감소 및 패킹밀도 증가로 전체적인 회로의 동작속도를 증가시키고 기생 캐패시턴스와 칩 크기를 감소시키는 특성을 가진다.In addition, the SOI element is an overall IC. Reduces the capacitive coupling between the circuit elements of the IC and the latch-up of the CMOS circuit, and reduces chip size and increases packing density to increase overall circuit operating speed and increase parasitic capacitance and parasitic capacitance. It has the property of reducing chip size.

또한, 상기 SOI 소자는 핫 일렉트론 ( Hot electron ) 효과감소, 숏채널 효과 ( Short channel effect ) 감소 등과 같은 장점을 가지고 있다.In addition, the SOI device has advantages such as reducing the hot electron effect, reducing the short channel effect, and the like.

그러나, 상기 SOI 소자는 단결정실리콘 소자가 상기의 장점을 갖기 위해서는 SOI 웨이퍼의 상부 실리콘층의 두께가 100 ㎚ 이하로 얇아만 한다. 이와같이 상부 실리콘 층의 두께가 SOI 웨이퍼를 사용되 제작된 트랜지스터는 사용자의 입장에서 볼때 측면 전도 ( side conduction ) 라는 특성으로 회의 오동작을 야기시킬 수 있다.However, in the SOI device, the thickness of the upper silicon layer of the SOI wafer must be as thin as 100 nm or less for the single crystal silicon device to have the above advantages. As described above, transistors fabricated using an SOI wafer with a thickness of the upper silicon layer may cause side-effects in terms of the side conduction from the user's point of view.

도 1 은 트랜지스터의 평면도를 도시한 평면도이고, 도 2a 및 도 2b 는 도 1 의 ⓐ-ⓐ 및 ⓑ-ⓑ 절단면에 따른 단면도이다.1 is a plan view showing a plan view of a transistor, and FIGS. 2A and 2B are cross-sectional views taken along line ⓐ-ⓐ and ⓑ-ⓑ of FIG. 1.

상기 도 1 은, 게이트전극(100)이 활성영역에 구비되고, 상기 게이트전극(100)의 좌우측으로 소오스/드레인 전극(300,200)이 형성된 것을 도시한다.FIG. 1 illustrates that a gate electrode 100 is provided in an active region, and source / drain electrodes 300 and 200 are formed at left and right sides of the gate electrode 100.

상기 도 2a 는 상기 도 1 의 ⓐ-ⓐ 절단면을 따라 절단한 단면을 도시한 단면도로서, 반도체기판(31) 상부에 매몰 산화막(35)을 형성하고, 상기 매몰 산화막(35)의 상부에 상부 실리콘층(35)을 형성한다.FIG. 2A is a cross-sectional view illustrating a cross section taken along the cutting line ⓐ-ⓐ of FIG. 1, wherein the buried oxide film 35 is formed on the semiconductor substrate 31, and the upper silicon is formed on the buried oxide film 35. Form layer 35.

그리고, 상기 상부 실리콘층(35) 상부에 패드산화막(도시안됨)과 질화막(도시안됨)을 소정두께 각각 형성한다.A pad oxide film (not shown) and a nitride film (not shown) are respectively formed on the upper silicon layer 35 at predetermined thicknesses.

그 다음에, 소자분리마스크를 이용한 식각공정으로 상기 상부 실리콘층(35)을 노출시키고 상기 노출된 상부 실리콘층(35)을 열산화시켜 소자분리절연막(41)을 형성한다.Subsequently, the upper silicon layer 35 is exposed by the etching process using the device isolation mask, and the exposed upper silicon layer 35 is thermally oxidized to form the device isolation insulating layer 41.

그리고, 상기 질화막과 패드산화막을 제거하고, 상기 상부 실리콘층(35)의 활성영역에 게이트산화막(43)과 다결정실리콘막(45)을 소정두께 증착한 다음, 게이트전극용 마스크를 이용한 식각공정으로 상기 다결정실리콘막(45)과 게이트산화막(43)을 식각하여 게이트전극을 형성한다.Then, the nitride layer and the pad oxide layer are removed, and the gate oxide layer 43 and the polysilicon layer 45 are deposited to a predetermined thickness in the active region of the upper silicon layer 35. Then, the etching process using the gate electrode mask is performed. The polysilicon layer 45 and the gate oxide layer 43 are etched to form a gate electrode.

그 다음에, 상기 게이트전극과 소자분리절연막(41)을 마스크로하여 상기 상부 실리콘층(45)에 고농도의 불순물 이온을 주입함으로써 소오스/드레인 접합영역(39,37)을 형성한다. (도 2a)Next, source / drain junction regions 39 and 37 are formed by implanting a high concentration of impurity ions into the upper silicon layer 45 using the gate electrode and the device isolation insulating film 41 as a mask. (FIG. 2A)

상기 도 2b 는 상기 도 1 의 ⓑ-ⓑ 절단면을 따른 단면도로서, 상기 도 2a 공정으로 형성된 것이다.FIG. 2B is a cross-sectional view taken along line ⓑ-ⓑ of FIG. 1, and is formed by the process of FIG. 2A.

여기서, 트랜지스터의 주채널이 게이트 전압에 의해 형성되기 전에 필드 산화막에 존재하는 불순물에 의한 상부 실리콘 층의 측면에 기생 채널(47)이 형성되어 측면전도가 발생하고, 이로인해 트랜지스터의 누설전류가 증가하게 되는 단점이 있다. 이때, 상기 불순물은 트랜지스터 제작 공정시 필드산화막에서 석출된 것이 대부분이다.Here, the parasitic channel 47 is formed on the side of the upper silicon layer due to the impurities present in the field oxide film before the main channel of the transistor is formed by the gate voltage, so that side conduction occurs, thereby increasing the leakage current of the transistor. There is a drawback to this. At this time, most of the impurities are precipitated in the field oxide film during the transistor fabrication process.

따라서, 고속화 및 저전압화가 가능한 SOI 웨이퍼를 이용해 제작된 트랜지스터 회로가 안정적으로 동작하기 위해서는 트랜지스터의 측면전도 제거가 필수적이다.Thus, side conduction removal of transistors is essential for stable operation of transistor circuits fabricated using SOI wafers capable of high speed and low voltage.

현재, 트랜지스터의 측면전도를 제거하기 위해 주로 이용되는 방법은 필드산화막과 상부 실리콘층의 계면에 이온을 주입하여 측면 채널의 문턱전압을 증가시키는 것이다. 그러나, 이러한 방법은 이온주입에너지를 결정하기가 어려우며 그 효과 또한 뚜렷하지 못한 문제점을 갖고 있다.Currently, a method mainly used to remove side conduction of a transistor is to increase the threshold voltage of the side channel by implanting ions into the interface between the field oxide film and the upper silicon layer. However, this method has difficulty in determining ion implantation energy and its effect is not clear.

본 발명은 상기한 종래기술의 문제점을 해결하기위하여, 트랜지스터의 측면전도를 제거하기 위하여 산화막과 상부 실리콘층 사이에 존재하는 응력을 조절하여 상부 실리콘층에 주입된 불순물이 필드산화막과 매몰 산화막으로 확산되는 것을 방지하고 계면에 불순물을 축척함으로써 측면 채널의 문턱전압을 증가시켜 측면전도를 제거하기 위한 에스.오.아이. 소자의 트랜지스터 제조방법을 제공하는데 그 목적이 있다.In order to solve the problems of the prior art described above, in order to remove the side conduction of the transistor, by controlling the stress existing between the oxide film and the upper silicon layer, impurities injected into the upper silicon layer are diffused into the field oxide film and the buried oxide film. S.O.I. to remove side conduction by increasing the threshold voltage of the side channel by preventing impurities and accumulating impurities at the interface. It is an object of the present invention to provide a method for manufacturing a transistor of a device.

도 1 은 반도체 표준공정과 에스.오.아이. ( Silicon On Insulator, 이하에서 SOI 라 함 ) 웨이퍼를 이용하여 제작된 에스.오.아이. 소자의 트랜지스터 평면도.1 shows a semiconductor standard process and S.O.I. Silicon On Insulator (hereinafter referred to as SOI) S.O.I. fabricated using a wafer. Transistor top view of the device.

도 2a 및 도 2b 는 종래기술에 따른 에스.오.아이. 소자의 트랜지스터 제조방법을 도시한 단면도.2A and 2B illustrate S.O.I. Sectional drawing which shows the transistor manufacturing method of a device.

도 3a 내지 도 3d 는 본 발명의 실시예에 따른 에스.오.아이. 소자의 트랜지스터 제조방법을 도시한 단면도.3A-3D illustrate S.O.I. according to an embodiment of the present invention. Sectional drawing which shows the transistor manufacturing method of a device.

도 4 는 본 발명에 따른 에스.오.아이. 소자의 전류-전압 특성을 도시한 그래프도.4 is S. O. I. according to the present invention. Graph showing the current-voltage characteristics of the device.

< 도면의 주요부분에 대한 부호의 설명 ><Description of Symbols for Major Parts of Drawings>

11,31 : 반도체기판 13,33 :매몰 산화막11,31: semiconductor substrate 13,33: buried oxide film

15,35 : 상부 실리콘층 17 : 패드산화막15,35: upper silicon layer 17: pad oxide film

19 : 질화막 21 : 감광막패턴19 nitride film 21 photosensitive film pattern

23,41 : 소자분리절연막 25 : 계면에 축척된 불순물23, 41: device isolation insulating film 25: impurities accumulated at the interface

27,43 : 게이트산화막 29,45 : 다결정실리콘막27,43 gate oxide film 29,45 polysilicon film

39 : 소오스 전극 37 : 드레인 전39 source electrode 37 before drain

47 : 측면 채널47: side channel

이상의 목적을 달성하기 위해 본 발명에 따른 에스.오.아이. 소자의 트랜지스터 제조방법은,S. O. I. according to the present invention to achieve the above object. The transistor manufacturing method of the device,

반도체기판 상부에 매몰 산화막 및 상부 실리콘층이 형성된 SOI 웨이퍼의 소자분리영역을 노출시키는 패드절연막패턴을 형성하는 공정과,Forming a pad insulating film pattern exposing the device isolation region of the SOI wafer in which the buried oxide film and the upper silicon layer are formed on the semiconductor substrate;

상기 노출된 상부 실리콘층을 열산화공정을 실시하되, 상기 매몰 산화막이 압축응력을 갖고 상기 상부 실리콘층이 인장응력을 갖도록 실시하여 소자분리절연막을 형성하는 공정과,Performing a thermal oxidation process on the exposed upper silicon layer, wherein the buried oxide film has a compressive stress and the upper silicon layer has a tensile stress to form a device isolation insulating film;

상기 패드절연막패턴을 제거하고 게이트전극을 형성하는 공정을 포함하는 것을 특징으로한다.And removing the pad insulating layer pattern and forming a gate electrode.

이하, 첨부된 도면을 참고로 하여 본 발명을 상세히 설명하기로 한다.Hereinafter, the present invention will be described in detail with reference to the accompanying drawings.

도 3a 내지 도 3e 는 본 발명의 실시예에 따른 에스.오.아이. 소자의 트랜지스터 제조방법을 도시한 단면도로서, 도 1 의 ⓑ-ⓑ 절단면을 따라 절단한 공정단면도이다.3A-3E illustrate S.O.I. according to an embodiment of the present invention. It is sectional drawing which shows the transistor manufacturing method of an element, Comprising: It is process sectional drawing cut along the ⓑ-ⓑ cutting surface of FIG.

먼저, 반도체기판(11) 상부에 매몰 산화막(13)을 800 ∼ 1200 Å 정도의 두게로 형성하고, 상기 매몰 산화막(13) 상부에 상부 실리콘층(15)을 형성함으로써 SOI 기판을 형성한다. (도 3a)First, an SOI substrate is formed by forming a buried oxide film 13 on the semiconductor substrate 11 at a thickness of about 800 to 1200 GPa, and forming an upper silicon layer 15 on the buried oxide film 13. (FIG. 3A)

그리고, 상기 SOI 기판 상부에 패드산화막(17)과 질화막(19)을 각각 형성하고, 상기 질화막(19) 상부에 감광막패턴(21)을 형성한다. 이때, 상기 감광막패턴(21)은 소자분리마스크를 이용한 식각공정으로 형성한다. (도 3b)The pad oxide layer 17 and the nitride layer 19 are formed on the SOI substrate, respectively, and the photoresist layer pattern 21 is formed on the nitride layer 19. In this case, the photoresist pattern 21 is formed by an etching process using an element isolation mask. (FIG. 3B)

그 다음에, 상기 감광막패턴(21)을 제거하고, 열산화공정으로 상기 패드산화막(17)과 질화막(19)을 산화장벽으로 하여 상부 실리콘층(15)을 산화시킴으로써 소자분리절연막(23)을 2500 ∼ 3500 Å 정도의 두께로 형성한다.Thereafter, the photoresist film pattern 21 is removed, and the device isolation insulating film 23 is oxidized by oxidizing the upper silicon layer 15 using the pad oxide film 17 and the nitride film 19 as an oxide barrier by a thermal oxidation process. It is formed to a thickness of about 2500 to 3500 kPa.

이때, 상기 열산화공정은 소자분리절연막(23)이 매몰 산화막(13)과 직접적으로 접촉하도록 900 ∼ 1300 ℃ 온도의 건 산소분위기에서 3 ∼ 5 시간 정도 실시하여 상기 매몰 산화막(13)에 존재하는 스트레스를 압축 변형력 ( compressive stress ) , 즉 압축 응력이 되도록 산화막(13)의 두께 또는 소자분리절연막(23)의 성장조건을 조절함으로써 상기 상부 실리콘층(15)이 산화막(13)의 스트레스에 의한 인장응력 ( tensile stress ) 을 갖게 한다.In this case, the thermal oxidation process is performed in a dry oxygen atmosphere at a temperature of 900 to 1300 ° C. for 3 to 5 hours so that the device isolation insulating film 23 directly contacts the buried oxide film 13. The stress of the upper silicon layer 15 due to the stress of the oxide film 13 is adjusted by adjusting the thickness of the oxide film 13 or the growth condition of the device isolation insulating film 23 so that the stress is compressive stress, that is, compressive stress. Have a tensile stress.

그리고, 상기 매몰 산화막(13)이 압축변형력을 갖고 있는 경우는 붕소의 확산이 억제되는 경향이 있으며, 이로인하여 붕소가 상부 실리콘층(15)과 매몰 산화막(13) 계면에 축척될 수 있다. 따라서, 상기 상부 실리콘층(15) 내에 존재하는 불순물이 매몰 산화막(13)으로 확산되는 현상을 방지할 수 있을 뿐만아니라 상기 상부 실리콘층(15)과 매몰 산화막(13) 계면에 불순물(25)을 축척시킬 수 있다. 이때, 상기 매몰 산화막(13) 내에 존재하는 응력의 양이 적어도 1×1010dyne/㎠ 이상은 되어야 가능하다.In addition, when the buried oxide film 13 has a compressive strain, boron diffusion tends to be suppressed, and thus, boron may be accumulated at an interface between the upper silicon layer 15 and the buried oxide film 13. Therefore, the diffusion of impurities in the upper silicon layer 15 into the buried oxide layer 13 may be prevented, and impurities 25 may be formed at the interface between the upper silicon layer 15 and the buried oxide layer 13. Can be scaled. At this time, the amount of stress existing in the buried oxide film 13 may be at least 1 × 10 10 dyne / cm 2 or more.

여기서, 상기 매몰 산화막(13)과 상부 실리콘층(15)의 계면에서 불순물(25) 농도가 증가하면 측면 채널의 문턱전압이 증가하게 되어 SOI 소자에서 측면전도에 의한 누설전류를 제거할 수 있다. (도 3c)In this case, when the concentration of the impurity 25 increases at the interface between the buried oxide film 13 and the upper silicon layer 15, the threshold voltage of the side channel is increased to remove leakage current due to side conduction in the SOI device. (FIG. 3C)

그 다음에, 상기 패드산화막(17)과 질화막(19)을 제거하고, 상기 상부 실리콘층(15) 상부에 게이트산화막(27)과 게이트전극용 다결정실리콘막(29)의 적층구조로 형성된 게이트전극을 형성한다. (도 3d, 도 3e)Next, the pad oxide film 17 and the nitride film 19 are removed, and the gate electrode formed of a stacked structure of the gate oxide film 27 and the polysilicon film 29 for the gate electrode on the upper silicon layer 15. To form. (FIG. 3D, FIG. 3E)

도 4 는 측면 전도가 제거된 SOI 소자의 전류-전압 특성을 도시한 그래프도로서, "

Figure kpo00000
" 는 측면전도가 존재하는 경우를 도시하고, "
Figure kpo00001
"는 측면전도가 제거된 경우를 도시한다.4 is a graph showing the current-voltage characteristics of an SOI device with side conduction removed.
Figure kpo00000
"Shows the case of lateral conduction, and"
Figure kpo00001
Shows the case where the side conduction is removed.

본 발명의 다른 실시예는, 상기 매몰 산화막(13)의 두께 조절, 소자분리절연막 형성공정시 시간, 온도, 분위기 등의 공정조건 조절, SOI 웨이퍼 제조시 매몰 산화막과 상부 실리콘층의 응력 조절 및 패드산화막과 질화막의 두께 조절을 이용하여 매몰 산화막과 실리콘 박막의 계면에 존재하는 응력을 조절함으로써 측면전도가 없는 소자를 제작하는 것이다.Another embodiment of the present invention, the thickness control of the buried oxide film 13, the process conditions such as time, temperature, atmosphere during the device isolation insulating film formation process, the stress control of the buried oxide film and the upper silicon layer during the SOI wafer manufacturing and pads By controlling the thickness of the oxide film and the nitride film by controlling the stress present at the interface between the buried oxide film and the silicon thin film to produce a device without side conduction.

이상에서 설명한 바와같이 본 발명에 따른 에스.오.아이. 소자의 트랜지스터 제조방법은, 매몰 산화막 두께와 소자분리절연막 형성공정 조건을 변화시켜 측면전도가 없는 박막형 SOI 트랜지스터를 제조함으로써 고속, 저전력 회로를 구현할 수 있을 뿐만아니라 측면 전도가 없기 때문에 안정적인 회로 동작을 확보할 수 있는 효과가 있다.As described above, S.I.I. according to the present invention. In the transistor fabrication method of the device, a thin film type SOI transistor without side conduction is produced by varying the thickness of the buried oxide film and the conditions of forming the device isolation insulating film. It can work.

Claims (5)

반도체기판 상부에 매몰 산화막 및 상부 실리콘층이 형성된 SOI 웨이퍼의 소자분리영역을 노출시키는 패드절연막패턴을 형성하는 공정과,Forming a pad insulating film pattern exposing the device isolation region of the SOI wafer in which the buried oxide film and the upper silicon layer are formed on the semiconductor substrate; 상기 노출된 상부 실리콘층을 열산화하되, 상기 매몰 산화막이 압축응력을 갖고 상기 상부 실리콘층이 인장응력을 갖도록 실시하여 소자분리절연막을 형성하는 공정과,Thermally oxidizing the exposed upper silicon layer, wherein the buried oxide film has a compressive stress and the upper silicon layer has a tensile stress to form a device isolation insulating film; 상기 패드절연막패턴을 제거하고 게이트전극을 형성하는 공정을 포함하는 에스.오.아이. 소자의 트랜지스터 제조방법.And removing the pad insulating film pattern and forming a gate electrode. Method for manufacturing a transistor of the device. 제 1 항에 있어서,The method of claim 1, 상기 매몰 산화막은 800 ∼ 1200 Å 정도의 두게로 형성하는 것을 특징으로하는 에스.오.아이. 소자의 트랜지스터 제조방법.The buried oxide film is formed to a thickness of about 800 ~ 1200 Å S. O. I. Method for manufacturing a transistor of the device. 제 1 항에 있어서,The method of claim 1, 상기 열산화공정은 900 ∼ 1300 ℃ 온도의 건 산소분위기에서 3 ∼ 5 시간 정도 실시하는 것을 특징으로하는 에스.오.아이. 소자의 트랜지스터 제조방법.The thermal oxidation process is performed in a dry oxygen atmosphere at a temperature of 900 to 1300 ° C. for about 3 to 5 hours. Method for manufacturing a transistor of the device. 제 1 항에 있어서,The method of claim 1, 상기 소자분리절연막은 2500 ∼ 3500 Å 정도의 두께로 형성하는 것을 특징으로하는 에스.오.아이. 소자의 트랜지스터 제조방법.The device isolation insulating film is formed to a thickness of about 2500 ~ 3500 에스 S. O. I. Method for manufacturing a transistor of the device. 제 1 항에 있어서,The method of claim 1, 상기 매몰 산화막과 상부실리콘층의 계면에 붕소 불순물을 축적시키는 것을 특징으로하는 에스.오.아이. 소자의 트랜지스터 제조방법.S. O. I., characterized in that to accumulate boron impurities at the interface between the buried oxide film and the upper silicon layer. Method for manufacturing a transistor of the device.
KR1019970075701A 1997-12-27 1997-12-27 Method for manufacturing transistor soi device KR100257709B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019970075701A KR100257709B1 (en) 1997-12-27 1997-12-27 Method for manufacturing transistor soi device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019970075701A KR100257709B1 (en) 1997-12-27 1997-12-27 Method for manufacturing transistor soi device

Publications (2)

Publication Number Publication Date
KR19990055746A KR19990055746A (en) 1999-07-15
KR100257709B1 true KR100257709B1 (en) 2000-06-01

Family

ID=19529044

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019970075701A KR100257709B1 (en) 1997-12-27 1997-12-27 Method for manufacturing transistor soi device

Country Status (1)

Country Link
KR (1) KR100257709B1 (en)

Also Published As

Publication number Publication date
KR19990055746A (en) 1999-07-15

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US6025237A (en) Methods of forming field effect transistors having graded drain region doping profiles therein
US6855581B2 (en) Method for fabricating a high-voltage high-power integrated circuit device
US4422885A (en) Polysilicon-doped-first CMOS process
US5970329A (en) Method of forming power semiconductor devices having insulated gate electrodes
US6300207B1 (en) Depleted sidewall-poly LDD transistor
JP3742845B2 (en) Manufacturing method of SOI device having double gate structure and SOI device having double gate structure manufactured by the manufacturing method
KR20000042385A (en) Silicon on insulator device free from floating body effect and fabrication method thereof
US5242849A (en) Method for the fabrication of MOS devices
KR950008257B1 (en) Mos fet and its making method
KR100257709B1 (en) Method for manufacturing transistor soi device
KR100265049B1 (en) MOS field effect transistor and manufacturing method of S.O.I device
EP0545484B1 (en) Manufacturing process for insulated gate field effect transistors (igfet) with low short circuit density between gate and source and devices obtained thereby
KR100318463B1 (en) Method for fabricating body contact SOI device
KR100649813B1 (en) Manufacturing method of semiconductor device
KR100197656B1 (en) Fabricating method of s.o.i. semiconductor device
JP3123140B2 (en) Field effect transistor
KR930001290B1 (en) Mos transistor with high junction voltage and its manufacturing method
JP3191285B2 (en) Semiconductor device and manufacturing method thereof
KR100265327B1 (en) Soi device without floating body effect and method for fabricating the same
KR100546125B1 (en) Method of forming a semiconductor device
KR100264877B1 (en) Method for manufacturing soi type isolation structure of semiconductor device
KR910009743B1 (en) High speed and high voltage semiconductor device and its manufacturing method
KR960012262B1 (en) Mos transistor manufacturing method
JPH09199716A (en) Semiconductor device and its manufacture

Legal Events

Date Code Title Description
A201 Request for examination
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20080222

Year of fee payment: 9

LAPS Lapse due to unpaid annual fee