JP2834058B2 - Method for manufacturing semiconductor device - Google Patents

Method for manufacturing semiconductor device

Info

Publication number
JP2834058B2
JP2834058B2 JP8013868A JP1386896A JP2834058B2 JP 2834058 B2 JP2834058 B2 JP 2834058B2 JP 8013868 A JP8013868 A JP 8013868A JP 1386896 A JP1386896 A JP 1386896A JP 2834058 B2 JP2834058 B2 JP 2834058B2
Authority
JP
Japan
Prior art keywords
layer
type
base layer
forming
concentration impurity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP8013868A
Other languages
Japanese (ja)
Other versions
JPH09213938A (en
Inventor
康弘 小関
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Yamagata Ltd
Original Assignee
NEC Yamagata Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Yamagata Ltd filed Critical NEC Yamagata Ltd
Priority to JP8013868A priority Critical patent/JP2834058B2/en
Publication of JPH09213938A publication Critical patent/JPH09213938A/en
Application granted granted Critical
Publication of JP2834058B2 publication Critical patent/JP2834058B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、半導体装置の製造
方法に関し、特に縦型二重拡散MOSFETを有する
導体装置の製造方法に関する。
[0001] The present invention relates to the manufacture of semiconductor devices.
A method, semi particularly having a vertical double diffused MOSFET
The present invention relates to a method for manufacturing a conductor device .

【0002】[0002]

【従来の技術】従来の縦型二重拡散MOSFETは、図
3に示すような構造になっている。同図において、ドレ
イン領域となるn+ 型シリコン基板1上に形成されたn
型エピタキシャル層5と、このn型エピタキシャル層5
の表面にゲート酸化膜6Aを介して形成されたゲート電
極7Aと、このゲート電極7Aの外側に相当する領域の
n型エピタキシャル層5内に形成されたp型ベース層8
と、このp型ベース層8内に形成されたn+ 型ソース層
10と、このp型ベース層8にコンタクトを取るための
+ 型バックゲート層9と、ゲート電極7Aの表面に形
成された層間絶縁膜11と、n+ 型ソース層10とp+
型バックゲート層9の部分でコンタクトを取るように形
成されたソース電極12と、このソース電極12の表面
に形成された表面保護膜13と、シリコン基板1の下面
に形成されたドレイン電極14とから主に構成されてい
る。
2. Description of the Related Art A conventional vertical double diffusion MOSFET has a structure as shown in FIG. In FIG. 1, n formed on an n + type silicon substrate 1 serving as a drain region is formed.
-Type epitaxial layer 5 and n-type epitaxial layer 5
And a p-type base layer 8 formed in the n-type epitaxial layer 5 in a region corresponding to the outside of the gate electrode 7A via the gate oxide film 6A.
And an n + -type source layer 10 formed in the p-type base layer 8, a p + -type back gate layer 9 for contacting the p-type base layer 8, and a surface formed on the gate electrode 7A. Interlayer insulating film 11, n + -type source layer 10 and p +
A source electrode 12 formed so as to make contact at the portion of the mold back gate layer 9, a surface protective film 13 formed on the surface of the source electrode 12, and a drain electrode 14 formed on the lower surface of the silicon substrate 1. It is mainly composed of

【0003】上述した従来の縦型二重拡散MOSFET
では、ドレイン・ソース間耐圧BVDSS を30V以下程
度に低耐圧化するためn型エピタキシャル層5の比抵抗
ρepi を低減して不純物濃度を高めると、このn型エピ
タキシャル層5内に後に形成されるp型ベース層8の不
純物濃度が低い為、n+ 型ソース層10からの空乏層が
p型ベース層8へ伸びパンチスルーを起こし易くなり、
ドレイン・ソース間耐圧BVDSS のばらつきが増加す
る。このため、パンチスルーを起こし難くするようにp
型ベース層8の不純物濃度を高めるが、これによりゲー
ト・チャネル領域となるp型ベース層8の基板表面近傍
の不純物濃度が高まり、MOSFETの駆動電圧となる
ゲート・カットオフ電圧VGS(off) が1V以上に高ま
り、低耐圧でしかも低駆動電圧のMOSFETを実現す
ることが困難であった。
The above-mentioned conventional vertical double diffusion MOSFET
In order to reduce the withstand voltage BV DSS between the drain and the source to about 30 V or less, if the resistivity ρ epi of the n-type epitaxial layer 5 is reduced to increase the impurity concentration, the impurity is formed later in the n-type epitaxial layer 5. Since the impurity concentration of the p-type base layer 8 is low, the depletion layer from the n + -type source layer 10 extends to the p-type base layer 8 to easily cause punch-through,
The variation in the drain-source breakdown voltage BV DSS increases. Therefore, p is set so that punch-through hardly occurs.
The impurity concentration of the p-type base layer 8 serving as the gate / channel region is increased near the substrate surface, and the gate cutoff voltage V GS (off) serving as the drive voltage of the MOSFET is increased. However, it has been difficult to realize a MOSFET having a low withstand voltage and a low driving voltage.

【0004】この対策として発明者は、特開平−276
663号公報において図4に示す構造のMOSFETを
提案した。図4において図3との相違は、ドレイン領域
となるn+ 型シリコン基板1上に形成するエピタキシャ
ル層をn+ 型エピタキシャル層2とn型エピタキシャル
層5とから構成したことである。
As a countermeasure against this, the inventor disclosed in Japanese Patent Laid-Open No.
No. 663 proposed a MOSFET having a structure shown in FIG. 4 differs from FIG. 3 in that an epitaxial layer formed on an n + -type silicon substrate 1 serving as a drain region is composed of an n + -type epitaxial layer 2 and an n-type epitaxial layer 5.

【0005】[0005]

【発明が解決しようとする課題】図4に示した従来の縦
型二重拡散MOSFETでは、パンチスルーを起こし難
くするためにp型ベース層8の不純物濃度を高める必要
がなく、これによりMOSFETの駆動電圧となるゲー
ト・カットオフ電圧VGS(off) が高くなることはない
が、ドレイン・ソース間耐圧BVDSS はn+ 型エピタキ
シャル層2とp型ベース層8の不純物濃度で決定される
ため30V以下程度に低耐圧化し難く、低耐圧でしかも
低駆動電圧のMOSFETを実現することが困難であ
る。
In the conventional vertical double-diffused MOSFET shown in FIG. 4, it is not necessary to increase the impurity concentration of the p-type base layer 8 in order to make it difficult for punch-through to occur. Although the gate cutoff voltage V GS (off) serving as the driving voltage does not increase, the drain-source breakdown voltage BV DSS is determined by the impurity concentration of the n + -type epitaxial layer 2 and the p-type base layer 8. It is difficult to reduce the breakdown voltage to about 30 V or less, and it is difficult to realize a MOSFET having a low breakdown voltage and a low driving voltage.

【0006】本発明の目的は、縦型二重拡散MOSFE
Tを有する半導体装置において、低耐圧でしかも低駆動
電圧化することができる半導体装置の製造方法を提供す
ることにある。
An object of the present invention is to provide a vertical double diffusion MOSFE.
It is an object of the present invention to provide a method of manufacturing a semiconductor device having a T having a low withstand voltage and a low driving voltage.

【0007】[0007]

【0008】[0008]

【課題を解決するための手段】 本発明の 半導体装置の製
造方法は、第1導電型半導体基板上に第1導電型高濃度
不純物層からなる第1エピタキシャル層を形成したの
ち、この第1エピタキシャル層の表面に選択的に第2導
電型高濃度不純物層からなる第1ベース層を形成する工
程と、この第1ベース層を含む全面に第1導電型低濃度
不純物層からなる第2エピタキシャル層と酸化膜と多結
晶シリコン膜とを形成したのち、この多結晶シリコン膜
と酸化膜とをパターニングしゲート電極とゲート酸化膜
とを形成する工程と、前記ゲート電極をマスクとし前記
第2エピタキシャル層に第2導電型不純物をイオン注入
して前記第1ベース層に達する低濃度不純物層からなる
第2ベース層を形成する工程と、この第2ベース層の中
央部に第2導電型高濃度不純物層からなるバックゲート
層を形成する工程と、このバックゲート層の周辺部を含
む前記第2ベース層表面に第1導電型高濃度不純物層か
らなるソースを形成する工程とを含むことを特徴とする
ものである。
According to a method of manufacturing a semiconductor device of the present invention, a first epitaxial layer made of a first-conductivity-type high-concentration impurity layer is formed on a first-conductivity-type semiconductor substrate. Selectively forming a first base layer made of a second conductivity type high concentration impurity layer on the surface of the layer, and forming a second epitaxial layer consisting of a first conductivity type low concentration impurity layer on the entire surface including the first base layer Forming a gate electrode and a gate oxide film by patterning the polycrystalline silicon film and the oxide film, and forming the second epitaxial layer using the gate electrode as a mask. Forming a second base layer made of a low-concentration impurity layer reaching the first base layer by ion-implanting a second conductivity type impurity into the second base layer; Forming a source made of a first-conductivity-type high-concentration impurity layer on the surface of the second base layer including a peripheral portion of the back gate layer. It is a feature.

【0009】[0009]

【発明の実施の形態】次に本発明について図面を参照し
て説明する。図1(a)〜(c)及び図2(a),
(b)は本発明の一実施の形態を説明する為の工程順に
示した半導体チップの断面図である。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Next, the present invention will be described with reference to the drawings. 1 (a) to 1 (c) and 2 (a),
(B) is sectional drawing of the semiconductor chip shown in order of process for describing one Embodiment of this invention.

【0010】まず図1(a)に示すように、n+ 型シリ
コン基板1上に1016〜1017cm-3の高濃度不純物を
含み第1のドレイン層となるn+ 型エピタキシャル層2
を約4μmの厚さに形成する。次で全面に熱酸化法によ
り厚さ約200nmの酸化膜を形成したのちパターニン
グしマスク3を形成する。次で全面にボロンを1015
-2程イオン注入し熱処理して第1のベース層となるp
+ 型ベース層4を形成する。
First, as shown in FIG. 1A, an n + -type epitaxial layer 2 containing a high concentration impurity of 10 16 to 10 17 cm -3 and serving as a first drain layer is formed on an n + -type silicon substrate 1.
Is formed to a thickness of about 4 μm. Next, an oxide film having a thickness of about 200 nm is formed on the entire surface by a thermal oxidation method, and then patterned to form a mask 3. Next is boron 10 15 c on the entire surface
Implanted by about m -2 and heat-treated to form a first base layer p
The + type base layer 4 is formed.

【0011】次に図1(b)に示すように、マスク3を
除去したのちn+ 型エピタキシャル層2の表面を含む全
面に1015〜1016cm-3の低濃度不純物を含む第2の
ドレイン層となるn型エピタキシャル層5を約5μmの
厚さに形成する。次で厚さ20〜50nmの酸化膜6を
形成したのち、CVD法により1018〜1019cm-3
高濃度不純物を含む多結晶シリコン膜7を形成する。
Next, as shown in FIG. 1B, after the mask 3 is removed, a second impurity containing a low concentration impurity of 10 15 to 10 16 cm -3 is entirely contained including the surface of the n + type epitaxial layer 2. An n-type epitaxial layer 5 serving as a drain layer is formed to a thickness of about 5 μm. Next, after an oxide film 6 having a thickness of 20 to 50 nm is formed, a polycrystalline silicon film 7 containing a high concentration impurity of 10 18 to 10 19 cm −3 is formed by a CVD method.

【0012】次に図1(c)に示すように、多結晶シリ
コン膜7と酸化膜6とをパターニングしゲート電極7A
及びゲート酸化膜6Aを形成する。次でこのゲート電極
7Aをマスクとし全面にボロンを1013〜1014cm-2
イオン注入し熱処理して第2のベース層となるp型ベー
ス層8を形成する。
Next, as shown in FIG. 1C, the polycrystalline silicon film 7 and the oxide film 6 are patterned to form a gate electrode 7A.
Then, a gate oxide film 6A is formed. Then, using this gate electrode 7A as a mask, boron is applied to the entire surface at 10 13 to 10 14 cm −2
Ion implantation and heat treatment are performed to form a p-type base layer 8 serving as a second base layer.

【0013】次に図2(a)に示すように、全面にフォ
トレジスト膜を形成したのちパターニングし、p型ベー
ス層8の中央部上に開口部を形成する。次で全面にボロ
ンをイオン注入しp型ベース層8表面にp+ 型バックゲ
ート層9を形成する。次にマスクとして用いたフォトレ
ジスト膜を除去したのち再び全面にフォトレジスト膜を
形成し、パターニングしてバックゲート層9の周辺部を
含むp型ベース層8の表面に開口部を形成する。
Next, as shown in FIG. 2A, a photoresist film is formed on the entire surface and then patterned to form an opening in the center of the p-type base layer 8. Next, boron ions are implanted into the entire surface to form ap + -type back gate layer 9 on the surface of the p-type base layer 8. Next, after removing the photoresist film used as the mask, a photoresist film is formed again on the entire surface and patterned to form an opening in the surface of the p-type base layer 8 including the peripheral portion of the back gate layer 9.

【0014】次で全面にリンを1016cm-2程度イオン
注入して熱処理を行い、n+ 型ソース層10を形成す
る。次でマスクとしてのフォトレジスト膜を除去したの
ちゲート電極7A表面を含む全面にCVD法により酸化
膜等からなる層間絶縁膜11を形成する。
Next, heat treatment is performed by ion-implanting phosphorus into the entire surface at about 10 16 cm −2 to form an n + -type source layer 10. Next, after removing the photoresist film as a mask, an interlayer insulating film 11 made of an oxide film or the like is formed on the entire surface including the surface of the gate electrode 7A by the CVD method.

【0015】次に図2(b)に示すように、層間絶縁膜
11をパターニングしp+ 型バックゲート層9及びn+
型ソース層10上に開孔部を形成したのち全面に厚さ約
2μmのAl膜を堆積してソース電極12を形成する。
次でソース電極12上にPSG膜からなる表面保護膜1
3と、シリコン基板1の下面にTi−Ni−Ag等から
なるドレイン電極14を形成して縦型二重拡散MOSF
ETを完成させる。
Next, as shown in FIG. 2B, the interlayer insulating film 11 is patterned to form a p + type back gate layer 9 and n +
After forming an opening on the mold source layer 10, an Al film having a thickness of about 2 μm is deposited on the entire surface to form a source electrode 12.
Next, a surface protection film 1 made of a PSG film is formed on the source electrode 12.
3 and a drain electrode 14 made of Ti-Ni-Ag or the like is formed on the lower surface of the silicon substrate 1 to form a vertical double diffused MOSF.
Complete the ET.

【0016】このように構成された本実施の形態によれ
ば、ドレイン・ソース間耐圧BVDSS は高不純物濃度の
+ 型エピタキシャル層5とp+ 型ベース層で決定さ
れるため、低耐圧化を図るにはこれらの不純物濃度を制
御すればよい。また、MOSFETの駆動電圧となるゲ
ート・カットオフ電圧VGS(off) はn型エピタキシャル
層5の内部にあるp型ベース層8の表面近傍の不純物濃
度で決定されるため、ドレイン−ソース間耐圧BVDSS
を決定する部分に依存することなく独立に制御でき、低
耐圧(例えば、30V以下程度)でしかも低駆動電圧
(例えば、1V以下程度)のMOSFETを実現でき
る。
According to the present embodiment configured as described above, the drain-source breakdown voltage BV DSS is determined by the n + -type epitaxial layer 5 and the p + -type base layer 4 having a high impurity concentration. In order to achieve this, the concentration of these impurities may be controlled. Further, since the gate cutoff voltage V GS (off), which is the drive voltage of the MOSFET, is determined by the impurity concentration near the surface of the p-type base layer 8 inside the n-type epitaxial layer 5, the drain-source breakdown voltage BV DSS
Can be independently controlled without depending on the part for determining the MOSFET, and a MOSFET having a low withstand voltage (for example, about 30 V or less) and a low drive voltage (for example, about 1 V or less) can be realized.

【0017】尚、上記実施の形態においてはドレイン層
をn型の場合について説明したが、p型であってもよい
ことは勿論である。
In the above embodiment, the case where the drain layer is of the n-type has been described, but it is needless to say that the drain layer may be of the p-type.

【0018】[0018]

【発明の効果】本発明の効果は、ドレイン・ソース間耐
圧BVDSS の低耐圧化を図ってもMOSFETの駆動電
圧となるゲート・カットオフ電圧VGS(off) が高くなら
ないということである。これにより、低耐圧でしかも低
駆動電圧のMOSFETを有する半導体装置を実現でき
るようになる。
The effect of the present invention is that the gate cutoff voltage V GS (off), which is the drive voltage of the MOSFET, does not increase even if the drain-source breakdown voltage BV DSS is reduced. Thus, a semiconductor device having a MOSFET with a low withstand voltage and a low drive voltage can be realized.

【0019】その理由は、ドレイン・ソース間耐圧BV
DSS はn+ 型エピタキシャル層とp+ 型ベース層の不純
物濃度で決定され、またゲート・カットオフ電圧V
GS(off)はn+ 型エピタキシャル層の不純物濃度に関係
なくn型エピタキシャル層とp型ベース層の不純物濃度
で決定されるため、それぞれ独立に制御できるからであ
る。
The reason is that the drain-source breakdown voltage BV
DSS is determined by the impurity concentration of the n + -type epitaxial layer and the p + -type base layer, and the gate cutoff voltage V
This is because GS (off) is determined by the impurity concentrations of the n-type epitaxial layer and the p-type base layer irrespective of the impurity concentration of the n + -type epitaxial layer, and can be independently controlled.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の一実施の形態を説明する為の半導体チ
ップの断面図。
FIG. 1 is a cross-sectional view of a semiconductor chip for describing one embodiment of the present invention.

【図2】本発明の一実施の形態を説明する為の半導体チ
ップの断面図。
FIG. 2 is a cross-sectional view of a semiconductor chip for describing one embodiment of the present invention.

【図3】従来の半導体装置を説明する為の断面図。FIG. 3 is a cross-sectional view illustrating a conventional semiconductor device.

【図4】従来の他の半導体装置を説明する為の断面図。FIG. 4 is a cross-sectional view illustrating another conventional semiconductor device.

【符号の説明】[Explanation of symbols]

1 n+ 型シリコン基板 2 n+ 型エピタキシャル層 3 マスク 4 p+ 型ベース層 5 n型エピタキシャル層 6 酸化膜 6A ゲート酸化膜 7 多結晶シリコン膜 7A ゲート電極 8 p型ベース層 9 p+ 型バックゲート層 10 n+ 型ソース層 11 層間絶縁膜 12 ソース電極 13 表面保護膜 14 ドレイン電極Reference Signs List 1 n + type silicon substrate 2 n + type epitaxial layer 3 mask 4 p + type base layer 5 n type epitaxial layer 6 oxide film 6 A gate oxide film 7 polycrystalline silicon film 7 A gate electrode 8 p type base layer 9 p + type back Gate layer 10 n + type source layer 11 interlayer insulating film 12 source electrode 13 surface protective film 14 drain electrode

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 第1導電型半導体基板上に第1導電型高
濃度不純物層からなる第1エピタキシャル層を形成した
のち、この第1エピタキシャル層の表面に選択的に第2
導電型高濃度不純物層からなる第1ベース層を形成する
工程と、この第1ベース層を含む全面に第1導電型低濃
度不純物層からなる第2エピタキシャル層と酸化膜と多
結晶シリコン膜とを形成したのち、この多結晶シリコン
膜と酸化膜とをパターニングしゲート電極とゲート酸化
膜とを形成する工程と、前記ゲート電極をマスクとし前
記第2エピタキシャル層に第2導電型不純物をイオン注
入して前記第1ベース層に達する低濃度不純物層からな
る第2ベース層を形成する工程と、この第2ベース層の
中央部に第2導電型高濃度不純物層からなるバックゲー
ト層を形成する工程と、このバックゲート層の周辺部を
含む前記第2ベース層表面に第1導電型高濃度不純物層
からなるソース層を形成する工程とを含むことを特徴と
する半導体装置の製造方法。
A first conductive type high-concentration impurity layer formed on a first conductive type semiconductor substrate, and a second epitaxial layer formed selectively on a surface of the first epitaxial layer.
Forming a first base layer made of a conductive-type high-concentration impurity layer, and forming a second epitaxial layer consisting of a first-conductivity-type low-concentration impurity layer, an oxide film and a polycrystalline silicon film on the entire surface including the first base layer; Forming a gate electrode and a gate oxide film by patterning the polycrystalline silicon film and the oxide film, and ion-implanting a second conductivity type impurity into the second epitaxial layer using the gate electrode as a mask. Forming a second base layer made of a low-concentration impurity layer reaching the first base layer, and forming a back gate layer made of a second conductivity type high-concentration impurity layer at the center of the second base layer. And a step of forming a source layer made of a first-conductivity-type high-concentration impurity layer on the surface of the second base layer including a peripheral portion of the back gate layer. Production method.
JP8013868A 1996-01-30 1996-01-30 Method for manufacturing semiconductor device Expired - Fee Related JP2834058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8013868A JP2834058B2 (en) 1996-01-30 1996-01-30 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8013868A JP2834058B2 (en) 1996-01-30 1996-01-30 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH09213938A JPH09213938A (en) 1997-08-15
JP2834058B2 true JP2834058B2 (en) 1998-12-09

Family

ID=11845227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8013868A Expired - Fee Related JP2834058B2 (en) 1996-01-30 1996-01-30 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2834058B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1009036B1 (en) * 1998-12-09 2007-09-19 STMicroelectronics S.r.l. High-voltage MOS-gated power device, and related manufacturing process
DE10026925C2 (en) * 2000-05-30 2002-04-18 Infineon Technologies Ag Vertical semiconductor device controlled by field effect
CN103762243B (en) 2007-09-21 2017-07-28 飞兆半导体公司 Power device
US20120273916A1 (en) 2011-04-27 2012-11-01 Yedinak Joseph A Superjunction Structures for Power Devices and Methods of Manufacture
US8836028B2 (en) 2011-04-27 2014-09-16 Fairchild Semiconductor Corporation Superjunction structures for power devices and methods of manufacture
CN102254937B (en) * 2011-08-08 2013-08-07 深圳深爱半导体股份有限公司 Vertical double-diffused metal-oxide-semiconductor field effect device and manufacturing method thereof

Also Published As

Publication number Publication date
JPH09213938A (en) 1997-08-15

Similar Documents

Publication Publication Date Title
US5436482A (en) MOSFET with assymetric lightly doped source-drain regions
JP3443355B2 (en) Method for manufacturing semiconductor device
JP3185656B2 (en) Lateral field effect transistor and method of manufacturing the same
JPH10270709A (en) Ldmos transistor device and manufacture thereof
JP4490094B2 (en) Method of manufacturing trench metal oxide semiconductor field effect transistor device
US5552329A (en) Method of making metal oxide semiconductor transistors
JP3831598B2 (en) Semiconductor device and manufacturing method thereof
US5712503A (en) Metal oxide semiconductor and method of making the same
JP3448546B2 (en) Semiconductor device and manufacturing method thereof
JP3485491B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP2834058B2 (en) Method for manufacturing semiconductor device
JPH05251694A (en) Mos type semiconductor device and its manufacture
JP3106757B2 (en) Method for manufacturing MOS field effect semiconductor device
JPH05283687A (en) Production of semiconductor element
KR101099560B1 (en) Method for manufacturing high voltage transistor
JPH05206454A (en) Manufacture of mis-type semiconductor device
JPH067556B2 (en) MIS type semiconductor device
JP3071615B2 (en) Semiconductor device and manufacturing method thereof
JP3802331B2 (en) Semiconductor device and manufacturing method thereof
JP3714396B2 (en) Manufacturing method of semiconductor device
JP4050077B2 (en) Semiconductor device and manufacturing method of semiconductor device
JP2973129B2 (en) MIS field-effect transistor
JP3848782B2 (en) Manufacturing method of semiconductor device
JPS6016469A (en) Manufacture of mis semiconductor device
JPH1126766A (en) Mos field effect transistor and manufacture thereof

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19980901

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081002

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091002

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101002

Year of fee payment: 12

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111002

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121002

Year of fee payment: 14

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131002

Year of fee payment: 15

LAPS Cancellation because of no payment of annual fees