JPS61160975A - Mos field effect transistor - Google Patents

Mos field effect transistor

Info

Publication number
JPS61160975A
JPS61160975A JP106585A JP106585A JPS61160975A JP S61160975 A JPS61160975 A JP S61160975A JP 106585 A JP106585 A JP 106585A JP 106585 A JP106585 A JP 106585A JP S61160975 A JPS61160975 A JP S61160975A
Authority
JP
Japan
Prior art keywords
channel region
drain
source
region
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP106585A
Other languages
Japanese (ja)
Other versions
JPH0482064B2 (en
Inventor
Shinji Odanaka
紳二 小田中
Masanori Fukumoto
正紀 福本
Takashi Osone
隆志 大曽根
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP106585A priority Critical patent/JPS61160975A/en
Publication of JPS61160975A publication Critical patent/JPS61160975A/en
Publication of JPH0482064B2 publication Critical patent/JPH0482064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To keep low the coefficient of sub-threshold current, and to reduce VT variations due to drain voltage, by a method wherein a high concentration impurity layer which inhibits the elongation of the drain voltage potential is formed immediately under a channel region at the sides of source-drain regions. CONSTITUTION:After an N-well 7 is formed by a normal process, a P-type channel region 5 is formed by ion implantation through the oxide film; then, a 100Angstrom gate oxide film 3 and a gate electrode 2 are formed. Next, N<+> layers 6 are formed immediately under the P-type channel region 5 by implanting e.g. phosphorus at 130kev and at a dosage of 1.0X10<12>/cm<2>. After deposition of SiO2, an SiO2 side wall 4 is formed by etching removal; thereafter, source- drain region 1 are formed. Then, a MOSFET is completed. Since the MOSFET thus obtained has a high concentration impurity layer 6 of reverse conductivity type to that of the channel region 5 formed immediately under the region 5 at the sides of the source-drain regions 1, the coefficient of sub-threshold current is small, and VT variations due to drain voltage can be inhibited.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、埋込みチャネルMO8型電界効果トランジス
タをサブミクロン域にまで微細化をすすめる際に劣化す
るサブスレッショルド域電気特性を改善できる丈プミク
ロン埋込みチャネル形ノMO8W電界効果ト57ジスp
 (MOSFIET)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a long micron buried channel type MO8 type field effect transistor that can improve the electrical characteristics in the subthreshold region that deteriorate when miniaturizing a buried channel MO8 type field effect transistor to a submicron region. MO8W field effect 57disp
(MOSFIET).

従来の技術 超集積回路装置いわゆるVLS Iにおいて、0MO8
技術の重要性が増すにつれ、p−チャネルMOf9FE
Tの微細化が急速に進んでいる。しかし、t−ポリSi
ゲートを使用するとき、p−チャネルMOSFETのチ
ャネル領域はソース。
Conventional technology In the ultra-integrated circuit device so-called VLSI, 0MO8
As the technology grows in importance, p-channel MOf9FE
The miniaturization of T is progressing rapidly. However, t-polySi
When using the gate, the channel region of a p-channel MOSFET is the source.

ドレイン領域と同じ導電型になる。いわゆる埋込みチャ
ネルMO3FKTになる。埋込みチャネルMO8FXτ
は、チャネル領域がソース、ドレイン領域と反対の導電
型になるいわゆる表面チャネルMOSFETに比較して
、ドレイ/近傍の電界強度が低く、ホットエレクトロン
効果て対して強いデバイス構造を有しておシ、また、移
動度の劣化も少なく高速のMO8FICTが得られる。
It has the same conductivity type as the drain region. This becomes a so-called buried channel MO3FKT. Embedded channel MO8FXτ
Compared to so-called surface channel MOSFETs, in which the channel region has a conductivity type opposite to that of the source and drain regions, the device structure has a lower electric field strength near the drain and is resistant to hot electron effects. Further, a high-speed MO8FICT with little deterioration in mobility can be obtained.

このことは、仕事関数をコントa−ルすることによって
n−チャネルMO3FETに対しても同様の効果が期待
できる。
Similar effects can be expected for n-channel MO3FETs by controlling the work function.

しかし、埋込みMOSFETは丈プミクロン域への微細
化に際して、ドレイン電圧のS i 02− S i界
面のポテンシャルらへの影響が大きく、サブスレッシヲ
ルド域のリーク電流の増大、スレッシロルド電圧v丁の
ドレイン電圧依存性を強くする。
However, when embedded MOSFETs are miniaturized to the micron range, the influence of the drain voltage on the potential of the S i 02-S i interface is large, resulting in an increase in leakage current in the subthreshold region and a decrease in the drain voltage of the threshold voltage v Increase voltage dependence.

これに対処するように1例えば、IICKKTrans
actions  Hectron  Devices
+  ICD −31PI)、 964〜988 Kg
 I T、 M、 CHA M 等に開示のように、第
7図のような構造になっていた。
1 to deal with this, for example, IICKKTrans
actions Hectron Devices
+ ICD-31PI), 964-988 Kg
It had a structure as shown in FIG. 7, as disclosed in IT, M., CHAM et al.

すなわち、図において、11はソース、ドレイン領域、
12はゲート電極、13はゲート酸化膜、14は側壁酸
化膜、16はp型チャネル領域、16はn層、17はn
ウェルである。この構造ではンース、ドレイン接合深さ
を浅くするとともに、チャネル接合深さを浅くするため
に、BF2によるチャネルドーピングとともにム8をイ
オン注入して、チャネル接合深さを浅く形成するととも
にn+層16をチャネル領域16の直下に形成していた
That is, in the figure, 11 is the source, drain region,
12 is a gate electrode, 13 is a gate oxide film, 14 is a sidewall oxide film, 16 is a p-type channel region, 16 is an n layer, 17 is an n
Well. In this structure, the drain junction depth is made shallow, and in order to make the channel junction depth shallow, in addition to channel doping with BF2, ions of Mu8 are implanted to form a shallow channel junction depth, and the n+ layer 16 is formed. It was formed directly under the channel region 16.

発明が解決しようとする問題点 シカシ、このような構造ではサブスレッシ冒ルド電流係
数を低くおさえることができるが、ドレイン電圧による
サブスレッショルド電圧7丁変動を低くおさえることが
できない。
Problems to be Solved by the Invention In this structure, the subthreshold current coefficient can be kept low, but the subthreshold voltage fluctuation due to the drain voltage cannot be kept low.

これは、第6図の曲線で示すようにサブスレッショルド
電圧vTを一定にして、浅いチャネル接合を得ようとす
れば、チャネルドーピングのドーズ量を増大させて、表
面濃度値を高くせねばならず、ドレイン電圧の影響をお
さえることができないためである。
This is because, as shown by the curve in Figure 6, in order to obtain a shallow channel junction while keeping the subthreshold voltage vT constant, the channel doping dose must be increased and the surface concentration value must be increased. This is because the influence of drain voltage cannot be suppressed.

そこで、本発明はサブスレッショルド電流係数を低く抑
えるとともに、ドレイン電圧によるポテンシャルの伸び
を抑制して、ドレイン電圧による7丁変動を小さくする
ものである。
Therefore, the present invention suppresses the subthreshold current coefficient and suppresses the expansion of the potential due to the drain voltage, thereby reducing the fluctuation due to the drain voltage.

問題点を解決するための手段 そして前記問題点を解決する本発明の技術的手段は、前
記チャネル領域直下の一部でかつソース。
Means for solving the problem and technical means of the present invention for solving the problem are a part directly under the channel region and a source.

ドレイン領域側部に、ドレイン電圧によるポテンシャル
の伸びを抑制する高濃度不純物層を形成するものである
A highly concentrated impurity layer is formed on the side of the drain region to suppress potential expansion due to drain voltage.

作用 この技術的手段による作用は次のようになる。action The effect of this technical means is as follows.

すなわち、チャネル領域直下の一部でソース、ドレイン
領域側部に前記チャネルドープの領域と前記ソース、ド
レイン領域の中間の深さ位置にピーク濃度値をもつチャ
ネル領域と反対導電型の不純物層を形成することによっ
て、従来のように反対導電型の不純物層を形成し、チャ
ネル接合深さを浅くすることによるチャネル領域の表面
濃度の増大を少なくシ、かつ、ドレイン電圧のポテンシ
ャルの伸びを抑制するものである。この結果、従来のよ
うにドレイン電圧の変動による7丁変動がみられない埋
込みチャネルMO8FIETを得られるものである。
That is, an impurity layer of a conductivity type opposite to that of the channel region is formed on the sides of the source and drain regions in a part immediately below the channel region, and has a peak concentration value at a depth position intermediate between the channel doped region and the source and drain regions. This reduces the increase in surface concentration in the channel region caused by forming an impurity layer of the opposite conductivity type and shallowing the channel junction depth as in the conventional method, and also suppresses the potential growth of the drain voltage. It is. As a result, it is possible to obtain a buried channel MO8FIET in which no fluctuations due to fluctuations in drain voltage are observed as in the prior art.

実施例 以下、本発明の一実施例を第1図〜第7図にもとづいて
説明する。第1図において、1はp型ソース、ドレイン
領域、2はゲート電極、3はゲート酸化膜、4は側壁酸
化膜、6はソース、ドレイン領域と同導電型のp型チャ
ネル領域であシ、チャネル領域と反対導電型のn型高濃
度不純物層6が形成されている。また、7はn−ウェル
である。
EXAMPLE Hereinafter, an example of the present invention will be described based on FIGS. 1 to 7. In FIG. 1, 1 is a p-type source and drain region, 2 is a gate electrode, 3 is a gate oxide film, 4 is a sidewall oxide film, 6 is a p-type channel region of the same conductivity type as the source and drain regions, An n-type high concentration impurity layer 6 having a conductivity type opposite to that of the channel region is formed. Further, 7 is an n-well.

第2図〜第4図は、第1図に示されたO、Sμmのゲー
ト長をもつp型埋込みチャネルMO8FETの製造工程
を説明するものである。第2図に示すごとく、通常工程
にしたがってn−ウェル7を形成した後、スレッシ四ル
ド電圧vT制御用のBF2を40 key 、ドーズ量
、3,2 x 1o /1−1!で200人の酸化膜を
通してイオン注入して、p型チャネル領域6を形成し、
100人のゲート酸化膜3とゲート電極2を選択的に形
成する。次に第3図のように、燐を130kev、ドー
ズ量1・0×1d2/C1iで注入し、p型チャネル領
域6の直下に♂層6を形成する。次に第4図のごとく化
学蒸着法いわゆるCVD法で5i02を堆積した後、エ
ツチング除去を行なってSiO2側壁4を形成した後、
自己整合的にソース、ドレイン領域1をBFzを40 
key、ドーズ量3×1o/c11Lで注入して形成す
る。この後1図示していないが周知の方法でMOSFE
Tを完成させる。
2 to 4 illustrate the manufacturing process of the p-type buried channel MO8FET shown in FIG. 1 and having a gate length of O, S μm. As shown in FIG. 2, after forming the n-well 7 according to the normal process, BF2 for controlling the threshold voltage vT was applied at a dose of 40 keys and a dose of 3.2 x 1o/1-1! ion implantation through the 200-layer oxide film to form a p-type channel region 6,
100 gate oxide films 3 and gate electrodes 2 are selectively formed. Next, as shown in FIG. 3, phosphorus is implanted at 130 keV and at a dose of 1.0×1 d2/C1i to form a male layer 6 directly below the p-type channel region 6. Next, as shown in FIG. 4, after depositing 5i02 by chemical vapor deposition (CVD) and removing it by etching to form SiO2 sidewalls 4,
Self-aligned source and drain regions 1 with BFz of 40
The key is formed by implantation at a dose of 3×1o/c11L. After this, 1. Although not shown in the figure, the MOSFE is
Complete T.

このようにして得られたMOSFETは第5図の曲線8
で示すようにチャネル接合深さを浅くしても従来のよう
に(曲線9)チャネル領域の不純物表面濃度が増大する
ことはない。また第6図に曲線10.11で示すのは、
本実施例のMOSFET(ゲート長0.5 pm ) 
ドレイン電圧vDカー s Vのときのドレイン電流I
D値、ドレイン電圧vDが−O,SVのときのドレイン
電流ID値をゲート電圧vGを変化させて測蛍したもの
であるが、同じ条件で測定した従来のMOSFET(ゲ
ート長0.5μm)の測定曲線10ム、11ムと比較し
てわかるように、本実施例のMOSFETはドレイン電
圧の変動によるvT変動が軽減される。
The MOSFET obtained in this way is curve 8 in FIG.
As shown in , even if the channel junction depth is made shallow, the impurity surface concentration in the channel region does not increase as in the conventional case (curve 9). In addition, the curve 10.11 in Figure 6 shows:
MOSFET of this example (gate length 0.5 pm)
Drain current I when drain voltage vDcar s V
D value, the drain current ID value when the drain voltage vD is -O, SV was measured by changing the gate voltage vG, but it is different from that of a conventional MOSFET (gate length 0.5 μm) measured under the same conditions. As can be seen by comparing the measurement curves 10m and 11m, in the MOSFET of this example, vT fluctuations due to drain voltage fluctuations are reduced.

発明の詳細 な説明したように本発明は埋込みチャネル形のMO8型
電界効果トランジスタであって、チャネル領域の直下の
一部でンース、ドレイン領域の側部にチャネル領域と反
対導電型の高濃度不純物層を形成しているため、サブス
レッシ町ルドNR係数が小さく、ドレイン電圧によるv
T変動をおさえることができる。
DETAILED DESCRIPTION OF THE INVENTION As described above, the present invention is a buried channel type MO8 field effect transistor, in which a portion directly below the channel region is doped with impurities, and a high concentration impurity of the opposite conductivity type to the channel region is doped at the sides of the drain region. Because the layer is formed, the subthreshold NR coefficient is small, and the v
T fluctuation can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における埋込みチャネル形の
MO3型電界効果トランジスタの断面図。 第2図〜第4図は同トランジスタの製造プロセスを説明
する断面図、第6図は同トランジスタのチャネル接合深
さと不純物分布の関係を従来のものと比較して示す特性
図、第6図は本実施例のMO3型電界効果トランジスタ
のID −VG特性を従来のものの特性と比較して示す
特性図、第7図は従来のMO3型電界効果トランジスタ
の断面図である。 1・・・・・・ソース、トンイン領域%2・・・中ゲー
ト電極、3・・・・・・ゲート酸化膜、4・・・・・・
側壁酸化膜、5・・・・・・p型チャネル領域、6・・
・・・・n型高濃度不純物層、7・・・・・・n−ウェ
ル。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名第1
図 f−P!ソースよL4ン→咳舅( 5−−plfvンネル※賃麹− g−−nYHE、儂屓f紙物層 7−−〇−ウニJし 第2図    2 第5図 犬ν1−  す−pyキル縛冶づまざ →う家シ1第6
FIG. 1 is a sectional view of a buried channel type MO3 field effect transistor according to an embodiment of the present invention. Figures 2 to 4 are cross-sectional views explaining the manufacturing process of the same transistor, Figure 6 is a characteristic diagram showing the relationship between the channel junction depth and impurity distribution of the same transistor in comparison with a conventional one; FIG. 7 is a characteristic diagram showing the ID-VG characteristics of the MO3 type field effect transistor of this example in comparison with the characteristics of a conventional one, and FIG. 7 is a sectional view of the conventional MO3 type field effect transistor. 1... Source, tunnel region %2... Middle gate electrode, 3... Gate oxide film, 4...
Sidewall oxide film, 5...p-type channel region, 6...
. . . n-type high concentration impurity layer, 7 . . . n-well. Name of agent: Patent attorney Toshio Nakao and 1 other person No. 1
Figure f-P! Sauce L4n → cough (5--plfvnnel*rental koji-g--nYHE, 儂屓fpaper layer 7--〇-urchin J) Fig. 2 Fig. 5 Dog ν1- Su-py kill Bakujizumaza →Ukeshi 1 No. 6
figure

Claims (1)

【特許請求の範囲】[Claims]  一方の導電型の半導体基板と、この基板上に選択的に
形成された絶縁膜と、この絶縁膜の直下に形成された前
記基板と反対の導電型のチャネル領域と、前記チャネル
領域の側部に選択的に形成された前記基板と反対の導電
型のソース、ドレイン領域を備え、前記チャネル領域の
直下の一部でかつ前記ソース、ドレイン領域の側部に、
前記一方の導電型の高濃度不純物層を設けたことを特徴
とするMOS型電界効果トランジスタ。
A semiconductor substrate of one conductivity type, an insulating film selectively formed on this substrate, a channel region of a conductivity type opposite to that of the substrate formed immediately below the insulating film, and a side portion of the channel region. source and drain regions of a conductivity type opposite to that of the substrate selectively formed in a portion immediately below the channel region and on a side of the source and drain regions;
A MOS type field effect transistor characterized in that a high concentration impurity layer of one of the conductivity types is provided.
JP106585A 1985-01-08 1985-01-08 Mos field effect transistor Granted JPS61160975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP106585A JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP106585A JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Publications (2)

Publication Number Publication Date
JPS61160975A true JPS61160975A (en) 1986-07-21
JPH0482064B2 JPH0482064B2 (en) 1992-12-25

Family

ID=11491131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP106585A Granted JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Country Status (1)

Country Link
JP (1) JPS61160975A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302568A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS63302567A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS645068A (en) * 1987-06-26 1989-01-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
US5151759A (en) * 1989-03-02 1992-09-29 Thunderbird Technologies, Inc. Fermi threshold silicon-on-insulator field effect transistor
US5367186A (en) * 1992-01-28 1994-11-22 Thunderbird Technologies, Inc. Bounded tub fermi threshold field effect transistor
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
US5440160A (en) * 1992-01-28 1995-08-08 Thunderbird Technologies, Inc. High saturation current, low leakage current fermi threshold field effect transistor
US5525822A (en) * 1991-01-28 1996-06-11 Thunderbird Technologies, Inc. Fermi threshold field effect transistor including doping gradient regions
US5543654A (en) * 1992-01-28 1996-08-06 Thunderbird Technologies, Inc. Contoured-tub fermi-threshold field effect transistor and method of forming same
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
US7302376B2 (en) 2002-08-15 2007-11-27 International Business Machines Corporation Device modeling for proximity effects
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559454A (en) * 1978-07-05 1980-01-23 Nec Corp Short channel mis type electric field effective transistor
JPS5516480A (en) * 1978-07-21 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Insulating gate electrostatic effect transistor and semiconductor integrated circuit device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559454A (en) * 1978-07-05 1980-01-23 Nec Corp Short channel mis type electric field effective transistor
JPS5516480A (en) * 1978-07-21 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Insulating gate electrostatic effect transistor and semiconductor integrated circuit device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302568A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS63302567A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS645068A (en) * 1987-06-26 1989-01-10 Matsushita Electric Ind Co Ltd Manufacture of semiconductor device
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation
US5151759A (en) * 1989-03-02 1992-09-29 Thunderbird Technologies, Inc. Fermi threshold silicon-on-insulator field effect transistor
US5525822A (en) * 1991-01-28 1996-06-11 Thunderbird Technologies, Inc. Fermi threshold field effect transistor including doping gradient regions
US5374836A (en) * 1992-01-28 1994-12-20 Thunderbird Technologies, Inc. High current fermi threshold field effect transistor
US5440160A (en) * 1992-01-28 1995-08-08 Thunderbird Technologies, Inc. High saturation current, low leakage current fermi threshold field effect transistor
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
US5543654A (en) * 1992-01-28 1996-08-06 Thunderbird Technologies, Inc. Contoured-tub fermi-threshold field effect transistor and method of forming same
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
US5367186A (en) * 1992-01-28 1994-11-22 Thunderbird Technologies, Inc. Bounded tub fermi threshold field effect transistor
US7302376B2 (en) 2002-08-15 2007-11-27 International Business Machines Corporation Device modeling for proximity effects

Also Published As

Publication number Publication date
JPH0482064B2 (en) 1992-12-25

Similar Documents

Publication Publication Date Title
US5512771A (en) MOS type semiconductor device having a low concentration impurity diffusion region
US7301208B2 (en) Semiconductor device and method for fabricating the same
US6277675B1 (en) Method of fabricating high voltage MOS device
US5998848A (en) Depleted poly-silicon edged MOSFET structure and method
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
US20050003595A1 (en) Field effect transistor having source and/or drain forming Schottky or Schottky-like contact with strained semiconductor substrate
US5401994A (en) Semiconductor device with a non-uniformly doped channel
US5244823A (en) Process for fabricating a semiconductor device
JPH1187719A (en) Soi mosfet and fabrication thereof
JPS61160975A (en) Mos field effect transistor
JPS61259575A (en) Hybrid extension drain construction for reducing effect of hot electron
US20040041170A1 (en) Low dose super deep source/drain implant
JPH02203566A (en) Mos type semiconductor device
KR100529651B1 (en) Semiconductor device and method for manufacturing thereof
JPS60247974A (en) Semiconductor device
JP2000299462A (en) Semiconductor device and its manufacture
JP3344078B2 (en) Insulated gate field effect transistor
US5925915A (en) Semiconductor on insulator devices
JPH1012870A (en) Semiconductor device and its manufacture
KR960000229B1 (en) Making method of vertical channel mosfet using trench structure
JPH02305443A (en) Manufacture of semiconductor device
JP2506947B2 (en) Semiconductor device and manufacturing method thereof
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JPH07273212A (en) Semiconductor device and its manufacture
KR100334968B1 (en) Method for fabricating buried channel type PMOS transistor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term