JPH0482064B2 - - Google Patents

Info

Publication number
JPH0482064B2
JPH0482064B2 JP60001065A JP106585A JPH0482064B2 JP H0482064 B2 JPH0482064 B2 JP H0482064B2 JP 60001065 A JP60001065 A JP 60001065A JP 106585 A JP106585 A JP 106585A JP H0482064 B2 JPH0482064 B2 JP H0482064B2
Authority
JP
Japan
Prior art keywords
channel
source
region
drain
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60001065A
Other languages
Japanese (ja)
Other versions
JPS61160975A (en
Inventor
Shinji Odanaka
Masanori Fukumoto
Takashi Oosone
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP106585A priority Critical patent/JPS61160975A/en
Publication of JPS61160975A publication Critical patent/JPS61160975A/en
Publication of JPH0482064B2 publication Critical patent/JPH0482064B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7838Field effect transistors with field effect produced by an insulated gate without inversion channel, e.g. buried channel lateral MISFETs, normally-on lateral MISFETs, depletion-mode lateral MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/105Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with vertical doping variation

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、埋込みチヤネルMOS型電界効果ト
ランジスタをサブミクロン域にまで微細化をすす
める際に劣化するスレツシヨルド域およびサブス
レツシヨルド域電気特性を改善できるサブミクロ
ン埋込みチヤネル型のMOS型電界効果トランジ
スタ(MOSFET)に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention provides a sub-channel MOS field effect transistor that can improve the electrical characteristics in the threshold region and subthreshold region, which deteriorate when miniaturizing a buried channel MOS field effect transistor to the submicron region. It concerns a micron buried channel MOS field effect transistor (MOSFET).

従来の技術 超集積回路装置いわゆるVLSIにおいて、
CMOS技術の重要性が増してきている。CMOS
はp−チヤネルMOSFETとn−チヤネル
MOSFETとにより構成されるものであるが、ゲ
ート電極に使用する材料をn+−ポリシリコンと
するか、p+−ポリシリコンとするかでCMOSに
は次の2種類の構成が考えられる。すなわち、 (1) ゲート電極にn+−ポリシリコンを使用する
と、n−チヤネルMOSFETは表面チヤネル型
になり、p−チヤネルMOSFETは埋込みチヤ
ネル型となる。
Conventional technology In ultra-integrated circuit devices, so-called VLSI,
The importance of CMOS technology is increasing. CMOS
are p-channel MOSFET and n-channel
The following two types of configurations can be considered for CMOS depending on whether the material used for the gate electrode is n + -polysilicon or p + -polysilicon. That is, (1) When n + -polysilicon is used for the gate electrode, the n-channel MOSFET becomes a surface channel type, and the p-channel MOSFET becomes a buried channel type.

(2) ゲート電極にn+−ポリシリコンとp+−ポリ
シリコンを使用すると、n−チヤネル
MOSFETはn+−ポリシリコンゲートで表面チ
ヤネル型になり、p−チヤネルMOSFETはp+
−ポリシリコンゲートで表面チヤネル型とな
る。
(2) If n + -polysilicon and p + -polysilicon are used for the gate electrode, n-channel
The MOSFET is a surface channel type with an n + -polysilicon gate, and the p-channel MOSFET is a p +
- Surface channel type with polysilicon gate.

ここでは(1)のゲート電極にn+−ポリシリコン
を使用したときのp−チヤネルMOSFETについ
て説明する。
Here, a p-channel MOSFET (1) using n + -polysilicon for the gate electrode will be explained.

p−チヤネルMOSFETにn+−ポリSiゲートを
使用するとき、p−チヤネルMOSFETのチヤネ
ル領域はソース,ドレイン領域と同じ導電型にな
る、いわゆる埋込みチヤネルMOSFETになる。
埋込みチヤネルMOSFETは、チヤネル領域がソ
ース,ドレイン領域と反対の導電型になるいわゆ
る表面チヤネルMOSFETに比較して、ドレイン
近傍の電界強度が低く、ホツトエレクトロン効果
に対して強いデバイス構造を有しており、また、
移動度の劣化も少なく高速のMOSFETが得られ
る。このことは、仕事関数をコントロールするこ
とによつてn−チヤネルMOSFETに対しても同
様の効果が期待できる。
When an n + -poly-Si gate is used as a p-channel MOSFET, the channel region of the p-channel MOSFET has the same conductivity type as the source and drain regions, making it a so-called buried channel MOSFET.
Compared to so-called surface channel MOSFETs, in which the channel region has the opposite conductivity type as the source and drain regions, buried channel MOSFETs have a device structure that has lower electric field strength near the drain and is more resistant to the hot electron effect. ,Also,
A high-speed MOSFET with little degradation in mobility can be obtained. Similar effects can be expected for n-channel MOSFETs by controlling the work function.

しかし、埋込みMOSFETはサブミクロン域へ
の微細化に際して、ドレイン電圧のSiO2−Si界
面のポテンシヤルψ5への影響が大きく、サブス
レツシヨルド域のリーク電流の増大、スレツシヨ
ルド電圧VTのドレイン電圧依存性を強くする。
However, when embedded MOSFETs are miniaturized to the submicron region, the influence of the drain voltage on the potential ψ 5 of the SiO 2 -Si interface is large, resulting in an increase in leakage current in the subthreshold region and the dependence of the threshold voltage V T on the drain voltage. Strengthen your sexuality.

これに対処するように、例えば、IEEE
Transactions on El ectron Devices ED−
31pp.964〜968 1984にKIT.M.CHAM等に開示の
ように、第7図のような構造になつていた。すな
わち、図において、11はソース,ドレイン領
域、12はゲート電極、13はゲート酸化膜、1
4は側壁酸化膜、15はp型チヤネル領域、16
はn+層、17はnウエルである。この構造では
ソース,ドレイン接合深さを0.1μmまで浅くする
とともに、チヤネル接合深さを浅くするために、
45keVのBF2によるチヤネルドーピングをし、さ
らにAsを200keVでイオン注入している。p型チ
ヤネル領域15は約3.0x1016cm-3の表面濃度値で
あり、n+層16は約2.0x1016cm-3の表面濃度値で
ある。
To address this, e.g. IEEE
Transactions on Electron Devices ED−
31pp.964-968 As disclosed in KIT.M.CHAM et al. in 1984, it had a structure as shown in Figure 7. That is, in the figure, 11 is the source and drain region, 12 is the gate electrode, 13 is the gate oxide film, 1
4 is a sidewall oxide film, 15 is a p-type channel region, 16 is
is an n + layer, and 17 is an n-well. In this structure, the source and drain junction depths are made shallow to 0.1 μm, and in order to make the channel junction depth shallow,
Channel doping is done with BF 2 at 45keV, and As is ion-implanted at 200keV. The p-type channel region 15 has a surface concentration value of approximately 3.0x10 16 cm -3 and the n + layer 16 has a surface concentration value of approximately 2.0x10 16 cm -3 .

このときp−型不純物BF2の注入によつて形成
されたp領域に、n−型不純物Asを注入するこ
とでp−チヤネル領域の一部をコンペンセーシヨ
ンしてn領域にして、p型チヤネル領域を
0.09μmまで極端に浅く形成している。またチヤ
ネル領域15の直下全面にn+層16を形成して
いる。これにより150オングストロームのゲート
酸化膜をもつ埋込みp−チヤネルMOSFETで実
効チヤネル長が0.6μm(ゲート長>0.8μm)までの
微細化を実現している。
At this time, by implanting an n-type impurity As into the p region formed by implanting the p-type impurity BF2 , a part of the p-channel region is compensated to become an n region, and the p-type channel area
It is formed extremely shallow down to 0.09μm. Further, an n + layer 16 is formed on the entire surface immediately below the channel region 15 . This enables miniaturization of a buried p-channel MOSFET with a gate oxide film of 150 angstroms to an effective channel length of 0.6 μm (gate length > 0.8 μm).

発明が解決しようとする問題点 しかしこのような構造では、埋込みp−チヤネ
ルMOSFETの短チヤネル効果を抑えることがで
きない。すなわち、短チヤネル効果には、 (1) ドレイン電圧によるスレツシヨルド電圧VT
の変動、 (2) サブスレツシヨルド電流係数の増大、 の2つがあり、埋込みp−チヤネルMOSFETの
微細化においてはこの2つの効果がともに顕著に
なるからである。
Problems to be Solved by the Invention However, such a structure cannot suppress the short channel effect of the buried p-channel MOSFET. In other words, for the short channel effect, (1) the threshold voltage V T due to the drain voltage
(2) an increase in the subthreshold current coefficient, and both of these effects become significant as embedded p-channel MOSFETs are miniaturized.

第7図に示す従来のMOSFETではチヤネル接
合深さを浅くすることにより(2)のサブスレツシヨ
ルド電流係数は低く抑えることができるが、(1)の
ドレイン電圧によるスレツシヨルド電圧VTの変
動は抑えられない。
In the conventional MOSFET shown in Figure 7, the subthreshold current coefficient in (2) can be kept low by making the channel junction depth shallow, but the variation in the threshold voltage V T due to the drain voltage in (1) can be suppressed. I can't.

その理由を第5図を用いて説明する(IEEE
Transactions on El ectron Devices ED−
33pp.317〜321 1986参照)。第5図はチヤネル接
合深さの異なる2種類の埋込みp−チヤネル
MOSFETについて、pチヤネル中央部でのSi−
SiO2界面からSi基板方向の距離に対する、トー
タル不純物分布濃度値の絶対値(|ND−NA|:
ここでNDはn型不純物濃度、NAはp型不純物濃
度)を示している。図中の8は0.24μmのチヤネ
ル接合深さをもつp−チヤネルMOSFETであ
り、9は0.12μmのチヤネル接合深さをもつp−
チヤネルMOSFETである。
The reason for this will be explained using Figure 5 (IEEE
Transactions on Electron Devices ED−
33pp.317-321 1986). Figure 5 shows two types of buried p-channels with different channel junction depths.
For MOSFET, Si-
Absolute value of total impurity distribution concentration value ( N D −N A |:
Here, N D indicates the n-type impurity concentration and N A indicates the p-type impurity concentration. In the figure, 8 is a p-channel MOSFET with a channel junction depth of 0.24 μm, and 9 is a p-channel MOSFET with a channel junction depth of 0.12 μm.
It is a channel MOSFET.

p−チヤネルMOSFET8,9はともに100オ
ングストロームのゲート酸化膜、0.5μmのゲート
長を有し、スレツシヨルド電圧VTは−0.6Vであ
る。またp−チヤネルMOSFET8は40keVボロ
ンのイオン注入により、1.0x1016cm-3の表面濃度
をもつn−ウエル上に形成され、p−チヤネル
MOSFET9は25keVの低エネルギーBF2イオン
注入により、1.0x1016cm-3の表面濃度をもつn−
ウエル上に形成されたものである。
Both p-channel MOSFETs 8 and 9 have a gate oxide film of 100 angstroms, a gate length of 0.5 μm, and a threshold voltage V T of -0.6V. The p-channel MOSFET 8 is formed on the n-well with a surface concentration of 1.0x10 16 cm -3 by ion implantation of 40 keV boron, and the p-channel MOSFET 8 is formed on the n-well with a surface concentration of 1.0x10 16 cm -3.
The n-
It is formed on a well.

この第5図のp−チヤネルMOSFET8,9の
特性によりスレツシヨルド電圧VTを−0.6Vの一
定に保つたまま、p−チヤネルMOSFET8から
p−チヤネルMOSFET9のように浅いチヤネル
接合を得ようとすれば、チヤネルドーピングのド
ーズ量を増大させて表面濃度値を高くしなければ
ならないことがわかる。
If we try to obtain a shallow channel junction from p-channel MOSFET 8 to p-channel MOSFET 9 while keeping the threshold voltage V T constant at -0.6V due to the characteristics of p-channel MOSFETs 8 and 9 in FIG. , it can be seen that the channel doping dose must be increased to increase the surface concentration value.

このようにチヤネル接合深さを浅くすればサブ
スレツシヨルド電流係数は劣化しないが、VT
一定に設定するためにはチヤネルドーピングの濃
度値が高くなり、このためSiO2−Si界面のポテ
ンシヤルψ6がドレイン電圧によつて変動をうけ
やすくなるため、ドレイン電圧によるVTの変動
は抑えられなくなる。
If the channel junction depth is made shallow in this way, the subthreshold current coefficient will not deteriorate, but in order to set V becomes susceptible to fluctuations depending on the drain voltage, making it impossible to suppress fluctuations in V T due to the drain voltage.

一方、チヤネルの表面濃度値を高くせずに、低
い表面濃度値を一定にしたままでp型チヤネルの
接合深さだけを浅くしようとすると、スレツシヨ
ルド電圧VTは−1.1V以下になつてしまい、VT
−0.6Vに設定することはできない。つまり、VT
を−0.6Vに設定するためにはチヤネルの表面濃
度値を高くせざるを得なくなつてしまう。
On the other hand, if you try to reduce the junction depth of the p-type channel while keeping the low surface concentration constant without increasing the surface concentration of the channel, the threshold voltage V T will become -1.1V or less. , V T cannot be set to −0.6V. In other words, V T
In order to set the voltage to −0.6V, the surface concentration value of the channel must be increased.

したがつて、第7図に示すような構成では、極
端に浅いチヤネル接合深さを実現してサブスレツ
シヨルド電流係数を低く抑えることができても、
スレツシヨルド電圧VTを一定に設定するために
は、必然的にp型チヤネルの表面濃度値を高くし
なくてはならず、それによつてドレイン電圧によ
りVTのは変動は大きくなつてしまうことになる。
Therefore, in the configuration shown in FIG. 7, even if an extremely shallow channel junction depth can be achieved and the subthreshold current coefficient can be kept low,
In order to set the threshold voltage V T constant, it is necessary to increase the surface concentration value of the p-type channel, and as a result, the fluctuation of V T due to the drain voltage becomes large. Become.

また、さらにドレイン電圧によるポテンシヤル
の伸びを抑制するために、p−チヤネル直下全面
に形成されたn+層16を高濃度化すれば、p型
チヤネル領域15との高濃度接合のため、サブス
レツシヨルド電流係数も劣化する。
Furthermore, in order to further suppress the expansion of the potential due to the drain voltage, if the n + layer 16 formed on the entire surface immediately below the p-channel is highly doped, the subthreshold is The JORD current coefficient also deteriorates.

そこで、本発明はサブスレツシヨルド電流係数
を低く抑えるとともに、ドレイン電圧によるポテ
ンシヤルの伸びを抑制して、ドレイン電圧による
VT変動を小さくするものである。
Therefore, the present invention suppresses the subthreshold current coefficient and suppresses the expansion of the potential due to the drain voltage.
This is to reduce V T fluctuation.

問題点を解決するための手段 そして前記問題点を解決する本発明の技術的手
段は、前記チヤネル領域直下の一部でかつソース
ドレイン領域側部に、ドレイン電圧によるポテン
シヤルの伸びを抑制する高濃度不純物層を形成す
るものである。
Means for Solving the Problems The technical means of the present invention for solving the above-mentioned problems is to apply a high concentration layer directly below the channel region and on the sides of the source/drain region to suppress the expansion of the potential due to the drain voltage. This forms an impurity layer.

作 用 この技術的手段による作用は次のようになる。
すなわち、チヤネル領域直下の一部でソース,ド
レイン領域側部に前記チヤネルドープの領域下で
前記ソース,ドレイン領域の接合深さよりも浅い
位置にピーク濃度値をもつ、チヤネル領域と反対
導電型の不純物層を形成することによつて、従来
のように反対導電型の不純物層をチヤネル領域直
下全面に形成し、チヤネル接合深さを浅くするこ
とによるチヤネル領域の表面濃度の増大を少なく
し、かつ、ドレイン電圧のポテンシヤルの伸びを
抑制するものである。この結果、従来のようにド
レイン電圧の変動によるスレツシヨルド電圧VT
変動がみられない埋込みチヤネルMOSFETを得
られるものである。
Effect The effect of this technical means is as follows.
In other words, an impurity having a conductivity type opposite to that of the channel region has a peak concentration value at a position shallower than the junction depth of the source and drain regions under the channel doped region on the side of the source and drain regions in a part directly below the channel region. By forming a layer, an impurity layer of the opposite conductivity type is formed on the entire surface immediately below the channel region as in the conventional method, and an increase in the surface concentration of the channel region due to a shallow channel junction depth is reduced, and This suppresses the increase in drain voltage potential. As a result, the threshold voltage V T
This provides an embedded channel MOSFET with no fluctuations.

実施例 以下、本発明の一実施例を第1図〜第7図にも
とづいて説明する。第1図において、1はp型ソ
ース,ドレイン領域、2はゲート電極、3はゲー
ト酸化膜、4は側壁酸化膜、5はソース,ドレイ
ン領域と同導電型のp型チヤネル領域であり、チ
ヤネル領域と反対導電型のn型高濃度不純物層6
が形成されている。また、7はn−ウエルであ
る。
Embodiment Hereinafter, an embodiment of the present invention will be described based on FIGS. 1 to 7. In FIG. 1, 1 is a p-type source and drain region, 2 is a gate electrode, 3 is a gate oxide film, 4 is a sidewall oxide film, and 5 is a p-type channel region of the same conductivity type as the source and drain regions. n-type high concentration impurity layer 6 of the opposite conductivity type to the region
is formed. Further, 7 is an n-well.

第2図〜第4図は、第1図に示された0.5μmの
ゲート長をもつp型埋込みチヤネルMOSFETの
製造工程を説明するものである。第2図に示すご
とく、通常工程にしたがつてn−ウエル7を形成
した後、スレツシヨルド電圧VT制御用のBF2
40keV、ドーズ量3.2×1012/cm2で200Åの酸化膜
を通してイオン注入して、p型チヤネル領域5を
形成し、100Åのゲート酸化膜3とゲート電極2
を選択的に形成する。次に第3図のように、燐を
130kev、ドーズ量1.0×1012/cm2で注入し、p型
チヤネル領域5の直下にn+層6を形成する。次
に第4図のごとく化学蒸着法いわゆるCVD法で
SiO2を堆積した後、エツチング除去を行なつて
SiO2側壁4を形成した後、自己整合的にソース,
ドレイン領域1をBF2を40kev、ドーズ量3×
1015/cm2で注入して形成する。この後、図示して
いないが周知の方法でMOSFETを完成させる。
2 to 4 illustrate the manufacturing process of the p-type buried channel MOSFET shown in FIG. 1 and having a gate length of 0.5 μm. As shown in Fig. 2, after forming the n-well 7 according to the normal process, BF 2 for controlling the threshold voltage V T is applied.
Ions are implanted through a 200 Å oxide film at 40 keV and a dose of 3.2×10 12 /cm 2 to form a p-type channel region 5, and a 100 Å gate oxide film 3 and a gate electrode 2 are formed.
selectively formed. Next, as shown in Figure 3, add phosphorus.
The n + layer 6 is formed directly under the p-type channel region 5 by implanting at a dose of 130keV and a dose of 1.0×10 12 /cm 2 . Next, as shown in Figure 4, chemical vapor deposition (CVD) is applied.
After depositing SiO 2 , it is removed by etching.
After forming the SiO 2 sidewall 4, the source,
Drain region 1: BF 2 : 40kev, dose: 3×
Formed by injection at 10 15 /cm 2 . Thereafter, although not shown, the MOSFET is completed using a well-known method.

このようにして得られたMOSFETは、短チヤ
ネル効果を抑制するためにチヤネル接合深さを極
端に浅くする必要はなく、第5図を用いて説明し
たように、チヤネル接合深さを浅くすることによ
るチヤネル領域の不純物表面濃度の増大を抑える
ことができる。
In the MOSFET obtained in this way, it is not necessary to make the channel junction depth extremely shallow in order to suppress the short channel effect, and as explained using FIG. 5, the channel junction depth can be made shallow. It is possible to suppress an increase in the impurity surface concentration in the channel region due to

第6図に曲線10,11で示すのは、本実施例
のMOSFET(ゲート長0.5μm)ドレイン電圧VD
−3Vのときのドレイン電流ID値、ドレイン電圧
VDが−0.5Vのときのドレイン電流ID値をゲート
電圧VGを変化させて測定したものであるが、同
じ条件で測定した従来のMOSFET(ゲート長
0.5μm)の測定曲線10A,11Aと比較してわ
かるように、本実施例のMOSFETはドレイン電
圧の変動によるVT変動が軽減される。
Curves 10 and 11 in FIG. 6 show the drain current I D value and drain voltage when the drain voltage V D of the MOSFET (gate length 0.5 μm) of this example is -3V.
The drain current I D value when V D is -0.5V was measured by changing the gate voltage V G , but it is different from that of a conventional MOSFET (gate length
As can be seen from the comparison with measurement curves 10A and 11A of 0.5 μm), in the MOSFET of this example, V T fluctuation due to drain voltage fluctuation is reduced.

発明の効果 以上説明したように本発明は埋込みチヤネル形
のMOS型電界効果トランジスタであつて、チヤ
ネル領域の直下の一部でソース,ドレイン領域の
側部にチヤネル領域と反対導電型の高濃度不純物
層を形成しているため、サブスレツシヨルド電流
係数が小さく、ドレイン電圧によるVT変動をお
さえることができる。
Effects of the Invention As explained above, the present invention is a buried channel type MOS field effect transistor in which high concentration impurities of the opposite conductivity type to the channel region are formed on the sides of the source and drain regions in a part immediately below the channel region. Since the layer is formed, the subthreshold current coefficient is small, and V T fluctuation due to drain voltage can be suppressed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における埋込みチヤ
ネル形のMOS型電界効果トランジスタの断面図、
第2図〜第4図は同トランジスタの製造プロセス
を説明する断面図、第5図は埋込みp−
MOSFETのチヤネル接合深さと不純物分布の関
係を示す特性図、第6図は本実施例のMOS型電
界効果トランジスタのID−VG特性を従来のものの
特性と比較して示す特性図、第7図は従来の
MOS型電界効果トランジスタの断面図である。 1……ソース,ドレイン領域、2……ゲート電
極、3……ゲート酸化膜、4……側壁酸化膜、5
……p型チヤネル領域、6……n型高濃度不純物
層、7……n−ウエル。
FIG. 1 is a cross-sectional view of a buried channel type MOS field effect transistor according to an embodiment of the present invention.
Figures 2 to 4 are cross-sectional views explaining the manufacturing process of the same transistor, and Figure 5 is a buried p-type transistor.
Figure 6 is a characteristic diagram showing the relationship between MOSFET channel junction depth and impurity distribution. The figure is conventional
FIG. 2 is a cross-sectional view of a MOS field effect transistor. 1... Source, drain region, 2... Gate electrode, 3... Gate oxide film, 4... Sidewall oxide film, 5
. . . p-type channel region, 6 . . . n-type high concentration impurity layer, 7 . . . n-well.

Claims (1)

【特許請求の範囲】 1 一方導電型の半導体基板表面に前記基板と反
対導電型のソース・ドレイン領域およびチヤネル
領域をもつ埋め込み型チヤネルMOS電界効果ト
ランジスタであつて、 前記基板上に選択的に形成された前記基板と反
対導電型のソース・ドレイン領域と、 前記基板表面の前記ソース・ドレイン領域に一
連につながつて形成された前記基板と反対導電型
のチヤネル領域と、 前記ソース・ドレイン領域を覆い、前記基板上
に形成されたゲート絶縁膜と、 前記ソース・ドレイン領域側の前記チヤネル領
域直下であり、かつ前記ソース・ドレイン領域の
側部に、前記ソース・ドレイン領域の側部から前
記チヤネル領域に向かつて、前記チヤネル領域直
下をすべて覆わないように一方導電型の高濃度不
純物層を設け、 前記高濃度不純物層は前記ソース・ドレインか
ら前記基板へのポテンシヤルの伸びを抑えること
を特徴とするMOS型電界効果トランジスタ。
[Claims] 1. A buried channel MOS field effect transistor having a source/drain region and a channel region of a conductivity type opposite to that of the substrate on the surface of a semiconductor substrate of one conductivity type, which is selectively formed on the substrate. source/drain regions having a conductivity type opposite to that of the substrate; a channel region having a conductivity type opposite to that of the substrate formed so as to be connected to the source/drain regions on the surface of the substrate; and a channel region covering the source/drain regions. , a gate insulating film formed on the substrate; and a gate insulating film formed on the source/drain region side directly below the channel region and on a side of the source/drain region from the side of the source/drain region. In order to achieve this, a high concentration impurity layer of one conductivity type is provided so as not to entirely cover directly beneath the channel region, and the high concentration impurity layer suppresses the extension of potential from the source/drain to the substrate. MOS type field effect transistor.
JP106585A 1985-01-08 1985-01-08 Mos field effect transistor Granted JPS61160975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP106585A JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP106585A JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Publications (2)

Publication Number Publication Date
JPS61160975A JPS61160975A (en) 1986-07-21
JPH0482064B2 true JPH0482064B2 (en) 1992-12-25

Family

ID=11491131

Family Applications (1)

Application Number Title Priority Date Filing Date
JP106585A Granted JPS61160975A (en) 1985-01-08 1985-01-08 Mos field effect transistor

Country Status (1)

Country Link
JP (1) JPS61160975A (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63302568A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JPS63302567A (en) * 1987-06-02 1988-12-09 Sanyo Electric Co Ltd Manufacture of mos semiconductor device
JP2532478B2 (en) * 1987-06-26 1996-09-11 松下電器産業株式会社 Method for manufacturing semiconductor device
USRE40132E1 (en) 1988-06-17 2008-03-04 Elpida Memory, Inc. Large scale integrated circuit with sense amplifier circuits for low voltage operation
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
US5369295A (en) * 1992-01-28 1994-11-29 Thunderbird Technologies, Inc. Fermi threshold field effect transistor with reduced gate and diffusion capacitance
US5440160A (en) * 1992-01-28 1995-08-08 Thunderbird Technologies, Inc. High saturation current, low leakage current fermi threshold field effect transistor
US5525822A (en) * 1991-01-28 1996-06-11 Thunderbird Technologies, Inc. Fermi threshold field effect transistor including doping gradient regions
US5814869A (en) * 1992-01-28 1998-09-29 Thunderbird Technologies, Inc. Short channel fermi-threshold field effect transistors
US5367186A (en) * 1992-01-28 1994-11-22 Thunderbird Technologies, Inc. Bounded tub fermi threshold field effect transistor
US5543654A (en) * 1992-01-28 1996-08-06 Thunderbird Technologies, Inc. Contoured-tub fermi-threshold field effect transistor and method of forming same
US5786620A (en) * 1992-01-28 1998-07-28 Thunderbird Technologies, Inc. Fermi-threshold field effect transistors including source/drain pocket implants and methods of fabricating same
US7302376B2 (en) 2002-08-15 2007-11-27 International Business Machines Corporation Device modeling for proximity effects

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS559454A (en) * 1978-07-05 1980-01-23 Nec Corp Short channel mis type electric field effective transistor
JPS5516480A (en) * 1978-07-21 1980-02-05 Nippon Telegr & Teleph Corp <Ntt> Insulating gate electrostatic effect transistor and semiconductor integrated circuit device

Also Published As

Publication number Publication date
JPS61160975A (en) 1986-07-21

Similar Documents

Publication Publication Date Title
US7060574B2 (en) Buried channel type transistor having a trench gate and method of manufacturing the same
US5248627A (en) Threshold adjustment in fabricating vertical dmos devices
US5532176A (en) Process for fabricating a complementary MIS transistor
US6022778A (en) Process for the manufacturing of integrated circuits comprising low-voltage and high-voltage DMOS-technology power devices and non-volatile memory cells
KR950001157B1 (en) Manufacturing method of semiconductor device
US6066535A (en) Method of manufacturing semiconductor device
JPH09181307A (en) Semiconductor device and manufacturing method therefor
JPH0482064B2 (en)
US20010012665A1 (en) Semiconductor device and method for fabricating the same
US20040041170A1 (en) Low dose super deep source/drain implant
US20090179274A1 (en) Semiconductor Device and Method for Fabricating the Same
US20020014664A1 (en) Multi-function semiconductor structure and method
JPH06268215A (en) Mis type semiconductor device
US7161210B2 (en) Semiconductor device with source and drain regions
JP2729298B2 (en) Manufacturing method of MOS transistor
JP2635096B2 (en) Semiconductor device and manufacturing method thereof
JPS60247974A (en) Semiconductor device
JPH03205832A (en) Insulated-gate semiconductor device and manufacture thereof
JPH0629524A (en) Manufacture of semiconductor device
JPH0789587B2 (en) Insulated gate field effect transistor and manufacturing method thereof
JP3344078B2 (en) Insulated gate field effect transistor
JP3144385B2 (en) Semiconductor device and manufacturing method thereof
JPH1012870A (en) Semiconductor device and its manufacture
JP2727590B2 (en) MIS type semiconductor device
JP2506947B2 (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term