JP2008235407A - Semiconductor device and its manufacturing method - Google Patents

Semiconductor device and its manufacturing method Download PDF

Info

Publication number
JP2008235407A
JP2008235407A JP2007070123A JP2007070123A JP2008235407A JP 2008235407 A JP2008235407 A JP 2008235407A JP 2007070123 A JP2007070123 A JP 2007070123A JP 2007070123 A JP2007070123 A JP 2007070123A JP 2008235407 A JP2008235407 A JP 2008235407A
Authority
JP
Japan
Prior art keywords
insulating film
gate insulating
drain
impurity diffusion
diffusion region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007070123A
Other languages
Japanese (ja)
Inventor
Masatoshi Fukuda
昌俊 福田
Masashi Shima
昌司 島
So Kurata
創 倉田
Tomonari Yamamoto
知成 山本
Takeshi Sugizaki
剛 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2007070123A priority Critical patent/JP2008235407A/en
Publication of JP2008235407A publication Critical patent/JP2008235407A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To simply and easily realize a structure for reducing an electric field applied to a gate insulating film between a gate electrode and a drain electrode regarding a semiconductor device and a manufacturing method for the semiconductor device. <P>SOLUTION: In the semiconductor device, a plurality of kinds of digital transistors and analog transistors are mixed and integrated on the same wafer. The semiconductor device has source impurity-diffusion regions 4 and drain impurity-diffusion regions 5 having different impurity-diffusion profiles. The channel-side end of an LDD region 5A in the impurity-diffusion profile for the drain impurity-diffusion region 5 is isolated from the gate insulating film 2 in the semiconductor device, and the semiconductor device contains a transistor embedded into a substrate. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高耐圧のMOSFETを有する半導体装置及びその製造方法に関する。   The present invention relates to a semiconductor device having a high breakdown voltage MOSFET and a method for manufacturing the same.

現在、前記したような半導体装置、即ち、複数種類のMOSFETを混載した半導体装置が多用され、そして、その性能向上が希求されているのであるが、それを実現するには種々と問題がある。   Currently, semiconductor devices such as those described above, that is, semiconductor devices in which a plurality of types of MOSFETs are mixedly mounted are widely used, and there is a demand for improvement in performance. However, there are various problems in realizing this.

そのような半導体装置に含まれる一種であるパワーアンプ用のMOSFETを動作させるには、比較的高いドレイン電圧を必要とするので、ゲート絶縁膜の耐圧は高くしなければならない。   In order to operate a power amplifier MOSFET included in such a semiconductor device, a relatively high drain voltage is required. Therefore, the breakdown voltage of the gate insulating film must be increased.

例えば、I/Oに用いる 3.3Vのトランジスタを製造する工程を流用してパワーアンプ用MOSFETを混載する場合、例えばゲート電圧 3.3V、ドレイン電圧10Vというように高いドレイン電圧が必要となる。   For example, when a power amplifier MOSFET is mixedly mounted using a process for manufacturing a 3.3V transistor used for I / O, a high drain voltage such as a gate voltage of 3.3V and a drain voltage of 10V is required.

3.3VのI/O用トランジスタに於いて、ゲート絶縁膜に印加される電圧はゲート電極とソース電極間及びゲート電極とドレイン電極間で何れも 3.3Vとなる。そして、ドレイン電圧を10Vまで高めると、ゲート電極とドレイン電極間で10Vもの電圧差が生じ、この高電界によってゲート絶縁膜の劣化及び破壊が起こることになる。    In a 3.3V I / O transistor, the voltage applied to the gate insulating film is 3.3V between the gate electrode and the source electrode and between the gate electrode and the drain electrode. When the drain voltage is increased to 10V, a voltage difference of 10V occurs between the gate electrode and the drain electrode, and the high electric field causes deterioration and destruction of the gate insulating film.

ドレイン耐圧を向上させる為には、非対称のソース・ドレイン構造が有用であることは良く知られている。例えば、ドレイン側に比較的低濃度の不純物領域を用いることによって耐圧が向上する。   It is well known that an asymmetric source / drain structure is useful for improving the drain breakdown voltage. For example, the breakdown voltage is improved by using a relatively low concentration impurity region on the drain side.

然しながら、このような構造、即ち、低濃度の不純物領域を用いただけでは十分な電圧降下が得られず、ゲート電極とドレイン電極間のゲート絶縁膜にかかる電界はほとんど緩和されず不十分である。   However, a sufficient voltage drop cannot be obtained only by using such a structure, that is, a low-concentration impurity region, and the electric field applied to the gate insulating film between the gate electrode and the drain electrode is hardly relaxed and is insufficient.

前記したところから、p型不純物イオンを側方から斜め注入し、その後、n型不純物イオンを垂直方向から注入することによって、n型のLDD(lightly doped drain)領域に於ける不純物を相殺すると共にn型のLDD領域先端のチャネル側にp型の埋込み領域を形成する方法が開示されている(例えば、特許文献1を参照。)。   From the above, p-type impurity ions are obliquely implanted from the side, and then n-type impurity ions are implanted from the vertical direction, thereby canceling out impurities in the n-type LDD (lightly doped drain) region. A method of forming a p-type buried region on the channel side at the tip of an n-type LDD region has been disclosed (for example, see Patent Document 1).

この方法は、n型のLDD領域に於ける不純物をp型の不純物で相殺し、LDD抵抗を高めることによって、素子の耐圧を向上させている。   This method improves the breakdown voltage of the element by offsetting impurities in the n-type LDD region with p-type impurities and increasing the LDD resistance.

この場合、LDD領域に隣接するp型の埋込み領域は、一般的によく知られているポケット注入と同様の効果が得られる構造をゲートの片側のみに設けたことが特徴になっている。然しながら、アナログ素子や高耐圧のパワーアンプMOSFETにおいては、p型の埋込み領域、いわゆるポケット注入は駆動能力の劣化やばらつき増大の原因になっていることが問題である。
特開平5−275693号公報
In this case, the p-type buried region adjacent to the LDD region is characterized in that a structure capable of obtaining the same effect as the well-known pocket implantation is provided only on one side of the gate. However, a problem with analog devices and high-voltage power amplifier MOSFETs is that the p-type buried region, so-called pocket implantation, causes deterioration in drive capability and increased variation.
JP-A-5-275893

本発明では、ゲート電極とドレイン電極との間でゲート絶縁膜に加わる電界を低減する為の構造を簡単且つ容易に実現しようとする。   In the present invention, a structure for reducing the electric field applied to the gate insulating film between the gate electrode and the drain electrode is to be realized simply and easily.

本発明に依る半導体装置及びその製造方法に於いては、複数種類のデジタルトランジスタとアナログトランジスタとが同一のウェハ上に混載され集積化された半導体装置であって、不純物拡散プロファイルを異にするソース不純物拡散領域とドレイン不純物拡散領域を備え、且つ、該ドレイン不純物拡散領域の不純物拡散プロファイルに於けるチャネル側端がゲート絶縁膜から離隔して基板内部に埋め込まれたトランジスタを含むことを特徴とする。   In the semiconductor device and the manufacturing method thereof according to the present invention, a semiconductor device in which a plurality of types of digital transistors and analog transistors are integrated and integrated on the same wafer, and has different impurity diffusion profiles. And a transistor including an impurity diffusion region and a drain impurity diffusion region, and a channel side end in the impurity diffusion profile of the drain impurity diffusion region being separated from the gate insulating film and embedded in the substrate. .

前記手段を採ることに依り、ソース不純物領域及びドレイン不純物拡散領域では、ドレイン側のLDD領域に於けるプロファイルは、LDD領域の先端部分がゲート絶縁膜から離間して基板内部に埋め込まれた形状になり、従って、ゲート電極とドレイン電極間のゲート絶縁膜にかかる電界を緩和することが可能であり、そして、ドレイン不純物拡散領域に於けるLDD領域先端の占位位置を制御することに依り、ゲート絶縁耐性及びホットキャリア耐性を共に向上させることが可能である。   By adopting the above means, in the source impurity region and the drain impurity diffusion region, the profile in the LDD region on the drain side has a shape in which the tip portion of the LDD region is embedded in the substrate apart from the gate insulating film. Therefore, the electric field applied to the gate insulating film between the gate electrode and the drain electrode can be relaxed, and the gate position can be controlled by controlling the occupation position of the LDD region tip in the drain impurity diffusion region. Both insulation resistance and hot carrier resistance can be improved.

本発明は、ゲート電極とドレイン電極間においてゲート絶縁膜にかかる電界を小さくする為、ドレイン端がゲート絶縁膜から離間して基板内部に埋め込まれた構造にする。   In the present invention, in order to reduce the electric field applied to the gate insulating film between the gate electrode and the drain electrode, the drain end is separated from the gate insulating film and embedded in the substrate.

図1は本発明に依る実施の形態1の半導体装置であるMOSFETを従来のMOSFETと比較して説明する為の要部切断側面図であり、(A)が本発明に依るMOSFET、(B)が従来のMOSFETである。   FIG. 1 is a cutaway side view of a main part for explaining a MOSFET which is a semiconductor device according to the first embodiment of the present invention in comparison with a conventional MOSFET. FIG. 1A is a MOSFET according to the present invention. Is a conventional MOSFET.

図に於いて、1はシリコン基板、1Aは高抵抗領域、2はゲート絶縁膜、3はゲート電極、4はソース不純物拡散領域、4Aはソース側LDD領域、5はドレイン不純物拡散領域、5Aはドレイン側LDD領域、6はサイドウォールをそれぞれ示している。尚、LDDなる用語は、慣例によって、ソース側の領域にも用いることとする。   In the figure, 1 is a silicon substrate, 1A is a high resistance region, 2 is a gate insulating film, 3 is a gate electrode, 4 is a source impurity diffusion region, 4A is a source side LDD region, 5 is a drain impurity diffusion region, and 5A is Drain side LDD regions 6 are sidewalls. Note that the term LDD is also used for the source side region by convention.

本発明に依るMOSFETでは、図から明らかなように、LDD領域5Aのプロファイルに於ける先端部分が基板1の内部に埋め込まれた形状になっていて、ゲート絶縁膜2と離間していることが看取される。このLDD領域5Aの先端が占位する位置は製造工程に於いて制御することができ、そして、その占位位置に応じてゲート絶縁耐性及びホットキャリア耐性は変化するから、その制御が可能である。   In the MOSFET according to the present invention, as is apparent from the drawing, the tip portion in the profile of the LDD region 5A is embedded in the substrate 1 and is separated from the gate insulating film 2. Be taken care of. The position at which the tip of the LDD region 5A occupies can be controlled in the manufacturing process, and the gate insulation resistance and hot carrier resistance change according to the occupancy position, so that control is possible. .

図1(A)に見られるMOSFETを作製するには、ゲート電極3直下のシリコン基板1に於いて、ドレイン不純物拡散領域5のドレイン側LDD領域5Aとゲート絶縁膜2との間に不純物のカウンタードープによって高抵抗領域1Aを形成する。   In order to manufacture the MOSFET shown in FIG. 1A, an impurity counter is provided between the drain side LDD region 5A of the drain impurity diffusion region 5 and the gate insulating film 2 in the silicon substrate 1 immediately below the gate electrode 3. The high resistance region 1A is formed by doping.

nチャネル型MOSFETの場合、n型のLDD領域5Aを形成した後、その表面にp型不純物イオンを浅く注入することに依って、LDD領域5Aを基板1の内部に埋め込んだ構造にしてある。   In the case of the n-channel type MOSFET, after the n-type LDD region 5A is formed, the LDD region 5A is buried in the substrate 1 by implanting p-type impurity ions shallowly into the surface thereof.

図1(A)に見られるMOSFETと図1(B)に見られるMOSFETとを比較すると、本発明に依るMOSFETに於けるLDD領域5Aの構造が従来のMOSFETの構造と著しく相違していることが看取できよう。   Comparing the MOSFET shown in FIG. 1A and the MOSFET shown in FIG. 1B, the structure of the LDD region 5A in the MOSFET according to the present invention is significantly different from the structure of the conventional MOSFET. Can be seen.

p型不純物イオンに続いてn型不純物イオンの順番で注入した場合には、p型の不純物がn型不純物によって基板内部に押し込まれる為、p型不純物プロファイルの裾が基板内部に広がってしまうので、n型不純物イオンの注入後にp型不純物イオンの注入を行う方法を採ると良い。   When the n-type impurity ions are implanted in the order of the p-type impurity ions, the p-type impurities are pushed into the substrate by the n-type impurities, so that the bottom of the p-type impurity profile spreads inside the substrate. A method of implanting p-type impurity ions after implanting n-type impurity ions may be employed.

p型不純物イオンの注入は、チャネリングを抑制する為、浅い角度の斜め方向から行うことが好ましく、これによって、先端が基板内部に埋め込まれたドレイン側LDD領域5Aを形成し、ゲート電極3とドレイン電極間のゲート絶縁膜2にかかる電界を緩和することが可能である。   The implantation of the p-type impurity ions is preferably performed from an oblique direction with a shallow angle in order to suppress channeling, thereby forming the drain side LDD region 5A having the tip embedded in the substrate, and the gate electrode 3 and the drain. It is possible to reduce the electric field applied to the gate insulating film 2 between the electrodes.

また、pチャネル型MOSFETの場合、前記説明したnチャネル型MOSFETの場合と同じ方法を使用できることは容易に想像できよう。   In the case of a p-channel MOSFET, it can be easily imagined that the same method can be used as in the case of the n-channel MOSFET described above.

また、既知の技術(例えば、特許文献1を参照。)に依れば、p型不純物イオンの注入に続いてn型不純物イオンを注入していて、n型のLDD領域の先端の在るチャネル領域にp型の埋込み領域を形成するという方法が採用され、この場合、前記したようにMOSFETの駆動能力が劣化したり、或いは、ばらついたりする旨の問題があり、本発明に依って得られる効果は得ることができない。   Further, according to a known technique (see, for example, Patent Document 1), a channel in which an n-type impurity ion is implanted following the implantation of a p-type impurity ion and the tip of the n-type LDD region is present A method of forming a p-type buried region in the region is employed, and in this case, there is a problem that the driving capability of the MOSFET is deteriorated or varies as described above, which is obtained by the present invention. The effect cannot be obtained.

本発明に依る実施の形態2としては、前記説明した実施の形態1に於けるp型不純物のカウンタードープに代えて、ドレイン領域に酸素イオンを浅く斜め注入することに依って高抵抗領域1Aを形成するものである。但し、余り大量の酸素イオンを打ち込んでしまうと、イオン注入ダメージを受けて耐圧が低下した酸化膜が生成されてしまうので、酸素イオンのドーズ量としては1×1016cm-2以下とすることが好ましい。 In the second embodiment according to the present invention, instead of the counter-doping of the p-type impurity in the first embodiment described above, the high resistance region 1A is formed by shallowly implanting oxygen ions into the drain region. To form. However, if an excessive amount of oxygen ions is implanted, an oxide film having a reduced withstand voltage is generated due to ion implantation damage, so the dose amount of oxygen ions should be 1 × 10 16 cm −2 or less. Is preferred.

図2乃至図9は本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図であり、以下、これ等の図を参照しつつ説明する。尚、図1に於いて用いた記号と同じ記号で指示した部分は同一或いは同効の部分を表すものとする。   FIGS. 2 to 9 are side sectional views showing the main part of the MOSFET in the process steps for explaining the first embodiment of the present invention. The following description will be made with reference to these drawings. It should be noted that parts designated by the same symbols as those used in FIG. 1 represent identical or equivalent parts.

図2参照
(1)
STI(shallow trench isolation)法を用い、シリコン基板1に素子分離領域(図示せず:図示できる範囲外に位置する)を形成し、次いで、イオン注入法を用い、p型ウエル領域(図示せず)を形成する。尚、上記STI法はLOCOS(local oxidation of silicon)法などに代替して良い。
See Fig. 2 (1)
An element isolation region (not shown: located outside the range that can be shown) is formed on the silicon substrate 1 using an STI (shallow trench isolation) method, and then a p-type well region (not shown) is used using an ion implantation method. ). The STI method may be replaced with a LOCOS (local oxidation of silicon) method or the like.

(2)
熱酸化法を用い、シリコン基板1上に厚さ3nmのSiO2 からなるゲート絶縁膜2を成膜する。尚、ゲート絶縁膜2の厚さは3nm〜10nmの範囲で任意に選択して良い。
(2)
A gate insulating film 2 made of SiO 2 having a thickness of 3 nm is formed on the silicon substrate 1 by using a thermal oxidation method. The thickness of the gate insulating film 2 may be arbitrarily selected within the range of 3 nm to 10 nm.

(3)
同じくCVD法を用い、ゲート絶縁膜2上にゲート電極となるべき厚さ30nmのポリシリコン層を成膜する。尚、ゲート電極となるべきポリシリコン層の厚さは30nm〜300nmの範囲で任意に選択することができ、また、材質はポリシリコン以外にシリサイドや金属などを選択することができる。
(3)
Similarly, a polysilicon layer having a thickness of 30 nm to be a gate electrode is formed on the gate insulating film 2 by using the CVD method. The thickness of the polysilicon layer to be the gate electrode can be arbitrarily selected within the range of 30 nm to 300 nm, and the material can be selected from silicide, metal, etc. in addition to polysilicon.

図3参照
(4)
リソグラフィ技術に於けるレジストプロセス、及び、RIE(reactiv ion etching)法を用い、ゲート電極となるべきポリシリコン層のパターン化を行って、ゲート長が 0.1μmのゲート電極3を形成し、また、ゲート絶縁膜2のパターン化を行う。尚、ゲート長は 0.1μm〜10μmの範囲で任意に選択して良い。
See Fig. 3 (4)
Using a resist process in lithographic technology and a reactive ion etching (RIE) method, a polysilicon layer to be a gate electrode is patterned to form a gate electrode 3 having a gate length of 0.1 μm. The gate insulating film 2 is patterned. The gate length may be arbitrarily selected within the range of 0.1 μm to 10 μm.

図4参照
(5)
イオン注入法を用い、不純物イオンの打ち込みを行ってソース側LDD領域4A及びドレイン側LDD領域5Aを形成する。ここでは、nチャネル型MOSFETを対象にしているので、不純物としてはP、As、Sbなどから選択し、また、イオン注入角度は0 度(基板面に対して垂直)〜30度の範囲で選択し、また、イオン加速エネルギーは100keV以下、ドーズ量は1×1015cm-2以下とすることが望ましい。
See Fig. 4 (5)
Using an ion implantation method, impurity ions are implanted to form the source side LDD region 4A and the drain side LDD region 5A. Here, since the n-channel MOSFET is targeted, the impurity is selected from P, As, Sb, etc., and the ion implantation angle is selected in the range of 0 degrees (perpendicular to the substrate surface) to 30 degrees. Further, it is desirable that the ion acceleration energy is 100 keV or less and the dose is 1 × 10 15 cm −2 or less.

図5参照
(6)
ここで、イオン注入法を用いてLDD領域5Aの側方から斜めにカウンタードープを行う。この場合、LDD領域5Aとは導電型を異にする不純物、即ち、nチャネル型MOSFETの場合、p型不純物であるIn、B、BF2 などから選択する。
See FIG. 5 (6)
Here, counter-doping is performed obliquely from the side of the LDD region 5A using an ion implantation method. In this case, an impurity having a conductivity type different from that of the LDD region 5A, that is, an n-channel MOSFET, is selected from p-type impurities such as In, B, and BF 2 .

この際、不純物イオンをLDD領域5Aの表面側にのみ打ち込む為、LDD領域を形成した時のイオン注入に比較して小さい加速エネルギーを採用し、また、イオン注入角度はLDD領域を形成した際のイオン注入条件の如何で変える必要がある。   At this time, since impurity ions are implanted only into the surface side of the LDD region 5A, a small acceleration energy is employed as compared with the ion implantation when the LDD region is formed, and the ion implantation angle is the same as that when the LDD region is formed. It is necessary to change the ion implantation conditions.

その一例としては、LDD領域形成の際のイオン注入が0度(基板面に対して垂直) 方向、加速エネルギーが30keV、イオン種がP、ドーズ量が1×1014cm-2であったとすると、カウンタードープでは0度〜30度、好ましくは7度傾斜させ、加速エネルギーは1keV、イオン種はB、ドーズ量は8×1013cm-2とすることができる。 As an example, suppose that the ion implantation at the time of forming the LDD region is in the direction of 0 degree (perpendicular to the substrate surface), the acceleration energy is 30 keV, the ion species is P, and the dose is 1 × 10 14 cm −2. In the counter dope, the tilt is 0 degree to 30 degrees, preferably 7 degrees, the acceleration energy is 1 keV, the ion species is B, and the dose amount is 8 × 10 13 cm −2 .

また、上記カウンタードープには、不純物イオンを用いる他、酸素イオンを用い、不純物イオンを用いる場合と同じ方法、即ち、斜め方向から打ち込むことで、LDD領域5Aの表面を不活性化する手段を採っても良く、その場合には、酸素イオンのドーズ量として1×1016cm-2以下を選択することで、イオン注入ダメージを受けて耐圧が低下した酸化膜が形成されることを抑止する。 For the counter-doping, in addition to using impurity ions, oxygen ions are used, and the same method as when impurity ions are used, that is, means for inactivating the surface of the LDD region 5A by implanting from an oblique direction. In that case, by selecting an oxygen ion dose of 1 × 10 16 cm −2 or less, it is possible to suppress the formation of an oxide film having a reduced breakdown voltage due to ion implantation damage.

図6参照
(7)
短時間の熱処理を行ってLDD領域を活性化する。この工程を経ることで、ドレイン側LDD領域5Aの表面に在る不純物は、カウンタードープされたp型不純物によって相殺される。尚、酸素注入の場合は、不活性化によって高抵抗層が形成される。
See FIG. 6 (7)
A short heat treatment is performed to activate the LDD region. Through this step, the impurities present on the surface of the drain side LDD region 5A are offset by the counter-doped p-type impurities. In the case of oxygen implantation, a high resistance layer is formed by inactivation.

以上の結果、ドレイン側のみ、LDD領域5Aが基板1の内部に埋め込まれたプロファイルが生成される。尚、工程(7)の熱処理は、高濃度ソース不純物拡散領域4及び高濃度ドレイン不純物拡散領域5を形成する為のイオン注入を行った後にまとめて実施しても良い。   As a result, a profile in which the LDD region 5A is embedded inside the substrate 1 is generated only on the drain side. The heat treatment in the step (7) may be performed collectively after ion implantation for forming the high concentration source impurity diffusion region 4 and the high concentration drain impurity diffusion region 5 is performed.

図7参照
(8)
CVD法を採用し、サイドウォール用のSiO2 からなる絶縁膜を堆積する。尚、SiO2 は他の絶縁材料、例えば、SiN、SiONなどに代替することができる。
Refer to FIG. 7 (8)
A CVD method is employed to deposit an insulating film made of SiO 2 for the sidewall. Note that SiO 2 can be replaced with other insulating materials such as SiN, SiON and the like.

(9)
RIE法を採用し、上記絶縁膜を異方性エッチングしてサイドウォール6を形成する。
(9)
The side wall 6 is formed by employing the RIE method and anisotropically etching the insulating film.

図8参照
(10)
イオン注入法を採用することに依り、n型不純物イオンの打ち込みを行ってソース不純物拡散領域4及びドレイン不純物拡散領域5を形成する。
See FIG. 8 (10)
By adopting the ion implantation method, n-type impurity ions are implanted to form the source impurity diffusion region 4 and the drain impurity diffusion region 5.

図9参照
(11) 短時間の熱処理によってソース不純物拡散領域4及びドレイン不純物拡散領域5に於ける不純物を活性化させ、全体として図示の不純物拡散プロファイルを実現する。尚、ドレイン不純物拡散領域5のLDD領域5Aの位置制御は、第一にLDD領域5Aの不純物注入の如何に依って制御を行い、続いて、これに見合うカウンタードープを行う。
Refer to FIG. 9 (11) Impurities in the source impurity diffusion region 4 and the drain impurity diffusion region 5 are activated by a short-time heat treatment, thereby realizing the impurity diffusion profile shown in the figure as a whole. Incidentally, the position control of the LDD region 5A of the drain impurity diffusion region 5 is controlled first depending on the impurity implantation of the LDD region 5A, and then counter-doping corresponding to this is performed.

LDD領域5Aの不純物注入エネルギーを大きくしたり、或いは、角度を付けて打ち込みを行うと、ゲート電極とLDD領域5Aとのオーバーラップは大きくなる。勿論、カウンタードープの条件に依っても若干は制御可能であるが、LDD領域5Aの先端は本来的にLDD領域5Aの不純物注入で決まってしまう。   When the impurity implantation energy of the LDD region 5A is increased or implantation is performed at an angle, the overlap between the gate electrode and the LDD region 5A increases. Of course, although it can be controlled somewhat depending on the counter-doping conditions, the tip of the LDD region 5A is inherently determined by the impurity implantation of the LDD region 5A.

(12)
この後、図示しないが、通常の半導体装置の製造と同じように、ソース・ドレイン・ゲートの表面にCoSi、NiSiなどのシリサイド膜の形成、層間絶縁膜の堆積、コンタクトホール及びコンタクトプラグの形成、配線の形成などを行って完成する。
(12)
Thereafter, although not shown in the drawing, as in the manufacture of a normal semiconductor device, formation of a silicide film such as CoSi and NiSi on the surface of the source / drain / gate, deposition of an interlayer insulating film, formation of contact holes and contact plugs, The wiring is completed and completed.

本発明に於いては、前記説明した実施の形態を含め、多くの形態で実施することができるので、以下、それを付記として例示する。   Since the present invention can be implemented in many forms including the above-described embodiment, it will be exemplified as an additional note hereinafter.

(付記1)
半導体基板上にゲート絶縁膜を介して形成されたゲート電極と、ソース不純物拡散領域と、ドレイン不純物拡散領域とを備える電界効果トランジスタに於いて、
該ドレイン不純物拡散領域のチャネル側端部は、該ゲート絶縁膜下部であって且つ該ゲート絶縁膜から離隔した該半導体基板内部に位置すること
を特徴とする半導体装置。
(Appendix 1)
In a field effect transistor comprising a gate electrode formed on a semiconductor substrate via a gate insulating film, a source impurity diffusion region, and a drain impurity diffusion region,
A channel side end of the drain impurity diffusion region is located under the gate insulating film and inside the semiconductor substrate separated from the gate insulating film.

(付記2)
該ソース不純物拡散領域のチャネル側端部は、該ゲート絶縁膜下部であって且つ該ゲート絶縁膜に接して該半導体基板表面部に位置すると
を特徴とする(付記1)記載の半導体装置。
(Appendix 2)
The semiconductor device according to (Appendix 1), wherein the channel-side end portion of the source impurity diffusion region is located under the gate insulating film and in contact with the gate insulating film on the surface portion of the semiconductor substrate.

(付記3)
半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、
該ゲート電極及び該ゲート絶縁膜をマスクとして、該半導体基板に一導電型の不純物注入を行い、ドレイン不純物拡散領域を形成する工程と、
次いで、該ドレイン不純物拡散領域の表面に、反対導電型の不純物注入を、該ゲート電極に対して該ドレイン不純物拡散領域側の斜め方向から行う工程と
を有することを特徴とする半導体装置の製造方法。
(Appendix 3)
Forming a gate electrode on a semiconductor substrate via a gate insulating film;
Using the gate electrode and the gate insulating film as a mask, implanting one conductivity type impurity into the semiconductor substrate to form a drain impurity diffusion region;
Next, a method of manufacturing a semiconductor device, comprising: performing an impurity implantation of an opposite conductivity type on the surface of the drain impurity diffusion region from an oblique direction on the drain impurity diffusion region side with respect to the gate electrode. .

(付記4)
半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、
該ゲート電極及び該ゲート絶縁膜をマスクとして、該半導体基板に一導電型の不純物注入を行い、ドレイン不純物拡散領域を形成する工程と、
次いで、該ドレイン不純物拡散領域の表面に、酸素イオンの注入を、該ゲート電極に対して該ドレイン不純物拡散領域側の斜め方向から行う工程と
を有することを特徴とする電界効果トランジスタの製造方法。
(Appendix 4)
Forming a gate electrode on a semiconductor substrate via a gate insulating film;
Using the gate electrode and the gate insulating film as a mask, implanting one conductivity type impurity into the semiconductor substrate to form a drain impurity diffusion region;
And a step of implanting oxygen ions into the surface of the drain impurity diffusion region from an oblique direction on the drain impurity diffusion region side with respect to the gate electrode.

(付記5)
該反対導電型の不純物の注入量が1×1012cm-2以上1×1016cm-2以下であること
を特徴とする(付記3)記載の半導体装置の製造方法。
(Appendix 5)
The method of manufacturing a semiconductor device according to (Appendix 3), wherein an implantation amount of the impurity of the opposite conductivity type is 1 × 10 12 cm −2 or more and 1 × 10 16 cm −2 or less.

(付記6)
該酸素のイオン注入量が1×1012cm-2以上1×1016cm-2以下であること
を特徴とする(付記4)記載の電界効果トランジスタの製造方法。
(Appendix 6)
The method for producing a field effect transistor according to (Appendix 4), wherein the oxygen ion implantation amount is 1 × 10 12 cm −2 or more and 1 × 10 16 cm −2 or less.

本発明に依る実施の形態1の半導体装置であるMOSFETを従来のMOSFETと比較して説明する為の要部切断側面図である。It is a principal part cutting side view for demonstrating the MOSFET which is the semiconductor device of Embodiment 1 according to this invention compared with the conventional MOSFET. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention. 本発明に於ける実施例1を説明する為の工程要所に於けるMOSFETを表す要部切断側面図である。It is a principal part cutting side view showing MOSFET in the process important point for demonstrating Example 1 in this invention.

符号の説明Explanation of symbols

1 シリコン基板
1A 高抵抗領域
2 ゲート絶縁膜
3 ゲート電極
4 ソース不純物拡散領域
4A ソース側LDD領域
5 ドレイン不純物拡散領域
5A ドレイン側LDD領域
6 サイドウォール
DESCRIPTION OF SYMBOLS 1 Silicon substrate 1A High resistance region 2 Gate insulating film 3 Gate electrode 4 Source impurity diffusion region 4A Source side LDD region 5 Drain impurity diffusion region 5A Drain side LDD region 6 Side wall

Claims (5)

半導体基板上にゲート絶縁膜を介して形成されたゲート電極と、ソース不純物拡散領域と、ドレイン不純物拡散領域とを備える電界効果トランジスタに於いて、
該ドレイン不純物拡散領域のチャネル側端部は、該ゲート絶縁膜下部であって且つ該ゲート絶縁膜から離隔した該半導体基板内部に位置すること
を特徴とする半導体装置。
In a field effect transistor comprising a gate electrode formed on a semiconductor substrate via a gate insulating film, a source impurity diffusion region, and a drain impurity diffusion region,
A channel side end of the drain impurity diffusion region is located under the gate insulating film and inside the semiconductor substrate separated from the gate insulating film.
該ソース不純物拡散領域のチャネル側端部は、該ゲート絶縁膜下部であって且つ該ゲート絶縁膜に接して該半導体基板表面部に位置すること
を特徴とする請求項1記載の半導体装置。
2. The semiconductor device according to claim 1, wherein a channel side end portion of the source impurity diffusion region is located under the gate insulating film and in contact with the gate insulating film on a surface portion of the semiconductor substrate.
半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、
該ゲート電極及び該ゲート絶縁膜をマスクとして、該半導体基板に一導電型の不純物注入を行い、ドレイン不純物拡散領域を形成する工程と、
次いで、該ドレイン不純物拡散領域の表面に、反対導電型の不純物注入を、該ゲート電極に対して該ドレイン不純物拡散領域側の斜め方向から行う工程と
を有することを特徴とする半導体装置の製造方法。
Forming a gate electrode on a semiconductor substrate via a gate insulating film;
Using the gate electrode and the gate insulating film as a mask, implanting one conductivity type impurity into the semiconductor substrate to form a drain impurity diffusion region;
Next, a method of manufacturing a semiconductor device, comprising: performing an impurity implantation of an opposite conductivity type on the surface of the drain impurity diffusion region from an oblique direction on the drain impurity diffusion region side with respect to the gate electrode. .
半導体基板上にゲート絶縁膜を介してゲート電極を形成する工程と、
該ゲート電極及び該ゲート絶縁膜をマスクとして、該半導体基板に一導電型の不純物注入を行い、ドレイン不純物拡散領域を形成する工程と、
次いで、該ドレイン不純物拡散領域の表面に、酸素イオンの注入を、該ゲート電極に対して該ドレイン不純物拡散領域側の斜め方向から行う工程と
を有することを特徴とする電界効果トランジスタの製造方法。
Forming a gate electrode on a semiconductor substrate via a gate insulating film;
Using the gate electrode and the gate insulating film as a mask, implanting one conductivity type impurity into the semiconductor substrate to form a drain impurity diffusion region;
And a step of implanting oxygen ions into the surface of the drain impurity diffusion region from an oblique direction on the drain impurity diffusion region side with respect to the gate electrode.
該酸素のイオン注入量が1×1012cm-2以上1×1016cm-2以下であること
を特徴とする請求項4記載の半導体装置の製造方法。
5. The method of manufacturing a semiconductor device according to claim 4, wherein the ion implantation amount of oxygen is 1 × 10 12 cm −2 or more and 1 × 10 16 cm −2 or less.
JP2007070123A 2007-03-19 2007-03-19 Semiconductor device and its manufacturing method Pending JP2008235407A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007070123A JP2008235407A (en) 2007-03-19 2007-03-19 Semiconductor device and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007070123A JP2008235407A (en) 2007-03-19 2007-03-19 Semiconductor device and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008235407A true JP2008235407A (en) 2008-10-02

Family

ID=39907892

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007070123A Pending JP2008235407A (en) 2007-03-19 2007-03-19 Semiconductor device and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008235407A (en)

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131773A (en) * 1982-02-01 1983-08-05 Hitachi Ltd Semiconductor device and its manufacture
JPS5951567A (en) * 1982-09-17 1984-03-26 Matsushita Electric Ind Co Ltd Semiconductor device
JPS60247974A (en) * 1984-05-23 1985-12-07 Toshiba Corp Semiconductor device
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPS63227061A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Mos type semiconductor device
JPH02134870A (en) * 1988-11-16 1990-05-23 Nippon Telegr & Teleph Corp <Ntt> Mis type field-effect transistor
JPH0478169A (en) * 1990-07-20 1992-03-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH04287928A (en) * 1991-01-24 1992-10-13 Kawasaki Steel Corp Field effect transistor
JPH05275693A (en) * 1992-03-25 1993-10-22 Sanyo Electric Co Ltd Manufacture of mosfet
US5308780A (en) * 1993-07-22 1994-05-03 United Microelectronics Corporation Surface counter-doped N-LDD for high hot carrier reliability
JPH07153943A (en) * 1993-11-30 1995-06-16 Sony Corp Mis transistor and manufacture of mis transistor
JPH0837304A (en) * 1993-12-23 1996-02-06 Texas Instr Inc <Ti> Submicron cmos high voltage transistor
JPH08213601A (en) * 1995-01-31 1996-08-20 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2003347313A (en) * 2002-05-29 2003-12-05 Toppoly Optoelectronics Corp Thin-film transistor and manufacturing method thereof
JP2007036150A (en) * 2005-07-29 2007-02-08 Seiko Instruments Inc Semiconductor device

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58131773A (en) * 1982-02-01 1983-08-05 Hitachi Ltd Semiconductor device and its manufacture
JPS5951567A (en) * 1982-09-17 1984-03-26 Matsushita Electric Ind Co Ltd Semiconductor device
JPS60247974A (en) * 1984-05-23 1985-12-07 Toshiba Corp Semiconductor device
JPS61214575A (en) * 1985-03-20 1986-09-24 Hitachi Ltd Semiconductor integrated circuit device
JPS63227061A (en) * 1987-03-17 1988-09-21 Matsushita Electric Ind Co Ltd Mos type semiconductor device
JPH02134870A (en) * 1988-11-16 1990-05-23 Nippon Telegr & Teleph Corp <Ntt> Mis type field-effect transistor
JPH0478169A (en) * 1990-07-20 1992-03-12 Fujitsu Ltd Semiconductor device and manufacture thereof
JPH04287928A (en) * 1991-01-24 1992-10-13 Kawasaki Steel Corp Field effect transistor
JPH05275693A (en) * 1992-03-25 1993-10-22 Sanyo Electric Co Ltd Manufacture of mosfet
US5308780A (en) * 1993-07-22 1994-05-03 United Microelectronics Corporation Surface counter-doped N-LDD for high hot carrier reliability
JPH07153943A (en) * 1993-11-30 1995-06-16 Sony Corp Mis transistor and manufacture of mis transistor
JPH0837304A (en) * 1993-12-23 1996-02-06 Texas Instr Inc <Ti> Submicron cmos high voltage transistor
JPH08213601A (en) * 1995-01-31 1996-08-20 Sanyo Electric Co Ltd Semiconductor device and its manufacturing method
JP2003347313A (en) * 2002-05-29 2003-12-05 Toppoly Optoelectronics Corp Thin-film transistor and manufacturing method thereof
JP2007036150A (en) * 2005-07-29 2007-02-08 Seiko Instruments Inc Semiconductor device

Similar Documents

Publication Publication Date Title
JP5423269B2 (en) Semiconductor device and manufacturing method thereof
JP4469677B2 (en) Semiconductor device and manufacturing method thereof
TWI393190B (en) Semiconductor devices and method of fabrication
US7704822B2 (en) Semiconductor device
JP4836427B2 (en) Semiconductor device and manufacturing method thereof
US7344947B2 (en) Methods of performance improvement of HVMOS devices
US20050212060A1 (en) Semiconductor device and method for manufacturing the same
US20100176449A1 (en) Semiconductor device and method for manufacturing same
JP2008066420A (en) Semiconductor device and manufacturing method thereof
US7453127B2 (en) Double-diffused-drain MOS device with floating non-insulator spacers
WO2012066695A1 (en) Semiconductor device and method for manufacturing same
JP2007165853A (en) Semiconductor integrated circuit device and manufacturing method thereof
JP2006278932A (en) Method for manufacturing semiconductor device
JP2008270575A (en) Semiconductor device and manufacturing method thereof
JP2007027622A (en) Semiconductor device and its manufacturing method
JP2007287798A (en) Semiconductor device, and its fabrication process
US8048745B2 (en) Transistor and method of fabricating the same
JP2008098640A (en) Manufacturing method for semiconductor device
JP5002920B2 (en) Manufacturing method of semiconductor device
JP2008235407A (en) Semiconductor device and its manufacturing method
JP5086700B2 (en) Manufacturing method of semiconductor device
JP2005093456A (en) Lateral short channel dmos, its fabricating process, and semiconductor device
JP2005150300A (en) Semiconductor device and its manufacturing method
JP4833527B2 (en) Insulated gate semiconductor device and driving method thereof
JP2008098205A (en) Semiconductor device and method for manufacturing the same

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080730

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091202

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20110915

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130326