WO2012066695A1 - Semiconductor device and method for manufacturing same - Google Patents

Semiconductor device and method for manufacturing same Download PDF

Info

Publication number
WO2012066695A1
WO2012066695A1 PCT/JP2011/002597 JP2011002597W WO2012066695A1 WO 2012066695 A1 WO2012066695 A1 WO 2012066695A1 JP 2011002597 W JP2011002597 W JP 2011002597W WO 2012066695 A1 WO2012066695 A1 WO 2012066695A1
Authority
WO
WIPO (PCT)
Prior art keywords
gate electrode
region
impurity
drain region
source region
Prior art date
Application number
PCT/JP2011/002597
Other languages
French (fr)
Japanese (ja)
Inventor
鐘ヶ江健司
Original Assignee
パナソニック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニック株式会社 filed Critical パナソニック株式会社
Publication of WO2012066695A1 publication Critical patent/WO2012066695A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • H01L21/823425MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures manufacturing common source or drain regions between a plurality of conductor-insulator-semiconductor structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823443MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes silicided or salicided gate conductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823437MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823456MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different shapes, lengths or dimensions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823475MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type interconnection or wiring or contact manufacturing related aspects
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/402Field plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66659Lateral single gate silicon transistors with asymmetry in the channel direction, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7831Field effect transistors with field effect produced by an insulated gate with multiple gate structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7835Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with asymmetrical source and drain regions, e.g. lateral high-voltage MISFETs with drain offset region, extended drain MISFETs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26586Bombardment with radiation with high-energy radiation producing ion implantation characterised by the angle between the ion beam and the crystal planes or the main crystal surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/665Unipolar field-effect transistors with an insulated gate, i.e. MISFET using self aligned silicidation, i.e. salicide
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/6656Unipolar field-effect transistors with an insulated gate, i.e. MISFET using multiple spacer layers, e.g. multiple sidewall spacers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • H01L29/6659Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate with both lightly doped source and drain extensions and source and drain self-aligned to the sides of the gate, e.g. lightly doped drain [LDD] MOSFET, double diffused drain [DDD] MOSFET

Definitions

  • the present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device such as a highly integrated CMIS (Complementary Metal Insulator semiconductor) transistor capable of driving a high voltage in the field of MISFET (Metal Insulator Semiconductor Transistor) and a manufacturing method thereof.
  • CMIS Complementary Metal Insulator semiconductor
  • MISFET Metal Insulator Semiconductor Transistor
  • CMOS Complementary Metal Oxide Semiconductor
  • each breakdown voltage such as the breakdown voltage of the gate insulating film and the breakdown voltage between the source and drain (sustain breakdown voltage).
  • the breakdown voltage of the gate insulating film is a thick film. Withstand voltage is improved.
  • a lightly diffused diffusion layer 16 is formed in the drain region 15 near the gate electrode 19 using a resist mask.
  • a drain expansion type NMOS transistor 1B having a PN junction made of an impurity region having a low concentration under the gate electrode 19 has been proposed (see, for example, Patent Document 1). .
  • the NMOS transistor 1A shown in FIG. 26 is entirely formed in the p-type well region 12 of the semiconductor substrate 11.
  • the source LDD region 14 adjacent to the source region 13 is formed by an n-type LDD (Lightly Doped Drain) implantation method applied to a normal CMOS.
  • the drain LDD region 16 adjacent to the drain region 105 is an extremely lightly doped region having an n-type dopant concentration lower than that of the source LDD region 14.
  • the element isolation 17 is selectively formed on the semiconductor substrate 11, and the p-type well region 12 is further formed on the semiconductor substrate 11. Thereafter, a gate insulating film 18 is formed on the main surface of the semiconductor substrate 11, and then a gate electrode 19 is selectively formed on the gate insulating film 18.
  • ion implantation ion implantation is performed on the p-type well region 12 using the gate electrode 19 as a mask to form the drain LDD region 16.
  • the source LDD region 14 is formed in the p-type well region 12 by the core CMOS n-type LDD implantation method using the gate electrode 19 as a mask.
  • the drain LDD region 16 previously formed is masked with a first resist mask (not shown).
  • a silicon oxide film or a silicon nitride film is formed on the main surface of the semiconductor substrate 11 so as to cover the gate electrode 19. Thereafter, anisotropic etching is performed on the formed silicon oxide film or the like with the second resist mask protecting the drain LDD region 16 to form the sidewalls 20 and the silicide blocks 22.
  • the source region 13 and the drain region 15 are formed in a self-aligned manner on the upper portion of the p-type well region 12 by using the gate electrode 19, the sidewall 20 and the silicide block 22 as a mask by the CMOS n-type source / drain implantation method. To do.
  • the silicide layer 112 is formed in a self-aligned manner.
  • the NMOS transistor 1A having the drain extension region which is the drain LDD region 16 having a very low concentration is formed.
  • the drain extension type NMOS transistor 1B in the method of manufacturing the drain extension type NMOS transistor 1B, first, the first element isolation 17 and the second element isolation 25 are selectively formed on the semiconductor substrate 11. Thereafter, the p-type well region 12 and the n-type well are respectively formed on the upper portion of the semiconductor substrate 11 with respect to the regions defined by the resist mask by a twin well implantation method for manufacturing NMOS and PMOS transistors, which are usually applied to CMOS. Region 24 is formed.
  • a gate insulating film 18 and a gate electrode 19 are sequentially formed on the main surface of the semiconductor substrate 11. At this time, the gate electrode 19 is formed so as to overlap a part of the second element isolation 25.
  • the source LDD region 14 is formed by implanting impurities into the entire surface of the transistor region by an n-type LDD implantation method applied to a normal CMOS. At this time, the impurity is implanted only into a necessary portion in a self-aligned manner by the gate electrode 19 and the second element isolation 25.
  • a silicon oxide film or a silicon nitride film is formed on the main surface of the semiconductor substrate 11 so as to cover the gate electrode 19. Thereafter, anisotropic etching is performed on the formed silicon oxide film or the like to form the sidewall 20.
  • the p-type well region 12 and the n-type well region 24 are formed by the n-type source / drain implantation method of CMOS, using the gate electrode 19 and the sidewall 20, the first element isolation 17 and the second element isolation 25 as a mask.
  • a source region 13 and a drain region 15 are formed in a self-aligned manner on each of the upper portions.
  • the concentration of the p-type well region 12 and the lateral size and concentration of the n-type well region 24 are required to control the breakdown voltage from the drain to the bulk (for example, the breakdown voltage increases as the size increases).
  • the breakdown voltage increases as the concentration decreases, and the transistor operating characteristics are optimized separately.
  • the drain extension type NMOS transistor 1B is connected to the diffusion layers of the source region 13 and the drain region 15 and is doped at a very low concentration immediately below the gate insulating film 18 below the gate electrode 19. By forming the PN junction 26, the breakdown voltage is improved.
  • the drain extension type NMOS transistor 1A shown in FIG. 26 uses a resist mask when masking the drain LDD region 16, the mask boundary 27 and the mask boundary 28 exist. It is necessary to consider. For this reason, it is necessary to keep a predetermined distance from the gate electrode 19 especially at the mask boundary 28 on the drain region 15, and the margin for that tends to cause a variation in sustain breakdown voltage, and the device area increases. Problems arise.
  • a pair type transistor having two gate electrodes 19 formed adjacent to each other and using two transistors 1A sharing either one of the source region 13 or the drain region 15 as a differential circuit, If the mask is misaligned in one direction, an asymmetric pair transistor is formed. This asymmetrically formed pair transistor has a problem in that device characteristics deteriorate due to variations in operating characteristics such as drive current.
  • the drain extension type NMOS transistor 1B shown in FIG. 27 can be expected to improve the sustain breakdown voltage, it uses a resist mask to form a low-concentration PN junction 26 formed immediately below the gate insulating film 18. Yes. For this reason, the mask boundary 29 and the mask boundary 30 exist. Therefore, due to misalignment between the p-type well region 12 and the n-type well region 14, the concentration of the PN junction 26 is not constant, resulting in variations in breakdown voltage.
  • the drain extension type NMOS transistor 1A in the pair type transistor using two transistors 1B sharing either one of the source region 13 or the drain region 15 as a differential circuit, the mask is misaligned. By shifting in one direction, an asymmetric pair transistor is formed. For this reason, there is a problem that operation characteristics such as drive current vary and device performance deteriorates.
  • the present invention improves the sustain breakdown voltage without increasing the area and manufacturing process by using a transistor with a simple structure, and suppresses variations in the sustain breakdown voltage, and the drain resistance and junction profile after forming the transistor.
  • An object of the present invention is to realize a semiconductor device with a high degree of freedom that can be adjusted.
  • a semiconductor device is formed in one semiconductor region, extends in parallel with each other, and has a first gate electrode having a relatively large width in the gate length direction and a relatively small first gate electrode. And the impurity concentration of the diffusion layer between the first gate electrode and the second gate electrode in the semiconductor region is different from the diffusion layer outside the first gate electrode and the second gate electrode in the semiconductor region, respectively. The impurity concentration is lower.
  • a semiconductor device includes a first gate electrode formed on a first conductivity type first semiconductor region with a first gate insulating film interposed therebetween, and a first gate electrode formed on the first semiconductor region.
  • a first gate electrode in the first semiconductor region, and a first gate electrode in the first semiconductor region, the first gate electrode being interposed in parallel with the first gate electrode and having a width in the gate length direction smaller than that of the first gate electrode.
  • the concentration of one impurity is The second impurity concentration is higher than the second impurity concentration in the drain region, the third impurity concentration in the second source region is lower than the fourth impurity concentration in the second drain region, and the second source region is shared with the first drain region.
  • the first gate electrode and the second gate electrode are formed in parallel, whereby the first drain region and the second source region between the first gate electrode and the second gate electrode are formed.
  • the amount of impurity implantation can be reduced in a self-aligned manner without using a resist mask.
  • mask alignment is not required, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and an increase in processes can be suppressed.
  • the impurity concentration of the first drain region and the second source region between the first gate electrode and the second gate electrode is low, an implantation profile with a gentle electric field can be formed at the end of the first gate electrode. For this reason, since the impact ionization rate can be reduced, it is possible to improve the decrease in the sustain breakdown voltage due to the increase in the substrate potential due to the increase in the substrate leakage current.
  • the effective channel length between the first source region and the first drain region in the first gate electrode can be widened, the influence of the short channel effect can be reduced, so that the transistor region can be reduced and the chip size can be reduced. Can be planned.
  • the width, resistance, and electric field of the depletion layer of the first drain region and the second drain region can be adjusted from the outside by applying an appropriate potential to the second gate electrode, the degree of freedom in circuit design is high, and the sustain breakdown voltage In addition to the improvement, the direction and position of the hot carrier can be changed, so that the deterioration of the hot carrier life can be improved.
  • the semiconductor device of the present invention further includes sidewalls formed on the respective side surfaces of the first gate electrode and the second gate electrode and made of an insulator, and the side surfaces of the first gate electrode and the second gate electrode facing each other.
  • the sidewalls formed above may be in contact with each other.
  • the first source region, the first drain region, the second source region, and the second drain region may have joint surfaces having the same junction depth.
  • the first drain region includes the first impurity and is formed so as to overlap the first gate electrode.
  • the region of the first source region to which the first impurity is added and the region of the second drain region to which the fourth impurity is added have higher concentrations than the first impurity and the fourth impurity.
  • the region to which the fifth impurity of the second conductivity type is added and the fifth impurity is added may be included in the region to which the first impurity is added and the region to which the fourth impurity is added.
  • the semiconductor device of the present invention further includes a metal layer formed on the first source region and the second drain region, and the metal layer is not formed on the first drain region and the second source region. Also good.
  • the first gate insulating film is interposed on the first semiconductor region, and the center lines along the gate width direction of the first gate electrode in the first source region are formed symmetrically with respect to each other.
  • a third gate electrode having the same configuration as the first gate electrode, a fourth gate electrode having the same configuration as the second gate electrode, and a region on both sides of the third gate electrode in the first semiconductor region.
  • the fourth source including the third impurity is formed in the third source region including the first impurity, the third drain region including the second impurity, and the regions on both sides of the fourth gate electrode in the first semiconductor region.
  • a fourth drain region including a region and a fourth impurity, wherein the concentration of the first impurity in the third source region is higher than the concentration of the second impurity in the third drain region.
  • the concentration of the third impurity in the fourth source region is lower than the concentration of the fourth impurity in the fourth drain region
  • the third source region is shared with the first source region
  • the fourth source region is It may be shared with 3 drain regions.
  • the mask is not misaligned, so that there is no deterioration in device performance due to increased characteristic variation.
  • the first gate insulating film is interposed on the first semiconductor region, and the center lines along the gate width direction of the second gate electrode in the second drain region are symmetrical with each other.
  • a fourth gate electrode having the same configuration as the second gate electrode, a third gate electrode having the same configuration as the first gate electrode, and regions on both sides of the third gate electrode in the first semiconductor region;
  • the concentration of the third impurity in the fourth source region is lower than the concentration of the fourth impurity in the fourth drain region, the fourth drain region is shared with the second drain region, and the fourth source region is , May be shared with the third drain region.
  • the mask is not misaligned, so that there is no deterioration in device performance due to increased characteristic variation.
  • the first overlap amount of the overlapping portion of the first source region and the first gate electrode is larger than the second overlap amount of the overlapping portion of the first drain region and the second gate electrode. May be.
  • the third overlap amount of the overlapping portion of the second source region and the second gate electrode is greater than the fourth overlap amount of the overlapping portion of the second drain region and the second gate electrode. May be small.
  • the second source region and the second drain region may be in contact with each other and short-circuited at a lower portion of the second gate electrode in the first semiconductor region.
  • the conductivity type of the lower part of the central part of the first gate electrode in the first semiconductor region and the conductivity type of the lower part of the central part of the second gate electrode are opposite to each other. There may be.
  • the distance between the first gate electrode and the second gate electrode is 70% or less of the height of the first gate electrode and the second gate electrode, and the width of the second gate electrode in the gate length direction. May be not less than 1.3 times the height of the first gate electrode and the second gate electrode.
  • the semiconductor device of the present invention may further include a third gate electrode formed on the second semiconductor region with a second gate insulating film thinner than the first gate insulating film interposed.
  • the first source region, the first drain region, the second source region, and the second drain region are used as a mask, and the first gate electrode and the second gate electrode are used as masks. Formed by ion implantation.
  • ions are implanted using the first gate electrode and the second gate electrode formed in parallel with each other as a mask so that the first gate electrode and the second gate electrode are interposed.
  • the amount of impurities implanted into the first drain region and the second source region can be reduced in a self-aligned manner without using a resist mask.
  • mask alignment becomes unnecessary, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and process can be suppressed.
  • the sustain breakdown voltage is improved without increasing the area and the manufacturing process, suppressing the variation in the sustain breakdown voltage, and adjusting the drain resistance and the junction profile after forming the transistor.
  • a semiconductor device with a high degree of freedom can be realized.
  • FIG. 1 is a cross-sectional view of a main part showing a semiconductor device according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 3 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 5 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 6 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 7A is a diagram showing a range of the maximum tilt angle in which the low concentration LDD region can be formed in the semiconductor device according to the embodiment of the present invention.
  • FIG. 7B is a diagram showing the range of the maximum gate electrode interval in which the low concentration LDD region can be formed in the semiconductor device according to one embodiment of the present invention.
  • FIGS. 8A and 8B are layout diagrams at the time of high breakdown voltage LDD implantation in the semiconductor device according to one embodiment of the present invention.
  • FIG. 9 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 10 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 11 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention.
  • FIG. 12 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention.
  • FIG. 13 is a cross-sectional view showing the main part of a paired transistor sharing a source region, which is a semiconductor device according to a first modification of one embodiment of the present invention.
  • FIG. 14 is a cross-sectional view showing a main part of a paired transistor sharing a drain region, which is a semiconductor device according to a second modification of one embodiment of the present invention.
  • FIG. 15 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention.
  • FIG. 18 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention.
  • FIG. 16 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention.
  • FIG. 17 is a schematic cross-sectional view showing each potential of the first gate
  • FIG. 19 is a cross-sectional view showing the main parts of a semiconductor device according to a third modification of one embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fourth modification of the embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fifth modification of the embodiment of the present invention.
  • FIG. 22 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fifth modification of the embodiment of the present invention.
  • FIG. 23 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the sixth modification of the embodiment of the present invention.
  • FIG. 20 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fourth modification of the embodiment of the present invention.
  • FIG. 21 is a cross-sectional view showing a step of the method of manufacturing a semiconductor
  • FIG. 24 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the seventh modification of the embodiment of the present invention.
  • FIG. 25 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the seventh modification of the embodiment of the present invention.
  • FIG. 26 is a sectional view showing a semiconductor device according to a first conventional example.
  • FIG. 27 is a sectional view showing a semiconductor device according to a second conventional example.
  • a semiconductor device includes a high voltage transistor 120 connected to a power supply voltage of 5 V used in a portable device with a high efficiency power supply control function corresponding to environmental protection, for example.
  • a configuration example in which a fine transistor 121 connected to a power supply voltage of 1.2 V and used for high-speed operation is embedded will be described.
  • NMIS transistor is shown in the high-voltage transistor 120, but it is obvious that, for example, an NMIS transistor and a PMIS transistor are formed on one semiconductor substrate 101 in order to constitute a CMIS. Therefore, only the NMIS transistor is shown. Similarly, only the NMIS transistor is illustrated in the fine transistor 121, and the PMIS transistor is omitted.
  • the high breakdown voltage transistor 120 is formed on the p-type well 102 formed on the semiconductor substrate 101 made of, for example, silicon (Si) and on the p-type well 102.
  • the p-type well 102 is partitioned by element isolation 107 made of shallow trench isolation (STI), and a gate insulating film 108 made of, for example, silicon oxide (SiO 2 ) is formed on the p-type well 102.
  • a first gate electrode 125 and a second gate electrode 126 are formed so as to be interposed and extend in parallel with each other.
  • the width of the first gate electrode 125 in the gate length direction is relatively large, for example, set to about 500 nm to 1000 nm.
  • the width in the gate length direction of the second gate electrode 126 is relatively small, for example, set to about 100 nm to 200 nm.
  • the distance between the first gate electrode 125 and the second gate electrode 126 is set to about 80 nm to 200 nm.
  • Side walls 110 made of stacked insulating films are formed on both side surfaces of the gate electrodes 125 and 126 in the gate length direction.
  • the sidewall 110 includes an offset sidewall 145 formed in order from the inside, a sidewall lower layer film 149 having an L-shaped cross section, and a sidewall upper layer film 150.
  • the sidewalls 110 formed in the region between the first gate electrode 125 and the second gate electrode 126 are formed in contact with each other.
  • An n-type LDD medium concentration region 134 is formed in the upper portion of the p-type well 102 and below and on the side of the first gate electrode 125 opposite to the second gate electrode 126. ing. Further, an n-type LDD low concentration region 135 is formed in a region between the first gate electrode 125 and the second gate electrode 126 in the upper part of the p-type well 102, and a region below the second gate electrode 126. An n-type LDD medium concentration region 134 is formed in a side region opposite to the first gate electrode 125. Here, the LDD low-concentration region 135 has an overlapping portion also below the side portion of the first gate electrode 125 on the second gate electrode 126 side.
  • the LDD low concentration region 135 is shared as a drain region for the first gate electrode 125 and a source region for the second gate electrode 126. Further, the diffusion depths of impurities in the LDD medium concentration region 134 and the LDD low concentration region 135 are set to be substantially the same.
  • the LDD medium concentration region 134 located on the opposite side of the first gate electrode 125 from the second gate electrode 126 is located below and on the side of the outer side wall 110 than the LDD medium concentration region 134.
  • a n-type source region 103 having a shallow junction depth and a high concentration is formed.
  • the LDD medium concentration region 134 located on the opposite side of the first gate electrode 125 with respect to the second gate electrode 126 has an LDD medium concentration region 134 at the lower end portion of the outer side wall 110 and its side region.
  • An n-type drain region 105 having a shallower junction depth and a high concentration is formed.
  • a silicide layer 112 made of nickel (Ni) or the like is formed on each of the first gate electrode 125, the second gate electrode 126, the source region 103, and the drain region 105.
  • the fine transistor 121 is formed on a p-type well 122 different from the p-type well 102 formed on the semiconductor substrate 101 and on the p-type well 122.
  • the p-type well 122 is partitioned by an element isolation 107 made of STI, and a third gate electrode 127 is formed on the p-type well 122 with a thin film gate insulating film 124 made of SiO 2 interposed therebetween.
  • the width of the third gate electrode 127 in the gate length direction is set to about 50 nm to 100 nm, for example.
  • Side walls 110 made of laminated insulating films are formed on both side surfaces of the third gate electrode 127 in the gate length direction.
  • the sidewall 110 includes an offset sidewall 145 formed in order from the inside, a sidewall lower layer film 149 having an L-shaped cross section, and a sidewall upper layer film 150.
  • n-type extension region 148 is formed in the upper portion of the p-type well 122 and below and on both sides of the third gate electrode 127.
  • a source region 103 and a drain region 105 having a junction depth deeper than that of the extension region 148 and having a high concentration are formed in the region outside each extension region 148 in the upper part of the p-type well 122.
  • a silicide layer 112 made of Ni or the like is formed on each of the third gate electrode 127, the source region 103, and the drain region 105, respectively.
  • the PMIS transistor (not shown) has the p-type conductivity type of the source region 103, drain region 105, and extension region 148 of the NMIS transistor shown in FIG.
  • the high breakdown voltage transistor 120 includes the first gate electrode 125 having a relatively large width in the gate length direction and the second gate electrode 126 having a relatively small width in parallel.
  • the amount of impurities implanted into the LDD low concentration region 135 formed between the first gate electrode 125 and the second gate electrode 126 can be reduced in a self-aligned manner without using a resist mask.
  • mask alignment is not required, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and an increase in processes can be suppressed.
  • the impurity concentration of the LDD low concentration region 135 between the first gate electrode 125 and the second gate electrode 126 is low, an injection profile with a gentle electric field can be realized at the end of the first gate electrode 125. For this reason, since the impact ionization rate can be reduced, it is possible to improve the decrease in the sustain breakdown voltage due to the increase in the substrate potential due to the increase in the substrate leakage current.
  • the effective channel length between the source region 103 and the LDD low concentration region 135 in the first gate electrode 125 can be increased, the influence of the short channel effect can be reduced. As a result, the transistor region can be reduced and the chip can be reduced.
  • the width, resistance, and electric field of the depletion layers of the LDD medium concentration region 134 and the drain region 105 can be adjusted from the outside. For this reason, the degree of freedom in circuit design is high, and in addition to the improvement of the sustain breakdown voltage, the direction and position of hot carriers can be changed, so that the deterioration of the hot carrier life can be improved.
  • the structure is simple, and it is easy to mix with a low-voltage driven logic core transistor such as the fine transistor 121.
  • an element isolation 107 made of STI having a depth of about 300 nm to 400 nm is formed on a semiconductor substrate 101 made of Si.
  • ion energy is 180 keV to 230 keV, and a dose amount is about 1 ⁇ 10 13 atoms / cm 2 to 5 ⁇ 10 13 atoms / cm 2.
  • P-type well 102 is formed by ion implantation of boron (B).
  • phosphorus (P) having an ion energy of 350 keV to 450 keV and a dose of about 2 ⁇ 10 12 atoms / cm 2 to 8 ⁇ 10 12 atoms / cm 2 is ion-implanted into the PMIS region (not shown) of the semiconductor substrate 101.
  • PMIS region not shown
  • ion implantation is performed to determine threshold voltages of the NMIS and PMIS high voltage transistors.
  • boron (B) having an ion energy of 180 keV to 230 keV and a dose of about 1 ⁇ 10 13 atoms / cm 2 to 5 ⁇ 10 13 atoms / cm 2 is ion-implanted into the NMIS region of the fine transistor 121.
  • the p-type well 122 is formed.
  • phosphorus (P) having an ion energy of 350 keV to 450 keV and a dose of about 0.5 ⁇ 10 13 atoms / cm 2 to 2 ⁇ 10 13 atoms / cm 2 is used.
  • an n-type well is formed.
  • ion implantation is performed to determine threshold voltages of the NMIS and PMIS fine transistors.
  • the order of the well injection and the threshold injection of the high voltage transistor 120 and the fine transistor 121 is not particularly limited.
  • the SiO 2 having a film thickness of about 15 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101. Two films are formed. At this time, the SiO 2 film is a laminated film of an oxide film by a substrate oxidation (thermal oxidation) method and a LP-CVD (Low Pressure-Chemical Vapor Deposition) film or the like, so that an end portion of the element isolation (STI) 107 is obtained. It is possible to relieve stress caused by.
  • a substrate oxidation (thermal oxidation) method and a LP-CVD (Low Pressure-Chemical Vapor Deposition) film or the like, so that an end portion of the element isolation (STI) 107 is obtained. It is possible to relieve stress caused by.
  • LP-CVD Low Pressure-Chemical Vapor Deposition
  • the thin gate insulating film 124 of the fine transistor 121 used in the logic transistor or SRAM (Static Random Access Memory) transistor is formed by removing the thick gate insulating film 108 once formed by an oxide film wet etch, On the p-type well 122 and an n-type well (not shown), it is formed by a thin film substrate oxidation method so that the film thickness becomes about 2 nm to 3 nm.
  • a non-doped polysilicon film 109 having a thickness of about 100 nm to 150 nm is deposited on the entire surface of the semiconductor substrate 101.
  • ion implantation is appropriately performed on the NMIS region and PMIS region of the high breakdown voltage transistor 120 and the NMIS region and PMIS region of the fine transistor 121 in the deposited polysilicon film 109 using a resist mask. This suppresses depletion at the interface between the gate insulating film 108 and the thin gate insulating film 124 and the polysilicon film 109 and adjusts the threshold voltage of the transistor, thereby forming a polysilicon gate necessary for the CMIS structure.
  • a gate pattern is formed using a resist mask (not shown).
  • a predetermined interval is provided on the first gate electrode 125 serving as a transistor gate electrode for controlling the driving capability and the threshold voltage, and on the drain electrode 105 side of the first gate electrode 125.
  • the second gate electrode 126 is formed at the same time, and serves as a gate electrode for controlling the drain electrode 105.
  • the first gate electrode 125 and the second gate electrode 126 are disposed in the p-type well 102 that is one active region. In the p-type well 102, the first gate electrode 125 and the second gate electrode 126 are disposed. Are formed in parallel to each other.
  • the first gate electrode 125 and the second gate electrode 126 are disposed in an n-type well which is one active region, and the first gate electrode 125 and the second gate electrode 126 are within the n-type well.
  • the first gate electrode 125 and the second gate electrode 126 are formed in parallel to each other.
  • a third gate electrode 127 which is a gate electrode for a fine transistor for forming a logic circuit capable of high-speed operation is formed in the NMIS region of the fine transistor 121 by using the same resist mask as that of the high voltage transistor 120. .
  • the distance between the first gate electrode 125 and the second gate electrode 126 is a value determined in the LDD implantation step in the high-voltage transistor 120 in a later step, and is about 80 nm to 200 nm.
  • the drain formation region of the first gate electrode 125 is separated into two.
  • the p-type well 102 is positioned on the opposite side of the first drain formation region 129 with respect to the source formation region 128 and the first drain formation region 129 on both sides of the first gate electrode 125 and the second gate electrode 126.
  • Three diffusion regions of the second drain formation region 130 to be formed are formed. The same applies to the PMIS region (not shown).
  • a resist mask 131 is formed in the NMIS region and the PMIS region of the fine transistor 121 by lithography. Thereafter, a high breakdown voltage LDD implantation 132, which is an LDD implantation for forming a relatively deep junction surface at a medium concentration in the NMIS region and the PMIS region of the high breakdown voltage transistor 120, is performed.
  • the LDD implantation tilt angle 133 is set to a high angle (large angle), and the first gate electrode 125 and the second gate electrode 126 are ion-implanted four times, one each from four directions.
  • phosphorus (P) having an ion energy of 40 keV to 60 keV and a dose of about 0.7 ⁇ 10 12 atoms / cm 2 to 2 ⁇ 10 12 atoms / cm 2 is tilted by 35 °. Inject 4 times at ⁇ 65 °.
  • boron (B) having an ion energy of 12 keV to 20 keV and a dose of about 0.7 ⁇ 10 12 atoms / cm 2 to 2 ⁇ 10 12 atoms / cm 2 is tilted at a tilt angle of 35 °. Inject 4 times at ⁇ 65 °.
  • the gate electrodes 125 and 126 serve as shadows (masks) for LDD implantation.
  • the LDD low concentration region 135 is formed. Since the LDD low-concentration region 135 is implanted twice with ions, for example, in the NMIS region, a total of phosphorus (P) is 1.4 ⁇ 10 12 atoms / cm 2 to 4 ⁇ 10 12 atoms. Ions are implanted to about / cm 2 . In the PMIS region, boron (B) is ion-implanted at about 1.4 ⁇ 10 12 atoms / cm 2 to 4 ⁇ 10 12 atoms / cm 2 .
  • the LDD low concentration region 135 and the LDD medium concentration region 134 are simultaneously formed by two parallel gate electrodes 125 and 126, and the region into which impurity ions are implanted is determined by the gate electrode interval 136. Therefore, the LDD medium concentration region 134 and the LDD low concentration region 135 have an effect that they can be formed with high accuracy without depending on the alignment of the resist mask.
  • the first overlap width 137 which is the overlap width between the LDD medium concentration region 134 formed in the source formation region 128 of the first gate electrode 125 and the first gate electrode 125, is relatively large, about 50 nm to 150 nm. .
  • the second over-range which is the overlapping width of the first gate electrode 125 and the LDD low concentration region 135 is obtained.
  • the overlap width 138 is about 20 nm to 50 nm, and the overlap width is small. Accordingly, the effective channel length 139 between the source formation region 128 and the first drain formation region 129 of the first gate electrode 125 can be increased.
  • the influence of the short channel effect can be reduced, so that the transistor region can be reduced and the device area can be reduced. Therefore, since mask alignment is not required, it is possible to eliminate variations in the sustain breakdown voltage, and it is possible to reduce the device area and to suppress an increase in cost due to an increase in processes.
  • the first drain formation region 129 forms an implantation profile having a low implantation concentration and a gentle change in electric field, and can reduce the impact ionization rate. For this reason, it is possible to improve the decrease in the sustain withstand voltage accompanying the increase in the substrate potential due to the increase in the substrate leakage current.
  • a gentle implantation profile can be formed by performing a heat treatment after performing the high breakdown voltage LDD implantation 132. For this reason, the effect of improving the sustain breakdown voltage can be further enhanced.
  • the heat treatment conditions depend on the impurity implantation conditions, but in the case of low temperature and long time heating conditions, for example, heat treatment at a temperature of 500 ° C. to 750 ° C. for about 60 minutes to 120 minutes can be used. On the other hand, in the case of high-temperature and short-time heating conditions, for example, a spike heat treatment at a temperature of 750 ° C. to 1000 ° C. for 60 minutes can be used. Since this heat treatment step is performed before the extension implantation that greatly affects the transistor characteristics in the fine transistor 121 is performed, the characteristic deterioration of the fine transistor 121 can be ignored.
  • the third overlap width 140 which is the overlap width between the LDD medium concentration region 134 and the second gate electrode 126, is 50 nm to 50 nm. As large as about 150 nm.
  • the fourth overlap width 141 which is the overlap width between the LDD low concentration region 135 and the second gate electrode 126, is about 20 nm to 50 nm.
  • the LDD implantation is limited to the direction parallel to the gate electrodes 125 and 126, the overlap width between the LDD medium concentration region 134 and the LDD low concentration region 135 is small, but the high breakdown voltage LDD implantation 132 is performed. Since the second gate electrode width 142 is reduced after the heat treatment is performed, the LDD medium concentration region 134 and the LDD low concentration region 135 can be brought into contact with each other below the second gate electrode 126.
  • FIG. 6 shows a state where heat treatment is applied.
  • the gate electrode interval 136, the gate electrode height 143, the second gate electrode width 142, the tilt angle 133, and the LDD implantation depth 144 shown in FIG. Organize the relationship.
  • FIG. 7A when the gate electrode height 143 is 120 nm, the LDD implantation depth 144 after heat treatment is 80 nm, and the second gate electrode width 142 is 150 nm, the tilt angle 133 is If the angle is 51 ° or less, impurity ions are implanted into the first drain formation region 129 without penetrating implanted ions by LDD implantation in the lateral direction of the second gate electrode 126. Therefore, FIG. 7B shows that the gate electrode interval 136 under this condition may be set to 88 nm or less. Further, FIG. 7B shows that when the second gate electrode width 142 is 200 nm, the gate electrode interval 136 may be set to 117 nm or less.
  • FIG. 8A shows a planar configuration of the NMIS region of the high voltage transistor 120.
  • FIG. 8B also shows a transistor obtained by rotating the configuration of FIG. 8A by 90 °.
  • the tilt angle 133 of LDD implantation is set to a relatively high angle, and ion implantation in four directions is performed on the gate electrodes 125 and 126.
  • the LDD medium concentration region is formed in the source formation region 129 and the second drain formation region 130 outside the first gate electrode 125 and the second gate electrode 126 arranged in proximity by LDD implantation for three to four times. 134 is formed.
  • the adjacent gate electrodes are shadows of the LDD implantation, so that two LDD implantations are performed.
  • the LDD low concentration region 135 having the lowest impurity concentration is formed.
  • TEOS Tetra-Etyhl-Ortho--
  • TEOS Tetra-Etyhl-Ortho--
  • a film thickness of about 5 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101 including the gate electrodes 125, 126 and 127 by LP-CVD.
  • Silicate or silicon nitride (SiN) or the like is deposited, and the deposited insulating film is etched back by anisotropic dry etching to form both sides of each gate electrode 125, 126, and 127.
  • Offset sidewalls 145 are formed respectively. At this time, as shown in FIG. 9, each upper end portion of the offset sidewall 145 is not necessarily formed.
  • a resist mask 146 that covers the high breakdown voltage transistor 120 is formed by lithography, and extension implantation 147 that forms a high-concentration and shallow junction surface is performed on the substrate surface of the NMIS region in the fine transistor 121 to form an n-type extension. Region 148 is formed.
  • arsenic (As) having an ion energy of 2 keV to 4 keV and a dose of about 1 ⁇ 10 15 atoms / cm 2 to 3 ⁇ 10 15 atoms / cm 2 is ionized at a tilt angle of about 0 °. inject.
  • boron (B) having an ion energy of 0.3 keV to 1 keV and a dose of about 2 ⁇ 10 14 atoms / cm 2 to 8 ⁇ 10 14 atoms / cm 2 is tilt angle 0. Ion implantation at about °.
  • TEOS by LP-CVD or SA-CVD (Sub-layer) is formed on the entire surface of the semiconductor substrate 101 including the gate electrodes 125, 126 and 127 each having the offset sidewall 145 formed thereon.
  • a sidewall underlayer film 149 made of NSG (Non-doped Silicate Glass) by an Atmospheric-Chemical Vapor Deposition method is deposited, and a thickness of about 10 nm is deposited on the sidewall underlayer film 149.
  • a sidewall upper layer film 150 made of SiN by a Deposition method and having a film thickness of about 35 nm to 60 nm is deposited.
  • the sidewall upper layer film 150 and the sidewall lower layer film 149 are etched back by anisotropic dry etching, and the offset sidewall 145 and the side wall are respectively formed on the side surfaces of the gate electrodes 125, 126, and 127.
  • a sidewall 110 including the wall lower layer film 149 and the sidewall upper layer film 150 is formed.
  • the gate electrode interval 136 between the first gate electrode 125 and the second gate electrode 126 is small, for example, about 88 nm, a sidewall is formed between the first gate electrode 125 and the second gate electrode 126. Since 110 is buried, the sidewalls 110 formed between the first gate electrode 125 and the second gate electrode 126 are connected to each other.
  • source / drain implantation 151 is simultaneously performed in the NMIS region and the PMIS region of the high voltage transistor 120 and the fine transistor 121, respectively.
  • NMIS region for example, arsenic (As) having an ion energy of 15 keV to 40 keV, a dose of about 2 ⁇ 10 15 atoms / cm 2 to 8 ⁇ 10 15 atoms / cm 2 , and an ion energy of 5 keV to 15 keV.
  • At least one of phosphorus (P) having a dose of about 1 ⁇ 10 15 atoms / cm 2 to 5 ⁇ 10 15 atoms / cm 2 is ion-implanted.
  • boron (B) having an ion energy of 1 keV to 3 keV and a dose of about 2 ⁇ 10 15 atoms / cm 2 to 8 ⁇ 10 15 atoms / cm 2 is ion-implanted into the PMIS region.
  • the source region 103 and the drain region 105 of the high breakdown voltage transistor 120 and the fine transistor 121 are formed, respectively.
  • the source / drain implantation 151 is simultaneously implanted into the upper portions of the gate electrodes 125, 126 and 127.
  • the order of performing the source / drain implantation 151 in the NMIS region and the PMIS region is not particularly limited.
  • activation heat treatment at a temperature of 1000 ° C. or higher is performed by high-temperature, short-time lamp heating or laser heating.
  • a film thickness of about 5 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101 including the source region 103 and the drain region 105 and the gate electrodes 125, 126, and 127 by sputtering or the like.
  • a nickel (Ni) film which is a high melting point metal, is deposited. Thereafter, a heat treatment for siliciding the deposited Ni film is applied. Subsequently, the unreacted Ni film that is not silicided is removed by wet etching using hydrochloric acid or the like.
  • a silicide layer 112 made of NiSi is formed on each upper portion of 105.
  • the LDD medium concentration region 134, the LDD low concentration region 135, the source region 103 and the drain region 105, and each silicide layer 112 are all self-aligned. Can be formed. Therefore, since there is no alignment shift without depending on the resist mask, a highly accurate drain expansion type transistor with suppressed variation in sustain breakdown voltage can be realized.
  • a pair transistor that uses two adjacent transistors that share a source region 103 as a differential circuit, and is paired with a pair transistor 152A and a pair transistor that are inverted horizontally around the source region 103. 152B are arranged.
  • the same components as those in FIG. 13 are arranged.
  • the pair type transistors 152A and 152B are composed of the high breakdown voltage transistor 120 according to the present embodiment. Therefore, as described above, mask misalignment does not occur, and thus device performance does not deteriorate due to increased variation in operating characteristics. .
  • the mask misalignment does not occur in the same way also in the pair type transistors 150A and 150B using the two adjacent transistors sharing the drain region 105 as the differential circuit. Therefore, the device performance does not deteriorate due to an increase in variation in operating characteristics.
  • the first gate electrode 125 when a high voltage is applied to the first gate electrode 125 and a low voltage is applied to the second gate electrode 126, the first gate electrode 125 in the p-type well 102. In a region immediately below the gate insulating film 108, a channel 102a of an inversion layer is formed. On the other hand, a high voltage bias is applied to the drain region 105.
  • the impurities in the LDD medium concentration region 134 under the second gate electrode 126 are electrons of n-type carriers. Accordingly, electrons generated on the surface of the gate insulating film 108 of the second gate electrode 126 move toward the drain region 105 by the generated electric field. Therefore, since the depletion layer 157 is formed on the surface of the gate insulating film 108, the current path near the second gate electrode 126 is narrowed, and as a result, the drain resistance can be increased.
  • the gate insulation of the first gate electrode 125 in the p-type well 102 is performed.
  • the channel 102a is not formed and is in an off state.
  • a high voltage is also applied to the drain region 105, a bias voltage is not substantially applied to the second gate electrode 126 and the drain region 105.
  • the high breakdown voltage transistor 120 can be operated like a transistor with a drain resistance added, in which the second gate electrode is not provided.
  • the p-type well 102 is directly under the gate insulating film 108 of the first gate electrode 125. In the region, the channel 102a is not formed and is in an off state.
  • a bias voltage is applied to the second gate electrode 126 and the drain region 105.
  • the impurities in the LDD medium concentration region 134 under the second gate electrode 126 are electrons of n-type carriers.
  • the width, resistance value, and electric field of the depletion layer of the drain region 105 including the LDD medium concentration region 134 and the LDD low concentration region 135 can be adjusted from the outside. Therefore, the degree of freedom in circuit design is increased, and the depletion layer 157 in the LDD medium concentration region 134, the LDD low concentration region 135, and the drain region 105 can be controlled. Thereby, in addition to the improvement of the sustain breakdown voltage, it is possible to adjust the direction and position in which the hot carriers flow, so that it is possible to improve the deterioration of the hot carrier life.
  • the case of the NMIS transistor has been described, but the same effect can be obtained also in the case of the PMIS transistor. That is, in the case of the PMIS transistor, the n-type impurity of the NMIS transistor is changed to a p-type impurity, and the p-type impurity is changed to an n-type impurity.
  • the high voltage is 5 V, for example, and the low voltage is 0 V, for example. Therefore, the high voltage in the PMIS transistor may be read as 0 V, for example, and the low voltage as 5 V, for example.
  • FIG. 19 shows a cross-sectional configuration of a high voltage transistor, which is a semiconductor device according to a third modification of one embodiment.
  • the high breakdown voltage transistor 120 according to the third modification employs a configuration in which the width dimension (gate electrode width 142) of the second gate electrode 126 in the gate length direction is increased. Even in this case, it is possible to obtain the same effects as those obtained by the operations shown in FIGS. That is, when a high voltage is applied to both the first gate electrode 125 and the second gate electrode 126, the first gate electrode 125 and the second gate electrode 126 in the p-type well 102 are directly below the gate insulating films 108. In each region, a channel is formed by an inversion layer.
  • the depletion layer of the LDD low concentration region 135 and the LDD medium concentration region 134 can be short-circuited.
  • the lower portion of the gate insulating film 108 of the second gate electrode 126 in the p-type well 102 is applied. It can be used as a high resistance layer.
  • first gate electrode 125 when a low voltage is applied to the first gate electrode 125 and a high voltage is applied to the second gate electrode 126, only the normal first gate electrode 125 can be turned off. In addition, when a low voltage is applied to both the first gate electrode 125 and the second gate electrode 126, a normal off state can be obtained.
  • various transistor operations can be performed by appropriately adjusting the value of the second gate electrode width 142.
  • FIG. 20 shows a cross-sectional configuration of one step of a main part of a method for manufacturing a high voltage transistor, which is a semiconductor device according to a fourth modification of one embodiment.
  • the sidewall 110 It is difficult to embed in the gap between the gate electrodes.
  • the resist mask 154 is formed so as to provide the boundary of the end face in the upper part of the first gate electrode 125 and the second gate electrode 126, respectively. Can be obtained.
  • (Fifth Modification of One Embodiment) 21 and 22 show a cross-sectional configuration in the order of steps of a main part of a method for manufacturing a high voltage transistor, which is a semiconductor device according to a fifth modification of the embodiment.
  • a silicide block film 155 as an insulating film is formed on the entire surface of the semiconductor substrate 101 between the gate electrodes. It is deposited so as to be embedded in the gap.
  • silicide block film 155 isotropic wet etching is performed on the deposited silicide block film 155 to leave the silicide block film 155 only in the gap between the gate electrodes.
  • isotropic wet etching is performed on the deposited silicide block film 155 to leave the silicide block film 155 only in the gap between the gate electrodes.
  • each silicide layer 112 can be formed by self-alignment.
  • the silicide block film 155 is formed not only on the gap between the gate electrodes but also on the side surface of the lower portion of the sidewall 110 outside the first gate electrode 125 and the second gate electrode 126. Can be left behind. Therefore, in the source region 103 and the drain region 105, the distance between the inner end portion of each silicide layer 112 formed above them and the outer end portion of each gate electrode 125, 126 can be increased. Therefore, electric field concentration from each silicide layer 112 to each gate electrode 125, 126 can be reduced.
  • the silicide block film 155 cannot be embedded in the gap where the LDD low concentration region 135 can be formed, that is, the upper surface of the LDD low concentration region 135 is exposed.
  • the resist mask 156 may be formed so that the boundary of the end face is provided on the upper portion of the first gate electrode 125 and the second gate electrode 126 on the silicide block film 155.
  • the respective silicide layers 112 are formed as shown in FIG. Obtainable.
  • an insulating film such as a TEOS film or a SiN film is used for the offset sidewall 145.
  • An NSG film formed by SA-CVD, a low-temperature LP-TEOS film, a low-temperature ALD-SiN film, a low-temperature silicon carbide (SiC) film, silicon oxynitride (SiON), or the like that can be formed at a low temperature can be used.
  • Ni silicide is used for the silicide layer 112, but cobalt (Co), titanium (Ti), tungsten (W), platinum (Pt) or molybdenum (Mo), There is no particular problem even if silicides of those metal alloys or laminated metals are used.
  • the constituent material of the thin-film gate insulating film 124 constituting the fine transistor 121 is not limited to SiO 2 .
  • a high dielectric constant (high-k) material such as hafnium oxide (HfO 2 ), hafnium silicate (HfSixOy), or hafnium aluminate (HfAlxOy), or a group of insulating films to which nitrogen is added, such as SiO 2 It may be a single layer film including any one selected or a laminated film including at least one film selected from these groups.
  • the film thickness of the thin gate insulating film 124 may be determined as appropriate in consideration of the gate length, the EOT (equivalent oxide film thickness) tolerance, the leakage current tolerance, and the like.
  • the constituent materials of the gate electrodes 125, 126, and 127 are doped with amorphous Si or non-doped polysilicon with phosphorus (P), arsenic (As), boron (B), indium (In), or the like by ion implantation.
  • An electrode material containing silicon (Si) can be used.
  • an electrode material containing Si such as silicon germanium (SiGe) doped with germanium (Ge) may be used, and may be determined as appropriate from the viewpoint of workability or silicide reaction.
  • a deposition method such as an LP-CVD method, a sputtering method, or an ALD method, or a coating method using a coating silicon material can be used.
  • a silicon material doped with carbon or metal, porous silicon, or the like can be selected.
  • a semiconductor in which a high voltage transistor 120 connected to a power supply voltage having a voltage of 5V and a fine transistor 121 connected to a power supply voltage having a voltage of 1.2V for high-speed operation are mixedly mounted.
  • the apparatus has been described as an example, it is not limited to this configuration. In other words, it can be applied to a battery control circuit with a high-efficiency power control function to support in-vehicle devices that have a power supply voltage of 12V or 24V and a high withstand voltage of 60V that are used as stationary devices. It is. In this case, naturally, the film thickness of the gate insulating film 108, the gate length, the height of the gate electrode, and the like need to be scaled in accordance with the power supply voltage.
  • the semiconductor device and the manufacturing method thereof according to the present invention improve the sustain withstand voltage without causing an increase in area and an increase in the manufacturing process, suppressing the dispersion of the sustain withstand voltage, and adjusting the drain resistance and the junction profile after forming the transistor.
  • a possible semiconductor device having a high degree of freedom can be realized, and is useful for, for example, a high-performance LSI device for use in the environmental field or in-vehicle field with a high power supply voltage.

Abstract

Disclosed is a semiconductor device which is provided with: a first gate electrode (125) that has a relatively large width in the gate length direction and a second gate electrode (126) that has a relatively small width in the gate length direction, said gate electrodes being formed on a p-type well (102) and extending parallel to each other; an LDD low concentration region (135) that is formed in the p-type well (102) between the first gate electrode (125) and the second gate electrode (126); and LDD medium concentration regions (134) that are formed in the p-type well (102) respectively at positions outside the first gate electrode (125) and the second gate electrode (126). The impurity concentration of the LDD low concentration region (135) is lower than the impurity concentration of the LDD medium concentration regions (134).

Description

半導体装置及びその製造方法Semiconductor device and manufacturing method thereof
 本発明は、半導体装置及びその製造方法に関し、特に、MISFET(Metal Insulator Semiconductor Transistor)分野における高電圧を駆動可能な高集積CMIS(Complementary Metal Insulator semiconductor)用トランジスタ等の半導体装置及びその製造方法に関する。 The present invention relates to a semiconductor device and a manufacturing method thereof, and more particularly to a semiconductor device such as a highly integrated CMIS (Complementary Metal Insulator semiconductor) transistor capable of driving a high voltage in the field of MISFET (Metal Insulator Semiconductor Transistor) and a manufacturing method thereof.
 近年、半導体装置の高度集積化及び微細化に伴い、トランジスタにおいても微細化が急速に進められている。トランジスタの微細化に伴い、半導体集積回路装置の電源電圧は、スケーリング則に応じて低下している。一方、高耐圧トランジスタを搭載した高性能LSI(Large Scale Integration)が環境分野及び車載分野の用途として必要性を増している。これらの市場の要望を満たすために、現在では微細CMOS(Complementary Metal Oxide Semiconductor)デバイスである、例えば駆動電圧が1.2Vの低電圧駆動トランジスタと駆動電圧が3.3VのI/Oトランジスタとに加えて、電源コントローラ、モータコントローラ又はLCD等を駆動するための5V、12V若しくは24V、又はそれ以上の電源電圧を要求される高耐圧トランジスタが必要となっており、これらを混載した集積回路装置の開発が加速している。 In recent years, with the high integration and miniaturization of semiconductor devices, miniaturization of transistors has been rapidly advanced. With the miniaturization of the transistors, the power supply voltage of the semiconductor integrated circuit device is lowered according to the scaling law. On the other hand, a high-performance LSI (Large Scale Integration) equipped with a high-breakdown voltage transistor is increasing in necessity for applications in the environmental field and in-vehicle field. In order to meet the demands of these markets, there are now fine CMOS (Complementary Metal Oxide Semiconductor) devices, for example, a low voltage driving transistor with a driving voltage of 1.2V and an I / O transistor with a driving voltage of 3.3V. In addition, there is a need for a high voltage transistor that requires a power supply voltage of 5 V, 12 V, 24 V, or higher for driving a power controller, motor controller, LCD, or the like. Development is accelerating.
 これら高耐圧トランジスタを作製するには、ゲート絶縁膜の耐圧及びソース・ドレイン間の耐圧(サステイン耐圧)等の各耐圧を十分に高める必要があり、一般に、ゲート絶縁膜の耐圧は、その厚膜化により耐圧を向上させている。一方、サステイン耐圧の向上を図るには、通常、MOS型のトランジスタにおいて、図26に示すように、ゲート電極19の近傍のドレイン領域15に、レジストマスクを用いて濃度が薄い拡散層16を形成するドレイン拡張型のNMOSトランジスタ1Aがある。また、図27に示すように、ゲート電極19の下側に濃度が低い不純物領域よりなるPN接合を備えたドレイン拡張型のNMOSトランジスタ1Bが提案されている(例えば、特許文献1を参照。)。 In order to manufacture these high breakdown voltage transistors, it is necessary to sufficiently increase each breakdown voltage such as the breakdown voltage of the gate insulating film and the breakdown voltage between the source and drain (sustain breakdown voltage). Generally, the breakdown voltage of the gate insulating film is a thick film. Withstand voltage is improved. On the other hand, in order to improve the sustain breakdown voltage, normally, in a MOS transistor, as shown in FIG. 26, a lightly diffused diffusion layer 16 is formed in the drain region 15 near the gate electrode 19 using a resist mask. There is an extended drain type NMOS transistor 1A. Further, as shown in FIG. 27, a drain expansion type NMOS transistor 1B having a PN junction made of an impurity region having a low concentration under the gate electrode 19 has been proposed (see, for example, Patent Document 1). .
 図26に示すNMOSトランジスタ1Aは、その全体が半導体基板11のp型ウェル領域12に形成される。ソース領域13と隣接するソースLDD領域14は、通常のCMOSに適用されるn型LDD(Lightly Doped Drain)注入法により形成される。ドレイン領域105と隣接するドレインLDD領域16の不純物濃度は、ソースLDD領域14の不純物濃度よりも低いn型ドーパント濃度を有する、極低濃度にドープされた領域である。 The NMOS transistor 1A shown in FIG. 26 is entirely formed in the p-type well region 12 of the semiconductor substrate 11. The source LDD region 14 adjacent to the source region 13 is formed by an n-type LDD (Lightly Doped Drain) implantation method applied to a normal CMOS. The drain LDD region 16 adjacent to the drain region 105 is an extremely lightly doped region having an n-type dopant concentration lower than that of the source LDD region 14.
 NMOSトランジスタ1Aの製造方法は、まず、半導体基板11の上部に素子分離17を選択的に形成し、さらに、半導体基板11にp型ウェル領域12を形成する。その後、半導体基板11の主面上にゲート絶縁膜18を形成し、続いて、ゲート絶縁膜18の上にゲート電極19を選択的に形成する。 In the manufacturing method of the NMOS transistor 1 </ b> A, first, the element isolation 17 is selectively formed on the semiconductor substrate 11, and the p-type well region 12 is further formed on the semiconductor substrate 11. Thereafter, a gate insulating film 18 is formed on the main surface of the semiconductor substrate 11, and then a gate electrode 19 is selectively formed on the gate insulating film 18.
 次に、イオン注入法により、ゲート電極19をマスクとしてp型ウェル領域12にイオン打ち込みを行って、ドレインLDD領域16を形成する。 Next, by ion implantation, ion implantation is performed on the p-type well region 12 using the gate electrode 19 as a mask to form the drain LDD region 16.
 次に、ゲート電極19をマスクとして、コアCMOSのn型LDD注入法により、p型ウェル領域12にソースLDD領域14を形成する。このとき、先に形成されたドレインLDD領域16を第1のレジストマスク(図示せず)によりマスクする。 Next, the source LDD region 14 is formed in the p-type well region 12 by the core CMOS n-type LDD implantation method using the gate electrode 19 as a mask. At this time, the drain LDD region 16 previously formed is masked with a first resist mask (not shown).
 次に、ゲート電極19を覆うように、半導体基板11の主面上に、シリコン酸化膜又はシリコン窒化膜を成膜する。その後、第2のレジストマスクにより、ドレインLDD領域16を保護した状態で、成膜されたシリコン酸化膜等に対して異方性エッチングを行って、サイドウォール20及びシリサイドブロック22を形成する。 Next, a silicon oxide film or a silicon nitride film is formed on the main surface of the semiconductor substrate 11 so as to cover the gate electrode 19. Thereafter, anisotropic etching is performed on the formed silicon oxide film or the like with the second resist mask protecting the drain LDD region 16 to form the sidewalls 20 and the silicide blocks 22.
 次に、CMOSのn型ソース・ドレイン注入法により、ゲート電極19、サイドウォール20及びシリサイドブロック22をマスクとして、p型ウェル領域12の上部にソース領域13及びドレイン領域15を自己整合的に形成する。 Next, the source region 13 and the drain region 15 are formed in a self-aligned manner on the upper portion of the p-type well region 12 by using the gate electrode 19, the sidewall 20 and the silicide block 22 as a mask by the CMOS n-type source / drain implantation method. To do.
 次に、半導体基板11の上に、高融点金属膜を成膜した後、熱処理を行うことにより、ソース領域13及びドレイン領域15の上部並びにゲート電極19のシリサイドブロック22からの露出面に、それぞれシリサイド層112を自己整合的に形成する。 Next, after forming a refractory metal film on the semiconductor substrate 11, heat treatment is performed so that the upper portions of the source region 13 and the drain region 15 and the exposed surface of the gate electrode 19 from the silicide block 22 are respectively formed. The silicide layer 112 is formed in a self-aligned manner.
 これにより、極めて低濃度のドレインLDD領域16であるドレイン拡張領域を備えたNMOSトランジスタ1Aが形成される。 Thereby, the NMOS transistor 1A having the drain extension region which is the drain LDD region 16 having a very low concentration is formed.
 一方、図27に示すように、ドレイン拡張型のNMOSトランジスタ1Bの製造方法は、まず、半導体基板11の上部に、第1の素子分離17及び第2の素子分離25を選択的に形成する、その後、通常CMOSに適用されるNMOS及びPMOSトランジスタ製造用のツイン・ウェル注入法により、半導体基板11の上部に、それぞれレジストマスクによって定義された領域に対して、p型ウェル領域12及びn型ウェル領域24を形成する。 On the other hand, as shown in FIG. 27, in the method of manufacturing the drain extension type NMOS transistor 1B, first, the first element isolation 17 and the second element isolation 25 are selectively formed on the semiconductor substrate 11. Thereafter, the p-type well region 12 and the n-type well are respectively formed on the upper portion of the semiconductor substrate 11 with respect to the regions defined by the resist mask by a twin well implantation method for manufacturing NMOS and PMOS transistors, which are usually applied to CMOS. Region 24 is formed.
 次に、半導体基板11の主面上に、ゲート絶縁膜18及びゲート電極19を順次形成する。この際、ゲート電極19は第2の素子分離25の一部と重なるように形成される。 Next, a gate insulating film 18 and a gate electrode 19 are sequentially formed on the main surface of the semiconductor substrate 11. At this time, the gate electrode 19 is formed so as to overlap a part of the second element isolation 25.
 次に、通常のCMOSに適用されるn型LDD注入法により、トランジスタ領域の全面に不純物の打ち込みを行って、ソースLDD領域14を形成する。このとき、ゲート電極19及び第2の素子分離25によって自己整合的に必要な部分にのみ不純物が注入される。 Next, the source LDD region 14 is formed by implanting impurities into the entire surface of the transistor region by an n-type LDD implantation method applied to a normal CMOS. At this time, the impurity is implanted only into a necessary portion in a self-aligned manner by the gate electrode 19 and the second element isolation 25.
 次に、ゲート電極19を覆うように、半導体基板11の主面上に、シリコン酸化膜又はシリコン窒化膜を成膜する。その後、成膜されたシリコン酸化膜等に対して異方性エッチングを行って、サイドウォール20を形成する。 Next, a silicon oxide film or a silicon nitride film is formed on the main surface of the semiconductor substrate 11 so as to cover the gate electrode 19. Thereafter, anisotropic etching is performed on the formed silicon oxide film or the like to form the sidewall 20.
 次に、CMOSのn型ソース・ドレイン注入法により、ゲート電極19及びサイドウォール20、第1の素子分離17及び第2の素子分離25をマスクとして、p型ウェル領域12及びn型ウェル領域24の各上部にソース領域13及びドレイン領域15をそれぞれ自己整合的に形成する。 Next, the p-type well region 12 and the n-type well region 24 are formed by the n-type source / drain implantation method of CMOS, using the gate electrode 19 and the sidewall 20, the first element isolation 17 and the second element isolation 25 as a mask. A source region 13 and a drain region 15 are formed in a self-aligned manner on each of the upper portions.
 次に、半導体基板11の上に、高融点金属膜を成膜した後、熱処理を行うことにより、ソース領域13、ドレイン領域15及びゲート電極19の各上部にシリサイド層23をそれぞれ自己整合的に形成する。 Next, after forming a refractory metal film on the semiconductor substrate 11, heat treatment is performed so that the silicide layer 23 is formed on the source region 13, the drain region 15, and the gate electrode 19 in a self-aligned manner. Form.
 ここで、p型ウェル領域12の濃度並びにn型ウェル領域24の横方向のサイズ及び濃度は、ドレインからバルクへの破壊電圧を制御する必要性(例えば、サイズが大きくなれば破壊電圧が上昇し、また、濃度が薄くなれば破壊耐圧が上昇する)と、トランジスタの動作特性とに対して、別々に最適化されている。これにより、ドレイン拡張型のNMOSトランジスタ1Bは、ソース領域13とドレイン領域15との各拡散層とそれぞれ接続され、且つゲート電極19の下側のゲート絶縁膜18の直下に極めて低濃度にドープされたPN接合26を形成することにより、耐圧の向上を図っている。 Here, the concentration of the p-type well region 12 and the lateral size and concentration of the n-type well region 24 are required to control the breakdown voltage from the drain to the bulk (for example, the breakdown voltage increases as the size increases). In addition, the breakdown voltage increases as the concentration decreases, and the transistor operating characteristics are optimized separately. Thereby, the drain extension type NMOS transistor 1B is connected to the diffusion layers of the source region 13 and the drain region 15 and is doped at a very low concentration immediately below the gate insulating film 18 below the gate electrode 19. By forming the PN junction 26, the breakdown voltage is improved.
特開2001-168210号公報JP 2001-168210 A
 しかしながら、図26に示したドレイン拡張型のNMOSトランジスタ1Aは、ドレインLDD領域16をマスクする際にレジストマスクを用いているため、マスク境界27及びマスク境界28が存在するため、マスクのアライメントずれを考慮する必要がある。このため、特にドレイン領域15上のマスク境界28においては、ゲート電極19から所定の距離を保つ必要があり、そのためのマージンによってサステイン耐圧のばらつきが発生し易く、且つ、デバイスの面積が増大するという問題が生じる。その上、互いに隣接して形成された2つのゲート電極19を有し、各ソース領域13又はドレイン領域15のいずれか一方を共有する2つのトランジスタ1Aを差動回路として用いるペア型トランジスタにおいては、マスクのアライメントずれが一方向にずれると、非対称なペア型トランジスタが形成されてしまう。この非対称に形成されたペア型トランジスタでは、駆動電流等の動作特性にばらつきが生じて、デバイス性能が劣化するという問題がある。 However, since the drain extension type NMOS transistor 1A shown in FIG. 26 uses a resist mask when masking the drain LDD region 16, the mask boundary 27 and the mask boundary 28 exist. It is necessary to consider. For this reason, it is necessary to keep a predetermined distance from the gate electrode 19 especially at the mask boundary 28 on the drain region 15, and the margin for that tends to cause a variation in sustain breakdown voltage, and the device area increases. Problems arise. In addition, in a pair type transistor having two gate electrodes 19 formed adjacent to each other and using two transistors 1A sharing either one of the source region 13 or the drain region 15 as a differential circuit, If the mask is misaligned in one direction, an asymmetric pair transistor is formed. This asymmetrically formed pair transistor has a problem in that device characteristics deteriorate due to variations in operating characteristics such as drive current.
 また、図27に示したドレイン拡張型のNMOSトランジスタ1Bは、サステイン耐圧の改善は見込めるものの、ゲート絶縁膜18の直下に形成された低濃度のPN接合26を形成するためにレジストマスクを用いている。このため、マスク境界29及びマスク境界30が存在する。従って、p型ウェル領域12及びn型ウェル領域14のそれぞれのアライメントずれにより、PN接合26の濃度が一定とならず、耐圧にばらつきが生じる。その上、ドレイン拡張型のNMOSトランジスタ1Aと同様に、各ソース領域13又はドレイン領域15のいずれか一方を共有する2つのトランジスタ1Bを差動回路として用いるペア型トランジスタにおいては、マスクのアライメントずれが一方向にずれることにより、非対称なペア型トランジスタが形成されてしまう。このため、駆動電流等の動作特性にばらつきが生じて、デバイス性能が劣化するという問題がある。 In addition, although the drain extension type NMOS transistor 1B shown in FIG. 27 can be expected to improve the sustain breakdown voltage, it uses a resist mask to form a low-concentration PN junction 26 formed immediately below the gate insulating film 18. Yes. For this reason, the mask boundary 29 and the mask boundary 30 exist. Therefore, due to misalignment between the p-type well region 12 and the n-type well region 14, the concentration of the PN junction 26 is not constant, resulting in variations in breakdown voltage. In addition, as in the case of the drain extension type NMOS transistor 1A, in the pair type transistor using two transistors 1B sharing either one of the source region 13 or the drain region 15 as a differential circuit, the mask is misaligned. By shifting in one direction, an asymmetric pair transistor is formed. For this reason, there is a problem that operation characteristics such as drive current vary and device performance deteriorates.
 前記に鑑み、本発明は、構造が簡単なトランジスタにより、面積の増大及び製造工程の増加を生じることなくサステイン耐圧を改善し、且つサステイン耐圧のばらつきの抑制及びトランジスタ形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現できるようにすることを目的とする。 In view of the above, the present invention improves the sustain breakdown voltage without increasing the area and manufacturing process by using a transistor with a simple structure, and suppresses variations in the sustain breakdown voltage, and the drain resistance and junction profile after forming the transistor. An object of the present invention is to realize a semiconductor device with a high degree of freedom that can be adjusted.
 前記の目的を達成するため、本発明は、半導体装置を、一の半導体領域に形成され、互いに並行に延びると共に、ゲート長方向の幅が比較的に大きい第1ゲート電極及び比較的に小さい第2ゲート電極とを有し、半導体領域における第1ゲート電極及び第2ゲート電極同士の間の拡散層の不純物濃度が、該半導体領域における第1ゲート電極及び第2ゲート電極のそれぞれ外側の拡散層の不純物濃度よりも低い構成とする。 To achieve the above object, according to the present invention, a semiconductor device is formed in one semiconductor region, extends in parallel with each other, and has a first gate electrode having a relatively large width in the gate length direction and a relatively small first gate electrode. And the impurity concentration of the diffusion layer between the first gate electrode and the second gate electrode in the semiconductor region is different from the diffusion layer outside the first gate electrode and the second gate electrode in the semiconductor region, respectively. The impurity concentration is lower.
 具体的に、本発明に係る半導体装置は、第1導電型の第1半導体領域の上に第1ゲート絶縁膜を介在させて形成された第1ゲート電極と、第1半導体領域の上に第1ゲート絶縁膜を介在させると共に、第1ゲート電極と間隔をおいて並行に形成され、第1ゲート電極よりもゲート長方向の幅が小さい第2ゲート電極と、第1半導体領域における第1ゲート電極の両側方の領域にそれぞれ形成され、第2導電型の第1不純物を含む第1ソース領域及び第2導電型の第2不純物を含む第1ドレイン領域と、第1半導体領域における第2ゲート電極の両側方の領域にそれぞれ形成され、第2導電型の第3不純物を含む第2ソース領域及び第2導電型の第4不純物を含む第2ドレイン領域とを備え、第1ソース領域における第1不純物の濃度は、第1ドレイン領域における第2不純物の濃度よりも高く、第2ソース領域における第3不純物の濃度は、第2ドレイン領域における第4不純物の濃度よりも低く、第2ソース領域は、第1ドレイン領域と共有されている。 Specifically, a semiconductor device according to the present invention includes a first gate electrode formed on a first conductivity type first semiconductor region with a first gate insulating film interposed therebetween, and a first gate electrode formed on the first semiconductor region. A first gate electrode in the first semiconductor region, and a first gate electrode in the first semiconductor region, the first gate electrode being interposed in parallel with the first gate electrode and having a width in the gate length direction smaller than that of the first gate electrode. A first source region including a first impurity of a second conductivity type, a first drain region including a second impurity of a second conductivity type, and a second gate in the first semiconductor region, each formed in a region on both sides of the electrode; A second source region including a second impurity of a second conductivity type and a second drain region including a second impurity of a second conductivity type, which are formed in regions on both sides of the electrode, respectively. The concentration of one impurity is The second impurity concentration is higher than the second impurity concentration in the drain region, the third impurity concentration in the second source region is lower than the fourth impurity concentration in the second drain region, and the second source region is shared with the first drain region. Has been.
 本発明の半導体装置によると、第1ゲート電極と第2ゲート電極とを並行に形成することにより、第1ゲート電極と第2ゲート電極との間にある第1ドレイン領域及び第2ソース領域への不純物の注入量をレジストマスクを用いることなく自己整合的に減らすことができる。その結果、マスク合わせが不要となるため、サステイン耐圧のばらつきがなく、且つデバイス面積の増大と工程の増加によるコストの増大を抑制することができる。 According to the semiconductor device of the present invention, the first gate electrode and the second gate electrode are formed in parallel, whereby the first drain region and the second source region between the first gate electrode and the second gate electrode are formed. The amount of impurity implantation can be reduced in a self-aligned manner without using a resist mask. As a result, since mask alignment is not required, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and an increase in processes can be suppressed.
 また、第1ゲート電極と第2ゲート電極との間の第1ドレイン領域及び第2ソース領域の不純物濃度が低いため、第1ゲート電極の端部では電界が緩やかな注入プロファイルを形成できる。このため、インパクトイオン化率を低減できるので、基板リーク電流の増加による基板電位の上昇に伴うサステイン耐圧の低下を改善することができる。 Also, since the impurity concentration of the first drain region and the second source region between the first gate electrode and the second gate electrode is low, an implantation profile with a gentle electric field can be formed at the end of the first gate electrode. For this reason, since the impact ionization rate can be reduced, it is possible to improve the decrease in the sustain breakdown voltage due to the increase in the substrate potential due to the increase in the substrate leakage current.
 また、第1ゲート電極における第1ソース領域と第1ドレイン領域との間の実効チャネル長を広げることができるため、ショートチャネル効果の影響を低減できるので、トランジスタ領域を縮小でき、小チップ化を図ることができる。 In addition, since the effective channel length between the first source region and the first drain region in the first gate electrode can be widened, the influence of the short channel effect can be reduced, so that the transistor region can be reduced and the chip size can be reduced. Can be planned.
 さらに、第2ゲート電極に適当な電位を与えることにより、外部から第1ドレイン領域及び第2ドレイン領域の空乏層の幅、抵抗及び電界を調整できるため、回路設計の自由度が高く、サステイン耐圧の向上に加えてホットキャリアが流れる方向と位置とを変更できるので、ホットキャリアの寿命の劣化を改善することができる。 Furthermore, since the width, resistance, and electric field of the depletion layer of the first drain region and the second drain region can be adjusted from the outside by applying an appropriate potential to the second gate electrode, the degree of freedom in circuit design is high, and the sustain breakdown voltage In addition to the improvement, the direction and position of the hot carrier can be changed, so that the deterioration of the hot carrier life can be improved.
 本発明の半導体装置は、第1ゲート電極と第2ゲート電極との各側面上にそれぞれ形成され、絶縁体からなるサイドウォールをさらに備え、第1ゲート電極と第2ゲート電極との対向する側面上に形成されたサイドウォール同士は、互いに接触していてもよい。 The semiconductor device of the present invention further includes sidewalls formed on the respective side surfaces of the first gate electrode and the second gate electrode and made of an insulator, and the side surfaces of the first gate electrode and the second gate electrode facing each other. The sidewalls formed above may be in contact with each other.
 本発明の半導体装置において、第1ソース領域、第1ドレイン領域、第2ソース領域及び第2ドレイン領域は、それぞれの接合深さが互いに同一の接合面を有していてもよい。 In the semiconductor device of the present invention, the first source region, the first drain region, the second source region, and the second drain region may have joint surfaces having the same junction depth.
 本発明の半導体装置において、第1ドレイン領域は、第1不純物を含み且つ第1ゲート電極と重なるように形成され、第1不純物による第1のPN接合と、第1のPN接合から第2ゲート電極側に離れた領域に形成され、第1のPN接合よりも高い濃度を持つ、第2不純物による第2のPN接合と、第2のPN接合から第2ゲート電極側の領域に形成され、第2のPN接合よりも高い濃度を持つ、第3不純物による第3のPN接合とを有していてもよい。 In the semiconductor device of the present invention, the first drain region includes the first impurity and is formed so as to overlap the first gate electrode. The first PN junction by the first impurity, and the second gate from the first PN junction. A second PN junction formed by a second impurity having a concentration higher than that of the first PN junction, and a region from the second PN junction to the second gate electrode side. You may have the 3rd PN junction by a 3rd impurity with a higher density | concentration than a 2nd PN junction.
 本発明の半導体装置において、第1ソース領域における第1不純物が添加された領域及び第2ドレイン領域における第4不純物が添加された領域には、第1不純物及び第4不純物よりも高い濃度を持つ第2導電型の第5不純物が添加され、第5不純物が添加された領域は、第1不純物が添加された領域及び第4不純物が添加された領域に包含されて形成されていてもよい。 In the semiconductor device of the present invention, the region of the first source region to which the first impurity is added and the region of the second drain region to which the fourth impurity is added have higher concentrations than the first impurity and the fourth impurity. The region to which the fifth impurity of the second conductivity type is added and the fifth impurity is added may be included in the region to which the first impurity is added and the region to which the fourth impurity is added.
 本発明の半導体装置は、第1ソース領域及び第2ドレイン領域の上部に形成された金属層をさらに備え、金属層は、第1ドレイン領域及び第2ソース領域の上部には形成されていなくてもよい。 The semiconductor device of the present invention further includes a metal layer formed on the first source region and the second drain region, and the metal layer is not formed on the first drain region and the second source region. Also good.
 本発明の半導体装置は、第1半導体領域の上に第1ゲート絶縁膜をそれぞれ介在させると共に、第1ソース領域における第1ゲート電極のゲート幅方向に沿った中心線をそれぞれ線対称として形成され、第1ゲート電極と同一の構成を持つ第3ゲート電極、及び第2ゲート電極と同一の構成を持つ第4ゲート電極と、第1半導体領域における第3ゲート電極の両側方の領域にそれぞれ形成され、第1不純物を含む第3ソース領域及び第2不純物を含む第3ドレイン領域と、第1半導体領域における第4ゲート電極の両側方の領域にそれぞれ形成され、第3不純物を含む第4ソース領域及び第4不純物を含む第4ドレイン領域とをさらに備え、第3ソース領域における第1不純物の濃度は、第3ドレイン領域における第2不純物の濃度よりも高く、第4ソース領域における第3不純物の濃度は、第4ドレイン領域における第4不純物の濃度よりも低く、第3ソース領域は、第1ソース領域と共有され、且つ第4ソース領域は、第3ドレイン領域と共有されていてもよい。 In the semiconductor device of the present invention, the first gate insulating film is interposed on the first semiconductor region, and the center lines along the gate width direction of the first gate electrode in the first source region are formed symmetrically with respect to each other. A third gate electrode having the same configuration as the first gate electrode, a fourth gate electrode having the same configuration as the second gate electrode, and a region on both sides of the third gate electrode in the first semiconductor region. The fourth source including the third impurity is formed in the third source region including the first impurity, the third drain region including the second impurity, and the regions on both sides of the fourth gate electrode in the first semiconductor region. A fourth drain region including a region and a fourth impurity, wherein the concentration of the first impurity in the third source region is higher than the concentration of the second impurity in the third drain region. In addition, the concentration of the third impurity in the fourth source region is lower than the concentration of the fourth impurity in the fourth drain region, the third source region is shared with the first source region, and the fourth source region is It may be shared with 3 drain regions.
 このようにすると、ソース領域を共有した隣り合わせのトランジスタを差動回路として用いるペア型トランジスタにおいても、マスクのアライメントずれが生じないため、特性ばらつきの増大によるデバイスの性能劣化がない。 In this way, even in a pair type transistor using adjacent transistors sharing a source region as a differential circuit, the mask is not misaligned, so that there is no deterioration in device performance due to increased characteristic variation.
 また、本発明の半導体装置は、第1半導体領域の上に第1ゲート絶縁膜をそれぞれ介在させると共に、第2ドレイン領域における第2ゲート電極のゲート幅方向に沿った中心線をそれぞれ線対称として形成され、第2ゲート電極と同一の構成を持つ第4ゲート電極、及び第1ゲート電極と同一の構成を持つ第3ゲート電極と、第1半導体領域における第3ゲート電極の両側方の領域にそれぞれ形成され、第1不純物を含む第3ソース領域及び第2不純物を含む第3ドレイン領域と、第1半導体領域における第4ゲート電極の両側方の領域にそれぞれ形成され、第3不純物を含む第4ソース領域及び第4不純物を含む第4ドレイン領域とをさらに備え、第3ソース領域における第1不純物の濃度は、第3ドレイン領域における第2不純物の濃度よりも高く、第4ソース領域における第3不純物の濃度は、第4ドレイン領域における第4不純物の濃度よりも低く、第4ドレイン領域は、第2ドレイン領域と共有され、且つ第4ソース領域は、第3ドレイン領域と共有されていてもよい。 In the semiconductor device of the present invention, the first gate insulating film is interposed on the first semiconductor region, and the center lines along the gate width direction of the second gate electrode in the second drain region are symmetrical with each other. A fourth gate electrode having the same configuration as the second gate electrode, a third gate electrode having the same configuration as the first gate electrode, and regions on both sides of the third gate electrode in the first semiconductor region; A third source region including the first impurity, a third drain region including the second impurity, and a region on both sides of the fourth gate electrode in the first semiconductor region, respectively, and including the third impurity. And a fourth drain region including a fourth impurity, wherein the concentration of the first impurity in the third source region is the concentration of the second impurity in the third drain region. The concentration of the third impurity in the fourth source region is lower than the concentration of the fourth impurity in the fourth drain region, the fourth drain region is shared with the second drain region, and the fourth source region is , May be shared with the third drain region.
 このようにすると、ドレイン領域を共有した隣り合わせのトランジスタを差動回路として用いるペア型トランジスタにおいても、マスクのアライメントずれが生じないため、特性ばらつきの増大によるデバイスの性能劣化がない。 In this way, even in a pair type transistor using adjacent transistors sharing a drain region as a differential circuit, the mask is not misaligned, so that there is no deterioration in device performance due to increased characteristic variation.
 本発明の半導体装置において、第1ソース領域と第1ゲート電極との重なり部分の第1オーバラップ量は、第1ドレイン領域と第2ゲート電極との重なり部分の第2オーバラップ量よりも大きくてもよい。 In the semiconductor device of the present invention, the first overlap amount of the overlapping portion of the first source region and the first gate electrode is larger than the second overlap amount of the overlapping portion of the first drain region and the second gate electrode. May be.
 また、本発明の半導体装置において、第2ソース領域と第2ゲート電極との重なり部分の第3オーバラップ量は、第2ドレイン領域と第2ゲート電極との重なり部分の第4オーバラップ量よりも小さくてもよい。 In the semiconductor device of the present invention, the third overlap amount of the overlapping portion of the second source region and the second gate electrode is greater than the fourth overlap amount of the overlapping portion of the second drain region and the second gate electrode. May be small.
 本発明の半導体装置において、第2ソース領域と第2ドレイン領域とは、第1半導体領域における第2ゲート電極の下側部分において接触して短絡していてもよい。 In the semiconductor device of the present invention, the second source region and the second drain region may be in contact with each other and short-circuited at a lower portion of the second gate electrode in the first semiconductor region.
 本発明の半導体装置において、第1半導体領域における第1ゲート電極の中央部の下側部分の導電型と、第2ゲート電極の中央部の下側部分の導電型とは、極性が互いに逆であってもよい。 In the semiconductor device of the present invention, the conductivity type of the lower part of the central part of the first gate electrode in the first semiconductor region and the conductivity type of the lower part of the central part of the second gate electrode are opposite to each other. There may be.
 本発明の半導体装置において、第1ゲート電極と第2ゲート電極との間隔は、第1ゲート電極及び第2ゲート電極の高さの70%以下であり、第2ゲート電極のゲート長方向の幅は、第1ゲート電極及び第2ゲート電極の高さの1.3倍以上であってもよい。 In the semiconductor device of the present invention, the distance between the first gate electrode and the second gate electrode is 70% or less of the height of the first gate electrode and the second gate electrode, and the width of the second gate electrode in the gate length direction. May be not less than 1.3 times the height of the first gate electrode and the second gate electrode.
 本発明の半導体装置は、第2半導体領域の上に第1ゲート絶縁膜よりも薄い第2ゲート絶縁膜を介在させて形成された第3ゲート電極をさらに備えていてもよい。 The semiconductor device of the present invention may further include a third gate electrode formed on the second semiconductor region with a second gate insulating film thinner than the first gate insulating film interposed.
 このようにすると、通常のMIS構造による拡散から変更がなく、簡単な構造で低電圧駆動のロジックコアトランジスタとの混載が容易となる。 In this way, there is no change from the diffusion by the normal MIS structure, and it becomes easy to mix with a logic core transistor driven by a low voltage with a simple structure.
 本発明に係る半導体装置の製造方法は、第1ソース領域、第1ドレイン領域、第2ソース領域及び第2ドレイン領域を、第1ゲート電極及び第2ゲート電極をマスクとして、互いに異なる少なくとも3方向からのイオン注入によって形成する。 In the method for manufacturing a semiconductor device according to the present invention, the first source region, the first drain region, the second source region, and the second drain region are used as a mask, and the first gate electrode and the second gate electrode are used as masks. Formed by ion implantation.
 本発明の半導体装置の製造方法によると、互いに並行に形成された第1ゲート電極と第2ゲート電極とをマスクとしてイオン注入することにより、第1ゲート電極と第2ゲート電極との間にある第1ドレイン領域及び第2ソース領域への不純物の注入量をレジストマスクを用いることなく自己整合的に減らすことができる。その結果、マスク合わせが不要となることから、サステイン耐圧のばらつきがなく、且つデバイス面積の増大と工程の増加によるコストの増大を抑制することができる。 According to the method of manufacturing a semiconductor device of the present invention, ions are implanted using the first gate electrode and the second gate electrode formed in parallel with each other as a mask so that the first gate electrode and the second gate electrode are interposed. The amount of impurities implanted into the first drain region and the second source region can be reduced in a self-aligned manner without using a resist mask. As a result, since mask alignment becomes unnecessary, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and process can be suppressed.
 本発明に係る半導体装置及びその製造方法によると、面積の増大及び製造工程の増加を生じることなくサステイン耐圧を改善し、サステイン耐圧のばらつきの抑制及びトランジスタの形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現することができる。 According to the semiconductor device and the manufacturing method thereof according to the present invention, the sustain breakdown voltage is improved without increasing the area and the manufacturing process, suppressing the variation in the sustain breakdown voltage, and adjusting the drain resistance and the junction profile after forming the transistor. Thus, a semiconductor device with a high degree of freedom can be realized.
図1は本発明の一実施形態に係る半導体装置を示す要部の断面図である。FIG. 1 is a cross-sectional view of a main part showing a semiconductor device according to an embodiment of the present invention. 図2は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 2 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention. 図3は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 3 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図4は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 4 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図5は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 5 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to one embodiment of the present invention. 図6は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 6 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention. 図7(a)は本発明の一実施形態に係る半導体装置における低濃度LDD領域が形成可能な最大チルト角の範囲を示す図である。図7(b)は本発明の一実施形態に係る半導体装置における低濃度LDD領域が形成可能な最大ゲート電極間隔の範囲を示す図である。FIG. 7A is a diagram showing a range of the maximum tilt angle in which the low concentration LDD region can be formed in the semiconductor device according to the embodiment of the present invention. FIG. 7B is a diagram showing the range of the maximum gate electrode interval in which the low concentration LDD region can be formed in the semiconductor device according to one embodiment of the present invention. 図8(a)及び図8(b)は本発明の一実施形態に係る半導体装置における高耐圧LDD注入時のレイアウト図である。FIGS. 8A and 8B are layout diagrams at the time of high breakdown voltage LDD implantation in the semiconductor device according to one embodiment of the present invention. 図9は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 9 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention. 図10は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 10 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention. 図11は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 11 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to one embodiment of the present invention. 図12は本発明の一実施形態に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 12 is a cross-sectional view showing one step of a method for manufacturing a semiconductor device according to an embodiment of the present invention. 図13は本発明の一実施形態の第1変形例に係る半導体装置であって、ソース領域を共有するペア型トランジスタの要部を示す断面図である。FIG. 13 is a cross-sectional view showing the main part of a paired transistor sharing a source region, which is a semiconductor device according to a first modification of one embodiment of the present invention. 図14は本発明の一実施形態の第2変形例に係る半導体装置であって、ドレイン領域を共有するペア型トランジスタの要部を示す断面図である。FIG. 14 is a cross-sectional view showing a main part of a paired transistor sharing a drain region, which is a semiconductor device according to a second modification of one embodiment of the present invention. 図15は本発明の一実施形態に係る半導体装置における第1ゲート電極及び第2ゲート電極の各電位と空乏層を示す模式的な断面図である。FIG. 15 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention. 図16は本発明の一実施形態に係る半導体装置における第1ゲート電極及び第2ゲート電極の各電位と空乏層を示す模式的な断面図である。FIG. 16 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention. 図17は本発明の一実施形態に係る半導体装置における第1ゲート電極及び第2ゲート電極の各電位と空乏層を示す模式的な断面図である。FIG. 17 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention. 図18は本発明の一実施形態に係る半導体装置における第1ゲート電極及び第2ゲート電極の各電位と空乏層を示す模式的な断面図である。FIG. 18 is a schematic cross-sectional view showing each potential of the first gate electrode and the second gate electrode and a depletion layer in the semiconductor device according to the embodiment of the present invention. 図19は本発明の一実施形態の第3変形例に係る半導体装置の要部を示す断面図である。FIG. 19 is a cross-sectional view showing the main parts of a semiconductor device according to a third modification of one embodiment of the present invention. 図20は本発明の一実施形態の第4変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 20 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fourth modification of the embodiment of the present invention. 図21は本発明の一実施形態の第5変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 21 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fifth modification of the embodiment of the present invention. 図22は本発明の一実施形態の第5変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 22 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the fifth modification of the embodiment of the present invention. 図23は本発明の一実施形態の第6変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 23 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the sixth modification of the embodiment of the present invention. 図24は本発明の一実施形態の第7変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 24 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the seventh modification of the embodiment of the present invention. 図25は本発明の一実施形態の第7変形例に係る半導体装置の製造方法の一工程を示す断面図である。FIG. 25 is a cross-sectional view showing a step of the method of manufacturing a semiconductor device according to the seventh modification of the embodiment of the present invention. 図26は第1の従来例に係る半導体装置を示す断面図である。FIG. 26 is a sectional view showing a semiconductor device according to a first conventional example. 図27は第2の従来例に係る半導体装置を示す断面図である。FIG. 27 is a sectional view showing a semiconductor device according to a second conventional example.
 (一実施形態)
 本発明の一実施形態に係る半導体装置について図1を参照しながら説明する。
(One embodiment)
A semiconductor device according to an embodiment of the present invention will be described with reference to FIG.
 図1に示すように、一実施形態に係る半導体装置は、例えば、環境保護に対応する高効率な電源制御機能付きポータブルデバイスで使用される、5Vの電源電圧と接続された高耐圧トランジスタ120と、1.2Vの電源電圧と接続され、高速動作用途の微細トランジスタ121とが混載されている構成例を説明する。 As shown in FIG. 1, a semiconductor device according to an embodiment includes a high voltage transistor 120 connected to a power supply voltage of 5 V used in a portable device with a high efficiency power supply control function corresponding to environmental protection, for example. A configuration example in which a fine transistor 121 connected to a power supply voltage of 1.2 V and used for high-speed operation is embedded will be described.
 なお、図1においては、高圧トランジスタ120において、NMISトランジスタのみを示しているが、例えばCMISを構成するために、1つの半導体基板101にNMISトランジスタとPMISトランジスタとが同時に形成されていることは自明であることから、NMISトランジスタのみを図示している。同様に、微細トランジスタ121においても、NMISトランジスタのみを図示し、PMISトランジスタを省略している。 In FIG. 1, only the NMIS transistor is shown in the high-voltage transistor 120, but it is obvious that, for example, an NMIS transistor and a PMIS transistor are formed on one semiconductor substrate 101 in order to constitute a CMIS. Therefore, only the NMIS transistor is shown. Similarly, only the NMIS transistor is illustrated in the fine transistor 121, and the PMIS transistor is omitted.
 高耐圧トランジスタ120は、例えばシリコン(Si)からなる半導体基板101の上部に形成されたp型ウェル102及び該p型ウェル102の上に形成されている。p型ウェル102は、シャロウトレンチ分離(STI:Shallow Trench Isolation)からなる素子分離107によって区画されており、p型ウェル102の上には、例えば酸化シリコン(SiO)からなるゲート絶縁膜108をそれぞれ介在させ、互いに間隔をおいて並行に延びる第1ゲート電極125及び第2ゲート電極126が形成されている。ここで、第1ゲート電極125のゲート長方向の幅は比較的に大きく、例えば500nm~1000nm程度に設定されている。これに対し、第2ゲート電極126のゲート長方向の幅は比較的に小さく、例えば100nm~200nm程度に設定されている。また、第1ゲート電極125と第2ゲート電極126との間隔は、80nm~200nm程度に設定されている。 The high breakdown voltage transistor 120 is formed on the p-type well 102 formed on the semiconductor substrate 101 made of, for example, silicon (Si) and on the p-type well 102. The p-type well 102 is partitioned by element isolation 107 made of shallow trench isolation (STI), and a gate insulating film 108 made of, for example, silicon oxide (SiO 2 ) is formed on the p-type well 102. A first gate electrode 125 and a second gate electrode 126 are formed so as to be interposed and extend in parallel with each other. Here, the width of the first gate electrode 125 in the gate length direction is relatively large, for example, set to about 500 nm to 1000 nm. On the other hand, the width in the gate length direction of the second gate electrode 126 is relatively small, for example, set to about 100 nm to 200 nm. The distance between the first gate electrode 125 and the second gate electrode 126 is set to about 80 nm to 200 nm.
 各ゲート電極125、126のゲート長方向の両側面上には、積層された絶縁膜からなるサイドウォール110が形成されている。該サイドウォール110は、内側から順次形成されたオフセットサイドウォール145、断面L字状のサイドウォール下層膜149及びサイドウォール上層膜150から構成される。なお、本実施形態においては、第1ゲート電極125と第2ゲート電極126との間の領域に形成されるサイドウォール110同士は、互いに接触して形成されている。 Side walls 110 made of stacked insulating films are formed on both side surfaces of the gate electrodes 125 and 126 in the gate length direction. The sidewall 110 includes an offset sidewall 145 formed in order from the inside, a sidewall lower layer film 149 having an L-shaped cross section, and a sidewall upper layer film 150. In the present embodiment, the sidewalls 110 formed in the region between the first gate electrode 125 and the second gate electrode 126 are formed in contact with each other.
 p型ウェル102の上部であって、第1ゲート電極125における第2ゲート電極126と反対側の側部の下側及びその側方の領域には、n型のLDD中濃度領域134が形成されている。また、p型ウェル102の上部における第1ゲート電極125と第2ゲート電極126との間の領域には、n型のLDD低濃度領域135が形成され、第2ゲート電極126の下側の領域及び第1ゲート電極125と反対側の側方の領域には、n型のLDD中濃度領域134が形成されている。ここで、LDD低濃度領域135は、第1ゲート電極125における第2ゲート電極126側の側部の下側にも重なり部分を有している。また、LDD低濃度領域135は、第1ゲート電極125に対するドレイン領域と第2ゲート電極126に対するソース領域として共有されている。また、LDD中濃度領域134及びLDD低濃度領域135の不純物の拡散深さは、ほぼ同一に設定されている。 An n-type LDD medium concentration region 134 is formed in the upper portion of the p-type well 102 and below and on the side of the first gate electrode 125 opposite to the second gate electrode 126. ing. Further, an n-type LDD low concentration region 135 is formed in a region between the first gate electrode 125 and the second gate electrode 126 in the upper part of the p-type well 102, and a region below the second gate electrode 126. An n-type LDD medium concentration region 134 is formed in a side region opposite to the first gate electrode 125. Here, the LDD low-concentration region 135 has an overlapping portion also below the side portion of the first gate electrode 125 on the second gate electrode 126 side. The LDD low concentration region 135 is shared as a drain region for the first gate electrode 125 and a source region for the second gate electrode 126. Further, the diffusion depths of impurities in the LDD medium concentration region 134 and the LDD low concentration region 135 are set to be substantially the same.
 第1ゲート電極125に対して第2ゲート電極126と反対側に位置するLDD中濃度領域134には、外側のサイドウォール110の下側及びその側方の領域に、LDD中濃度領域134よりも接合深さが浅く且つ高濃度のn型のソース領域103が形成されている。また、第2ゲート電極126に対して第1ゲート電極125と反対側に位置するLDD中濃度領域134には、外側のサイドウォール110の下端部及びその側方の領域に、LDD中濃度領域134よりも接合深さが浅く且つ高濃度のn型のドレイン領域105が形成されている。 In the LDD medium concentration region 134 located on the opposite side of the first gate electrode 125 from the second gate electrode 126, the LDD medium concentration region 134 is located below and on the side of the outer side wall 110 than the LDD medium concentration region 134. A n-type source region 103 having a shallow junction depth and a high concentration is formed. In addition, the LDD medium concentration region 134 located on the opposite side of the first gate electrode 125 with respect to the second gate electrode 126 has an LDD medium concentration region 134 at the lower end portion of the outer side wall 110 and its side region. An n-type drain region 105 having a shallower junction depth and a high concentration is formed.
 第1ゲート電極125、第2ゲート電極126、ソース領域103及びドレイン領域105の各上部には、ニッケル(Ni)等からなるシリサイド層112がそれぞれ形成されている。 A silicide layer 112 made of nickel (Ni) or the like is formed on each of the first gate electrode 125, the second gate electrode 126, the source region 103, and the drain region 105.
 なお、図示しないPMISトランジスタは、図1に示すNMISトランジスタのソース領域103、ドレイン領域105、LDD中濃度領域134及びLDD低濃度領域135の各導電型がp型に形成されている。 Note that in the PMIS transistor (not shown), the conductivity types of the source region 103, the drain region 105, the LDD medium concentration region 134, and the LDD low concentration region 135 of the NMIS transistor shown in FIG.
 次に、微細トランジスタ121の構成を説明する。 Next, the configuration of the fine transistor 121 will be described.
 微細トランジスタ121は、半導体基板101の上部に形成された、p型ウェル102とは異なるp型ウェル122及び該p型ウェル122の上に形成されている。p型ウェル122は、STIからなる素子分離107で区画されており、p型ウェル122の上には、SiOからなる薄膜ゲート絶縁膜124を介在させた第3ゲート電極127が形成されている。ここで、第3ゲート電極127のゲート長方向の幅は、例えば50nm~100nm程度に設定されている。 The fine transistor 121 is formed on a p-type well 122 different from the p-type well 102 formed on the semiconductor substrate 101 and on the p-type well 122. The p-type well 122 is partitioned by an element isolation 107 made of STI, and a third gate electrode 127 is formed on the p-type well 122 with a thin film gate insulating film 124 made of SiO 2 interposed therebetween. . Here, the width of the third gate electrode 127 in the gate length direction is set to about 50 nm to 100 nm, for example.
 第3ゲート電極127のゲート長方向の両側面上には、積層された絶縁膜からなるサイドウォール110が形成されている。該サイドウォール110は、内側から順次形成されたオフセットサイドウォール145、断面L字状のサイドウォール下層膜149及びサイドウォール上層膜150から構成される。 Side walls 110 made of laminated insulating films are formed on both side surfaces of the third gate electrode 127 in the gate length direction. The sidewall 110 includes an offset sidewall 145 formed in order from the inside, a sidewall lower layer film 149 having an L-shaped cross section, and a sidewall upper layer film 150.
 p型ウェル122の上部であって、第3ゲート電極127における両側部の下側及びその両側方の領域には、n型のエクステンション領域148が形成されている。また、p型ウェル122の上部における各エクステンション領域148の外側の領域には、該エクステンション領域148よりも接合深さが深く且つ高濃度のソース領域103及びドレイン領域105が形成されている。 An n-type extension region 148 is formed in the upper portion of the p-type well 122 and below and on both sides of the third gate electrode 127. A source region 103 and a drain region 105 having a junction depth deeper than that of the extension region 148 and having a high concentration are formed in the region outside each extension region 148 in the upper part of the p-type well 122.
 さらに、第3ゲート電極127、ソース領域103及びドレイン領域105の各上部には、Ni等からなるシリサイド層112がそれぞれ形成されている。 Further, a silicide layer 112 made of Ni or the like is formed on each of the third gate electrode 127, the source region 103, and the drain region 105, respectively.
 なお、微細トランジスタ121においても、図示しないPMISトランジスタは、図1に示すNMISトランジスタのソース領域103、ドレイン領域105及びエクステンション領域148の各導電型をp型としている。 In the fine transistor 121 as well, the PMIS transistor (not shown) has the p-type conductivity type of the source region 103, drain region 105, and extension region 148 of the NMIS transistor shown in FIG.
 このように、本実施形態に係る高耐圧トランジスタ120は、ゲート長方向の幅が比較的に大きい第1ゲート電極125と比較的に小さい第2ゲート電極126とを並行に形成することにより、第1ゲート電極125と第2ゲート電極126との間に形成されたLDD低濃度領域135への不純物の注入量を、後述するように、レジストマスクを用いることなく自己整合的に減らすことができる。その結果、マスク合わせが不要となるため、サステイン耐圧のばらつきがなく、且つデバイス面積の増大と工程の増加によるコストの増大を抑制することができる。 As described above, the high breakdown voltage transistor 120 according to the present embodiment includes the first gate electrode 125 having a relatively large width in the gate length direction and the second gate electrode 126 having a relatively small width in parallel. As will be described later, the amount of impurities implanted into the LDD low concentration region 135 formed between the first gate electrode 125 and the second gate electrode 126 can be reduced in a self-aligned manner without using a resist mask. As a result, since mask alignment is not required, there is no variation in sustain breakdown voltage, and an increase in cost due to an increase in device area and an increase in processes can be suppressed.
 また、第1ゲート電極125と第2ゲート電極126との間のLDD低濃度領域135の不純物濃度が低いため、第1ゲート電極125の端部では電界が緩やかな注入プロファイルを実現できる。このため、インパクトイオン化率を低減できるので、基板リーク電流の増加による基板電位の上昇に伴うサステイン耐圧の低下を改善することができる。 Also, since the impurity concentration of the LDD low concentration region 135 between the first gate electrode 125 and the second gate electrode 126 is low, an injection profile with a gentle electric field can be realized at the end of the first gate electrode 125. For this reason, since the impact ionization rate can be reduced, it is possible to improve the decrease in the sustain breakdown voltage due to the increase in the substrate potential due to the increase in the substrate leakage current.
 また、第1ゲート電極125におけるソース領域103とLDD低濃度領域135との間の実効チャネル長を広げることができるため、ショートチャネル効果の影響を低減できる。その結果、トランジスタ領域を縮小でき、小チップ化を図ることができる。 In addition, since the effective channel length between the source region 103 and the LDD low concentration region 135 in the first gate electrode 125 can be increased, the influence of the short channel effect can be reduced. As a result, the transistor region can be reduced and the chip can be reduced.
 さらに、後述するように、第2ゲート電極126に適当な電位を与えることにより、外部からLDD中濃度領域134及びドレイン領域105の空乏層の幅、抵抗及び電界をそれぞれ調整することができる。このため、回路設計の自由度が高く、サステイン耐圧の向上に加えてホットキャリアが流れる方向と位置とを変更できるので、ホットキャリアの寿命の劣化を改善することができる。 Further, as will be described later, by applying an appropriate potential to the second gate electrode 126, the width, resistance, and electric field of the depletion layers of the LDD medium concentration region 134 and the drain region 105 can be adjusted from the outside. For this reason, the degree of freedom in circuit design is high, and in addition to the improvement of the sustain breakdown voltage, the direction and position of hot carriers can be changed, so that the deterioration of the hot carrier life can be improved.
 また、通常のMISトランジスタにおける拡散方法から変更がなく、構造が簡単であり、微細トランジスタ121等の低電圧駆動のロジックコアトランジスタとの混載が容易である。 Further, there is no change from the diffusion method in a normal MIS transistor, the structure is simple, and it is easy to mix with a low-voltage driven logic core transistor such as the fine transistor 121.
 (製造方法)
 以下、前記のように構成された高耐圧トランジスタ120及び微細トランジスタ121の製造方法について図2~図12を参照しながら説明する。
(Production method)
Hereinafter, a method of manufacturing the high breakdown voltage transistor 120 and the fine transistor 121 configured as described above will be described with reference to FIGS.
 まず、図2に示すように、Siからなる半導体基板101の上部に、300nm~400nm程度の深さを持つSTIからなる素子分離107を形成する。続いて、半導体基板101における高耐圧トランジスタ120のNMIS領域には、イオンエネルギー(加速エネルギー)が180keV~230keVで、ドーズ量が1×1013atom/cm~5×1013atom/cm程度のホウ素(B)をイオン注入することにより、p型ウェル102を形成する。一方、半導体基板101における図示しないPMIS領域には、イオンエネルギーが350keV~450keVで、ドーズ量が2×1012atom/cm~8×1012atom/cm程度の燐(P)をイオン注入することにより、n型ウェルを形成する。また、図示はしないが、NMIS及びPMISの各高耐圧トランジスタの閾値電圧を決定するための、イオン注入をそれぞれ行う。 First, as shown in FIG. 2, an element isolation 107 made of STI having a depth of about 300 nm to 400 nm is formed on a semiconductor substrate 101 made of Si. Subsequently, in the NMIS region of the high breakdown voltage transistor 120 in the semiconductor substrate 101, ion energy (acceleration energy) is 180 keV to 230 keV, and a dose amount is about 1 × 10 13 atoms / cm 2 to 5 × 10 13 atoms / cm 2. P-type well 102 is formed by ion implantation of boron (B). On the other hand, phosphorus (P) having an ion energy of 350 keV to 450 keV and a dose of about 2 × 10 12 atoms / cm 2 to 8 × 10 12 atoms / cm 2 is ion-implanted into the PMIS region (not shown) of the semiconductor substrate 101. As a result, an n-type well is formed. Although not shown, ion implantation is performed to determine threshold voltages of the NMIS and PMIS high voltage transistors.
 続いて、微細トランジスタ121のNMIS領域に、イオンエネルギーが180keV~230keVで、ドーズ量が1×1013atom/cm~5×1013atom/cm程度のホウ素(B)をイオン注入することにより、p型ウェル122を形成する。一方、半導体基板101における図示しないPMIS領域には、イオンエネルギーが350keV~450keVで、ドーズ量が0.5×1013atom/cm~2×1013atom/cm程度の燐(P)をイオン注入することにより、n型ウェルを形成する。また、図示はしないが、NMIS及びPMISの各微細トランジスタの閾値電圧を決定するための、イオン注入をそれぞれ行う。 Subsequently, boron (B) having an ion energy of 180 keV to 230 keV and a dose of about 1 × 10 13 atoms / cm 2 to 5 × 10 13 atoms / cm 2 is ion-implanted into the NMIS region of the fine transistor 121. Thus, the p-type well 122 is formed. On the other hand, in the PMIS region (not shown) of the semiconductor substrate 101, phosphorus (P) having an ion energy of 350 keV to 450 keV and a dose of about 0.5 × 10 13 atoms / cm 2 to 2 × 10 13 atoms / cm 2 is used. By ion implantation, an n-type well is formed. Although not shown, ion implantation is performed to determine threshold voltages of the NMIS and PMIS fine transistors.
 なお、高耐圧トランジスタ120と微細トランジスタ121の各ウェル注入及び閾値注入の順序は、特に問われない。 Note that the order of the well injection and the threshold injection of the high voltage transistor 120 and the fine transistor 121 is not particularly limited.
 次に、図3に示すように、電源回路等に使用される高耐圧トランジスタ120の比較的に厚膜のゲート絶縁膜108として、半導体基板101上の全面に膜厚が15nm~20nm程度のSiO膜を形成する。このとき、SiO膜は、基板酸化(熱酸化)法による酸化膜とLP-CVD(Low Pressure-Chemical Vapor Deposition)膜等との積層膜とすることにより、素子分離(STI)107の端部によるストレス等を緩和することができる。また、ロジックトランジスタ又はSRAM(Static Random Access Memory)トランジスタに使用される微細トランジスタ121の薄膜ゲート絶縁膜124は、一旦形成された厚膜のゲート絶縁膜108を酸化膜ウェットエッチによって除去し、その後、p型ウェル122及び図示しないn型ウェルの上に、薄膜基板酸化法により膜厚が2nm~3nm程度となるように形成する。 Next, as shown in FIG. 3, as the relatively thick gate insulating film 108 of the high breakdown voltage transistor 120 used in the power supply circuit or the like, the SiO 2 having a film thickness of about 15 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101. Two films are formed. At this time, the SiO 2 film is a laminated film of an oxide film by a substrate oxidation (thermal oxidation) method and a LP-CVD (Low Pressure-Chemical Vapor Deposition) film or the like, so that an end portion of the element isolation (STI) 107 is obtained. It is possible to relieve stress caused by. Further, the thin gate insulating film 124 of the fine transistor 121 used in the logic transistor or SRAM (Static Random Access Memory) transistor is formed by removing the thick gate insulating film 108 once formed by an oxide film wet etch, On the p-type well 122 and an n-type well (not shown), it is formed by a thin film substrate oxidation method so that the film thickness becomes about 2 nm to 3 nm.
 次に、図4に示すように、半導体基板101上の全面に、膜厚が100nm~150nm程度のノンドープのポリシリコン膜109を堆積する。その後、堆積したポリシリコン膜109における、高耐圧トランジスタ120のNMIS領域及びPMIS領域と微細トランジスタ121のNMIS領域及びPMIS領域とに、それぞれレジストマスクを用いて適宜イオン注入を行う。これにより、ゲート絶縁膜108及び薄膜ゲート絶縁膜124とポリシリコン膜109との界面における空乏化の抑制及びトランジスタの閾値電圧の調整を行い、CMIS構造に必要なポリシリコンゲートを形成する。 Next, as shown in FIG. 4, a non-doped polysilicon film 109 having a thickness of about 100 nm to 150 nm is deposited on the entire surface of the semiconductor substrate 101. Thereafter, ion implantation is appropriately performed on the NMIS region and PMIS region of the high breakdown voltage transistor 120 and the NMIS region and PMIS region of the fine transistor 121 in the deposited polysilicon film 109 using a resist mask. This suppresses depletion at the interface between the gate insulating film 108 and the thin gate insulating film 124 and the polysilicon film 109 and adjusts the threshold voltage of the transistor, thereby forming a polysilicon gate necessary for the CMIS structure.
 次に、図5に示すように、レジストマスク(図示せず)を用いてゲートパターンを形成する。このとき、高耐圧トランジスタ120のNMIS領域においては、駆動能力及び閾値電圧を制御するトランジスタゲート電極となる第1ゲート電極125、及び該第1ゲート電極125のドレイン電極105側に所定の間隔をおいて配置され、ドレイン電極105の制御用のゲート電極となる第2ゲート電極126を同時に形成する。また、第1ゲート電極125と第2ゲート電極126とは、1つの活性領域であるp型ウェル102内に配置され、該p型ウェル102内では、第1ゲート電極125と第2ゲート電極126とは互いに並行に形成されることを特徴とする。同様に、高耐圧トランジスタ120の図示しないPMIS領域においても、第1ゲート電極125と第2ゲート電極126とは、1つの活性領域であるn型ウェル内に配置され、該n型ウェル内では第1ゲート電極125と第2ゲート電極126とは互いに並行に形成される。 Next, as shown in FIG. 5, a gate pattern is formed using a resist mask (not shown). At this time, in the NMIS region of the high breakdown voltage transistor 120, a predetermined interval is provided on the first gate electrode 125 serving as a transistor gate electrode for controlling the driving capability and the threshold voltage, and on the drain electrode 105 side of the first gate electrode 125. The second gate electrode 126 is formed at the same time, and serves as a gate electrode for controlling the drain electrode 105. The first gate electrode 125 and the second gate electrode 126 are disposed in the p-type well 102 that is one active region. In the p-type well 102, the first gate electrode 125 and the second gate electrode 126 are disposed. Are formed in parallel to each other. Similarly, also in the PMIS region (not shown) of the high breakdown voltage transistor 120, the first gate electrode 125 and the second gate electrode 126 are disposed in an n-type well which is one active region, and the first gate electrode 125 and the second gate electrode 126 are within the n-type well. The first gate electrode 125 and the second gate electrode 126 are formed in parallel to each other.
 これと同時に、高耐圧トランジスタ120と同一のレジストマスクにより、微細トランジスタ121のNMIS領域に、高速動作が可能なロジック回路を構成するための微細トランジスタ用ゲート電極である第3ゲート電極127を形成する。 At the same time, a third gate electrode 127 which is a gate electrode for a fine transistor for forming a logic circuit capable of high-speed operation is formed in the NMIS region of the fine transistor 121 by using the same resist mask as that of the high voltage transistor 120. .
 なお、第1ゲート電極125と第2ゲート電極126との間隔は、後工程の高耐圧トランジスタ120におけるLDD注入工程で決められる値であり、80nm~200nm程度とする。 Note that the distance between the first gate electrode 125 and the second gate electrode 126 is a value determined in the LDD implantation step in the high-voltage transistor 120 in a later step, and is about 80 nm to 200 nm.
 このように、高耐圧トランジスタ120の、例えばNMIS領域に、互いに並行な第1ゲート電極125及び第2ゲート電極126を形成することにより、第1ゲート電極125のドレイン形成領域が2つに分離される。これにより、p型ウェル102には、第1ゲート電極125の両側のソース形成領域128及び第1ドレイン形成領域129と、第2ゲート電極126に対して第1ドレイン形成領域129と反対側に位置する第2ドレイン形成領域130の3つの拡散領域が形成される。これは、図示しないPMIS領域においても同様である。 Thus, by forming the first gate electrode 125 and the second gate electrode 126 parallel to each other in the NMIS region of the high voltage transistor 120, for example, the drain formation region of the first gate electrode 125 is separated into two. The Accordingly, the p-type well 102 is positioned on the opposite side of the first drain formation region 129 with respect to the source formation region 128 and the first drain formation region 129 on both sides of the first gate electrode 125 and the second gate electrode 126. Three diffusion regions of the second drain formation region 130 to be formed are formed. The same applies to the PMIS region (not shown).
 次に、図6に示すように、リソグラフィ法により、微細トランジスタ121のNMIS領域及びPMIS領域に、レジストマスク131を形成する。その後、高耐圧トランジスタ120のNMIS領域及びPMIS領域に、中濃度で比較的に深い接合面を形成するLDD注入である高耐圧LDD注入132を実施する。 Next, as shown in FIG. 6, a resist mask 131 is formed in the NMIS region and the PMIS region of the fine transistor 121 by lithography. Thereafter, a high breakdown voltage LDD implantation 132, which is an LDD implantation for forming a relatively deep junction surface at a medium concentration in the NMIS region and the PMIS region of the high breakdown voltage transistor 120, is performed.
 このとき、LDD注入のチルト角133を高角度(大きい角度)とし、且つ第1ゲート電極125及び第2ゲート電極126に対して4方向からそれぞれ1回ずつの4回のイオン注入を行う。例えば、NMIS領域には、イオンエネルギーが40keV~60keVで、ドーズ量が0.7×1012atom/cm~2×1012atom/cm程度の燐(P)をそれぞれチルト角が35°~65°程度で4回注入する。また、PMIS領域には、イオンエネルギーが12keV~20keVで、ドーズ量が0.7×1012atom/cm~2×1012atom/cm程度のホウ素(B)をそれぞれチルト角が35°~65°程度で4回注入する。 At this time, the LDD implantation tilt angle 133 is set to a high angle (large angle), and the first gate electrode 125 and the second gate electrode 126 are ion-implanted four times, one each from four directions. For example, in the NMIS region, phosphorus (P) having an ion energy of 40 keV to 60 keV and a dose of about 0.7 × 10 12 atoms / cm 2 to 2 × 10 12 atoms / cm 2 is tilted by 35 °. Inject 4 times at ~ 65 °. In the PMIS region, boron (B) having an ion energy of 12 keV to 20 keV and a dose of about 0.7 × 10 12 atoms / cm 2 to 2 × 10 12 atoms / cm 2 is tilted at a tilt angle of 35 °. Inject 4 times at ~ 65 °.
 このように、互いに近接して配置された第1ゲート電極125及び第2ゲート電極126をマスクとして、4方向から4回のイオン注入を行うことにより、p型ウェル102の上部における第1ゲート電極125及び第2ゲート電極126のそれぞれ外側に位置するソース形成領域129及び第2ドレイン形成領域130には、3回から4回分のLDD注入が実施されて、LDD中濃度領域134が形成される。一方、互いに隣接する第1ゲート電極125と第2ゲート電極126との間に位置する第1ドレイン形成領域129には、各ゲート電極125、126がLDD注入の影(マスク)となるため、2回分のLDD注入が実施される結果、LDD低濃度領域135が形成される。該LDD低濃度領域135には、2回分のイオンが注入されることから、例えば、NMIS領域には、合計で燐(P)が1.4×1012atom/cm~4×1012atom/cm程度にイオン注入されることになる。また、PMIS領域には、ホウ素(B)が1.4×1012atom/cm~4×1012atom/cm程度がイオン注入されることになる。 In this way, by performing ion implantation four times from four directions using the first gate electrode 125 and the second gate electrode 126 arranged close to each other as a mask, the first gate electrode on the upper portion of the p-type well 102 In the source formation region 129 and the second drain formation region 130 located on the outer sides of the 125 and the second gate electrode 126, the LDD implantation for 3 to 4 times is performed to form the LDD medium concentration region 134. On the other hand, in the first drain formation region 129 located between the first gate electrode 125 and the second gate electrode 126 adjacent to each other, the gate electrodes 125 and 126 serve as shadows (masks) for LDD implantation. As a result of performing the LDD injection for one time, the LDD low concentration region 135 is formed. Since the LDD low-concentration region 135 is implanted twice with ions, for example, in the NMIS region, a total of phosphorus (P) is 1.4 × 10 12 atoms / cm 2 to 4 × 10 12 atoms. Ions are implanted to about / cm 2 . In the PMIS region, boron (B) is ion-implanted at about 1.4 × 10 12 atoms / cm 2 to 4 × 10 12 atoms / cm 2 .
 これらLDD低濃度領域135とLDD中濃度領域134とは、2つの並行するゲート電極125、126により同時に形成され、不純物イオンが注入される領域がゲート電極間隔136によって決定される。従って、LDD中濃度領域134とLDD低濃度領域135とは、レジストマスクのアライメントに依存することなく、高精度に形成できるという効果を有する。 The LDD low concentration region 135 and the LDD medium concentration region 134 are simultaneously formed by two parallel gate electrodes 125 and 126, and the region into which impurity ions are implanted is determined by the gate electrode interval 136. Therefore, the LDD medium concentration region 134 and the LDD low concentration region 135 have an effect that they can be formed with high accuracy without depending on the alignment of the resist mask.
 また、第1ゲート電極125のソース形成領域128に形成されたLDD中濃度領域134と第1ゲート電極125との重なり幅である第1オーバラップ幅137は、50nm~150nm程度と比較的に大きい。これに対し、LDD低濃度領域135は、LDD注入が各ゲート電極125、126に並行な方向に限定されるため、第1ゲート電極125とLDD低濃度領域135との重なり幅である第2オーバラップ幅138は20nm~50nm程度と重なり幅が小さい。これにより、第1ゲート電極125のソース形成領域128と第1ドレイン形成領域129との間の実効チャネル長139を拡大することができる。これにより、ショートチャネル効果の影響を低減できるため、トランジスタ領域を縮小でき、デバイス面積の縮小を図ることができる。従って、マスク合わせを必要としないことから、サステイン耐圧のばらつきをなくすことができる上に、デバイス面積の縮小を図れる共に、工程の増加によるコストの増大を抑制することができる。 The first overlap width 137, which is the overlap width between the LDD medium concentration region 134 formed in the source formation region 128 of the first gate electrode 125 and the first gate electrode 125, is relatively large, about 50 nm to 150 nm. . On the other hand, in the LDD low concentration region 135, since the LDD implantation is limited to the direction parallel to the gate electrodes 125 and 126, the second over-range which is the overlapping width of the first gate electrode 125 and the LDD low concentration region 135 is obtained. The overlap width 138 is about 20 nm to 50 nm, and the overlap width is small. Accordingly, the effective channel length 139 between the source formation region 128 and the first drain formation region 129 of the first gate electrode 125 can be increased. Thus, the influence of the short channel effect can be reduced, so that the transistor region can be reduced and the device area can be reduced. Therefore, since mask alignment is not required, it is possible to eliminate variations in the sustain breakdown voltage, and it is possible to reduce the device area and to suppress an increase in cost due to an increase in processes.
 また、第1ドレイン形成領域129は、注入濃度が低く、電界の変化が緩やかな注入プロファイルを形成し、インパクトイオン化率を低減できる。このため、基板リーク電流の増加による基板電位の上昇に伴うサステイン耐圧の低下を改善することができる。 Also, the first drain formation region 129 forms an implantation profile having a low implantation concentration and a gentle change in electric field, and can reduce the impact ionization rate. For this reason, it is possible to improve the decrease in the sustain withstand voltage accompanying the increase in the substrate potential due to the increase in the substrate leakage current.
 さらに、高耐圧LDD注入132を行った後に熱処理を加えることにより、緩やかな注入プロファイルを形成できる。このため、サステイン耐圧の改善効果をより一層高めることができる。熱処理条件は、不純物の注入条件にもよるが、低温且つ長時間の加熱条件の場合は、例えば温度が500℃~750℃で60分~120分程度の熱処理を用いることができる。一方、高温且つ短時間の加熱条件の場合は、例えば温度が750℃~1000℃でスパイク熱処理~60分の熱処理を用いることができる。本熱処理工程は、微細トランジスタ121におけるトランジスタ特性に大きく関わるエクステンション注入を行う前に実施されるため、微細トランジスタ121の特性劣化は無視できる。 Furthermore, a gentle implantation profile can be formed by performing a heat treatment after performing the high breakdown voltage LDD implantation 132. For this reason, the effect of improving the sustain breakdown voltage can be further enhanced. The heat treatment conditions depend on the impurity implantation conditions, but in the case of low temperature and long time heating conditions, for example, heat treatment at a temperature of 500 ° C. to 750 ° C. for about 60 minutes to 120 minutes can be used. On the other hand, in the case of high-temperature and short-time heating conditions, for example, a spike heat treatment at a temperature of 750 ° C. to 1000 ° C. for 60 minutes can be used. Since this heat treatment step is performed before the extension implantation that greatly affects the transistor characteristics in the fine transistor 121 is performed, the characteristic deterioration of the fine transistor 121 can be ignored.
 また、第2ゲート電極126の第1ドレイン形成領域129と第2ドレイン形成領域130については、LDD中濃度領域134と第2ゲート電極126との重なり幅である第3オーバラップ幅140は50nm~150nm程度と大きい。一方、LDD低濃度領域135と第2ゲート電極126との重なり幅である第4オーバラップ幅141は20nm~50nm程度である。また、LDD注入が各ゲート電極125、126に対して並行な方向に限定されているため、LDD中濃度領域134とLDD低濃度領域135との重なり幅は小さいが、高耐圧LDD注入132を行った後に熱処理を加えるため、第2ゲート電極幅142を小さくすることにより、LDD中濃度領域134とLDD低濃度領域135とを第2ゲート電極126の下側で接触させることが可能となる。図6は、熱処理を加えた状態を示している。 For the first drain formation region 129 and the second drain formation region 130 of the second gate electrode 126, the third overlap width 140, which is the overlap width between the LDD medium concentration region 134 and the second gate electrode 126, is 50 nm to 50 nm. As large as about 150 nm. On the other hand, the fourth overlap width 141, which is the overlap width between the LDD low concentration region 135 and the second gate electrode 126, is about 20 nm to 50 nm. Further, since the LDD implantation is limited to the direction parallel to the gate electrodes 125 and 126, the overlap width between the LDD medium concentration region 134 and the LDD low concentration region 135 is small, but the high breakdown voltage LDD implantation 132 is performed. Since the second gate electrode width 142 is reduced after the heat treatment is performed, the LDD medium concentration region 134 and the LDD low concentration region 135 can be brought into contact with each other below the second gate electrode 126. FIG. 6 shows a state where heat treatment is applied.
 ここで、所定のLDD低濃度領域135が形成されるための条件として、図6に示すゲート電極間隔136、ゲート電極高さ143、第2ゲート電極幅142、チルト角133及びLDD注入深さ144の関係について整理する。 Here, as conditions for forming the predetermined LDD low concentration region 135, the gate electrode interval 136, the gate electrode height 143, the second gate electrode width 142, the tilt angle 133, and the LDD implantation depth 144 shown in FIG. Organize the relationship.
 図7(a)及び図7(b)に、高耐圧LDD注入132を行った後に、前述した熱処理による注入イオンの熱拡散距離が30nm程度であると想定して、それぞれ許容できるチルト角133とゲート電極間隔136とを示す。 7A and 7B, assuming that the thermal diffusion distance of implanted ions by the heat treatment described above is about 30 nm after performing the high breakdown voltage LDD implantation 132, an allowable tilt angle 133 and Gate electrode spacing 136 is shown.
 例えば、図7(a)において、ゲート電極高さ143を120nmとし、熱処理後のLDD注入深さ144を80nmとし、且つ、第2ゲート電極幅142を150nmとした場合には、チルト角133を51°以下とすれば、第2ゲート電極126の横方向に対してもLDD注入による注入イオンが突き抜けることなく、第1ドレイン形成領域129に不純物イオンが注入される。従って、図7(b)からは、この条件でのゲート電極間隔136は、88nm以下に設定すれば良いことが分かる。また、図7(b)から、第2ゲート電極幅142を200nmとした場合には、ゲート電極間隔136は117nm以下に設定すれば良いことが分かる。 For example, in FIG. 7A, when the gate electrode height 143 is 120 nm, the LDD implantation depth 144 after heat treatment is 80 nm, and the second gate electrode width 142 is 150 nm, the tilt angle 133 is If the angle is 51 ° or less, impurity ions are implanted into the first drain formation region 129 without penetrating implanted ions by LDD implantation in the lateral direction of the second gate electrode 126. Therefore, FIG. 7B shows that the gate electrode interval 136 under this condition may be set to 88 nm or less. Further, FIG. 7B shows that when the second gate electrode width 142 is 200 nm, the gate electrode interval 136 may be set to 117 nm or less.
 図8(a)に高耐圧トランジスタ120のNMIS領域の平面構成を示す。また、図8(b)には、図8(a)の構成を90°回転したトランジスタも併記している。いずれのトランジスタ配置においても、LDD注入のチルト角133を比較的に高角度とし、且つ、ゲート電極125、126に対して4方向のイオン注入を行っている。このため、近接して配置された第1ゲート電極125及び第2ゲート電極126の外側のソース形成領域129及び第2ドレイン形成領域130には、3回から4回分のLDD注入によってLDD中濃度領域134が形成される。一方、近接して配置された第1ゲート電極125及び第2ゲート電極126の間の第1ドレイン形成領域129には、近接したゲート電極同士がLDD注入の影となるため、2回分のLDD注入となり、その結果、不純物濃度が最も低いLDD低濃度領域135が形成される。このように、本実施形態によると、トランジスタの配置方向の制約がなく、設計の自由度が高くなる。 FIG. 8A shows a planar configuration of the NMIS region of the high voltage transistor 120. FIG. 8B also shows a transistor obtained by rotating the configuration of FIG. 8A by 90 °. In any transistor arrangement, the tilt angle 133 of LDD implantation is set to a relatively high angle, and ion implantation in four directions is performed on the gate electrodes 125 and 126. For this reason, the LDD medium concentration region is formed in the source formation region 129 and the second drain formation region 130 outside the first gate electrode 125 and the second gate electrode 126 arranged in proximity by LDD implantation for three to four times. 134 is formed. On the other hand, in the first drain formation region 129 between the first gate electrode 125 and the second gate electrode 126 that are arranged close to each other, the adjacent gate electrodes are shadows of the LDD implantation, so that two LDD implantations are performed. As a result, the LDD low concentration region 135 having the lowest impurity concentration is formed. Thus, according to the present embodiment, there is no restriction on the arrangement direction of the transistors, and the degree of freedom in design is increased.
 次に、図9に示すように、LP-CVD法により、各ゲート電極125、126及び127を含む半導体基板101上の全面に、膜厚が5nm~20nm程度のTEOS(Tetra-Etyhl-Ortho-Silicate)又は窒化シリコン(SiN)等からなる絶縁膜を堆積し、堆積した絶縁膜に対して異方性のドライエッチによるエッチバックを行って、各ゲート電極125、126及び127の両側面上にそれぞれオフセットサイドウォール145を形成する。なお、このとき、図9に示すように、オフセットサイドウォール145の各上端部は必ずしも形成されていなくてもよい。続いて、リソグラフィ法により、高耐圧トランジスタ120を覆うレジストマスク146を形成し、微細トランジスタ121におけるNMIS領域の基板表面に高濃度で且つ浅い接合面となるエクステンション注入147を行って、n型のエクステンション領域148を形成する。NMIS領域のエクステンション注入条件として、イオンエネルギーが2keV~4keVで、ドーズ量が1×1015atom/cm~3×1015atom/cm程度の砒素(As)をチルト角0°程度でイオン注入する。また、PMIS領域のエクステンション注入条件として、イオンエネルギーが0.3keV~1keVで、ドーズ量が2×1014atom/cm~8×1014atom/cm程度のホウ素(B)をチルト角0°程度でイオン注入する。 Next, as shown in FIG. 9, TEOS (Tetra-Etyhl-Ortho--) having a film thickness of about 5 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101 including the gate electrodes 125, 126 and 127 by LP-CVD. (Silicate) or silicon nitride (SiN) or the like is deposited, and the deposited insulating film is etched back by anisotropic dry etching to form both sides of each gate electrode 125, 126, and 127. Offset sidewalls 145 are formed respectively. At this time, as shown in FIG. 9, each upper end portion of the offset sidewall 145 is not necessarily formed. Subsequently, a resist mask 146 that covers the high breakdown voltage transistor 120 is formed by lithography, and extension implantation 147 that forms a high-concentration and shallow junction surface is performed on the substrate surface of the NMIS region in the fine transistor 121 to form an n-type extension. Region 148 is formed. As an extension implantation condition for the NMIS region, arsenic (As) having an ion energy of 2 keV to 4 keV and a dose of about 1 × 10 15 atoms / cm 2 to 3 × 10 15 atoms / cm 2 is ionized at a tilt angle of about 0 °. inject. Further, as an extension implantation condition in the PMIS region, boron (B) having an ion energy of 0.3 keV to 1 keV and a dose of about 2 × 10 14 atoms / cm 2 to 8 × 10 14 atoms / cm 2 is tilt angle 0. Ion implantation at about °.
 次に、図10に示すように、それぞれオフセットサイドウォール145が形成された各ゲート電極125、126及び127を含む半導体基板101上の全面に、LP-CVD法によるTEOS、又はSA-CVD(Sub Atmospheric-Chemical Vapor Deposition)法によるNSG(Non-doped Silicate Glass)からなり、膜厚が10nm程度のサイドウォール下層膜149を堆積し、続いて、サイドウォール下層膜149の上に、ALD(Atomic Layer Deposition)法によるSiNからなり、膜厚が35nm~60nm程度のサイドウォール上層膜150を堆積する。続いて、サイドウォール上層膜150及びサイドウォール下層膜149に対して異方性のドライエッチによるエッチバックを行って、各ゲート電極125、126及び127の側面上に、それぞれオフセットサイドウォール145、サイドウォール下層膜149及びサイドウォール上層膜150からなるサイドウォール110を形成する。このとき、第1ゲート電極125と第2ゲート電極126との間のゲート電極間隔136が小さく、例えば88nm程度の場合には、第1ゲート電極125と第2ゲート電極126との間にサイドウォール110が埋め込まれるため、第1ゲート電極125と第2ゲート電極126との間に形成されるサイドウォール110同士は互いに接続される。 Next, as shown in FIG. 10, TEOS by LP-CVD or SA-CVD (Sub-layer) is formed on the entire surface of the semiconductor substrate 101 including the gate electrodes 125, 126 and 127 each having the offset sidewall 145 formed thereon. A sidewall underlayer film 149 made of NSG (Non-doped Silicate Glass) by an Atmospheric-Chemical Vapor Deposition method is deposited, and a thickness of about 10 nm is deposited on the sidewall underlayer film 149. A sidewall upper layer film 150 made of SiN by a Deposition method and having a film thickness of about 35 nm to 60 nm is deposited. Subsequently, the sidewall upper layer film 150 and the sidewall lower layer film 149 are etched back by anisotropic dry etching, and the offset sidewall 145 and the side wall are respectively formed on the side surfaces of the gate electrodes 125, 126, and 127. A sidewall 110 including the wall lower layer film 149 and the sidewall upper layer film 150 is formed. At this time, when the gate electrode interval 136 between the first gate electrode 125 and the second gate electrode 126 is small, for example, about 88 nm, a sidewall is formed between the first gate electrode 125 and the second gate electrode 126. Since 110 is buried, the sidewalls 110 formed between the first gate electrode 125 and the second gate electrode 126 are connected to each other.
 次に、図11に示すように、高耐圧トランジスタ120及び微細トランジスタ121のNMIS領域とPMIS領域とに、それぞれ同時にソース・ドレイン注入151を行う。NMIS領域には、例えば、イオンエネルギーが15keV~40keVで、ドーズ量が2×1015atom/cm~8×1015atom/cm程度の砒素(As)、及びイオンエネルギーが5keV~15keVで、ドーズ量が1×1015atom/cm~5×1015atom/cm程度の燐(P)のうちの少なくとも一方をイオン注入する。また、PMIS領域には、イオンエネルギーが1keV~3keVで、ドーズ量が2×1015atom/cm~8×1015atom/cm程度のホウ素(B)をイオン注入する。これにより、高耐圧トランジスタ120及び微細トランジスタ121のソース領域103及びドレイン領域105がそれぞれ形成される。このとき、図示はしないが、ソース・ドレイン注入151は、各ゲート電極125、126及び127の上部にも同時にイオン注入される。なお、NMIS領域とPMIS領域とのソース・ドレイン注入151の実施順序は、特に問われない。続いて、イオン注入で導入された各不純物を活性化するため、高温短時間のランプ加熱又はレーザ加熱により、温度が1000℃以上の活性化熱処理を行う。 Next, as shown in FIG. 11, source / drain implantation 151 is simultaneously performed in the NMIS region and the PMIS region of the high voltage transistor 120 and the fine transistor 121, respectively. In the NMIS region, for example, arsenic (As) having an ion energy of 15 keV to 40 keV, a dose of about 2 × 10 15 atoms / cm 2 to 8 × 10 15 atoms / cm 2 , and an ion energy of 5 keV to 15 keV. At least one of phosphorus (P) having a dose of about 1 × 10 15 atoms / cm 2 to 5 × 10 15 atoms / cm 2 is ion-implanted. Further, boron (B) having an ion energy of 1 keV to 3 keV and a dose of about 2 × 10 15 atoms / cm 2 to 8 × 10 15 atoms / cm 2 is ion-implanted into the PMIS region. Thereby, the source region 103 and the drain region 105 of the high breakdown voltage transistor 120 and the fine transistor 121 are formed, respectively. At this time, although not shown, the source / drain implantation 151 is simultaneously implanted into the upper portions of the gate electrodes 125, 126 and 127. The order of performing the source / drain implantation 151 in the NMIS region and the PMIS region is not particularly limited. Subsequently, in order to activate each impurity introduced by ion implantation, activation heat treatment at a temperature of 1000 ° C. or higher is performed by high-temperature, short-time lamp heating or laser heating.
 次に、図12に示すように、スパッタ法等により、ソース領域103及びドレイン領域105と、各ゲート電極125、126及び127とを含む半導体基板101上の全面に、膜厚が5nm~20nm程度の高融点金属であるニッケル(Ni)膜を堆積する。その後、堆積したNi膜をシリサイド化する熱処理を加える。続いて、塩酸等により、シリサイド化されない未反応のNi膜をウェットエッチにより除去する。その後、熱処理を適宜行うことにより、半導体基板101の第1ドレイン形成領域129を除く、第1ゲート電極125、第2ゲート電極126及び第3ゲート電極127の各上部、並びにソース領域103及びドレイン領域105の各上部に、NiSiからなるシリサイド層112をそれぞれ形成する。 Next, as shown in FIG. 12, a film thickness of about 5 nm to 20 nm is formed on the entire surface of the semiconductor substrate 101 including the source region 103 and the drain region 105 and the gate electrodes 125, 126, and 127 by sputtering or the like. A nickel (Ni) film, which is a high melting point metal, is deposited. Thereafter, a heat treatment for siliciding the deposited Ni film is applied. Subsequently, the unreacted Ni film that is not silicided is removed by wet etching using hydrochloric acid or the like. Thereafter, heat treatment is appropriately performed to remove the first drain formation region 129 of the semiconductor substrate 101, the upper portions of the first gate electrode 125, the second gate electrode 126, and the third gate electrode 127, and the source region 103 and the drain region. A silicide layer 112 made of NiSi is formed on each upper portion of 105.
 以上のように、本実施形態に係る半導体装置の製造方法によると、LDD中濃度領域134、LDD低濃度領域135、ソース領域103及びドレイン領域105、並びに各シリサイド層112を、全て自己整合的に形成することができる。従って、レジストマスクに依存せず、アライメントずれが生じないことから、サステイン耐圧のばらつきが抑制された、高精度なドレイン拡張型のトランジスタを実現することができる。 As described above, according to the manufacturing method of the semiconductor device according to the present embodiment, the LDD medium concentration region 134, the LDD low concentration region 135, the source region 103 and the drain region 105, and each silicide layer 112 are all self-aligned. Can be formed. Therefore, since there is no alignment shift without depending on the resist mask, a highly accurate drain expansion type transistor with suppressed variation in sustain breakdown voltage can be realized.
 (一実施形態の第1変形例)
 一実施形態の第1変形例に係る半導体装置について図13を参照しながら説明する。
(First Modification of One Embodiment)
A semiconductor device according to a first modification of one embodiment will be described with reference to FIG.
 図13に示すように、ソース領域103を共有した、互いに隣接する2つのトランジスタを差動回路として用いるペア型トランジスタであって、ソース領域103を中心に左右反転したペア型トランジスタ152Aとペア型トランジスタ152Bとがそれぞれ配置されている。ここで、図13において、図1と同一の構成部材には同一の符号を付すことにより、説明を省略する。 As shown in FIG. 13, a pair transistor that uses two adjacent transistors that share a source region 103 as a differential circuit, and is paired with a pair transistor 152A and a pair transistor that are inverted horizontally around the source region 103. 152B are arranged. Here, in FIG. 13, the same components as those in FIG.
 ペア型トランジスタ152A及び152Bは、本実施形態に係る高耐圧トランジスタ120からなり、従って、上述したように、マスクのアライメントずれが生じないため、動作特性のばらつきの増大によるデバイスの性能劣化が生じない。 The pair type transistors 152A and 152B are composed of the high breakdown voltage transistor 120 according to the present embodiment. Therefore, as described above, mask misalignment does not occur, and thus device performance does not deteriorate due to increased variation in operating characteristics. .
 (一実施形態の第2変形例)
 また、図14の第2変形例に示すように、ドレイン領域105を共有した、互いに隣接する2つのトランジスタを差動回路として用いるペア型トランジスタ150A及び150Bについても同様にマスクのアライメントずれが生じないため、動作特性のばらつきの増大によるデバイスの性能劣化が生じない。
(Second Modification of One Embodiment)
Further, as shown in the second modified example of FIG. 14, the mask misalignment does not occur in the same way also in the pair type transistors 150A and 150B using the two adjacent transistors sharing the drain region 105 as the differential circuit. Therefore, the device performance does not deteriorate due to an increase in variation in operating characteristics.
 (動作説明)
 次に、図15~図18を用いて、第1ゲート電極125及び第2ゲート電極126に印加される4通りの電位によるチャネルの形成と空乏層の広がりについて説明する。
(Description of operation)
Next, with reference to FIGS. 15 to 18, channel formation and depletion layer spreading due to four potentials applied to the first gate electrode 125 and the second gate electrode 126 will be described.
 まず、図15に示すように、第1ゲート電極125と第2ゲート電極126に共にハイ(Hi)電圧が印加された場合は、p型ウェル102における第1ゲート電極125のゲート絶縁膜108の直下の領域には反転層によるチャネル102aが形成される。このとき、ドレイン領域105にもハイ電圧が印加されていることから、第2ゲート電極126及びドレイン領域105には、バイアス電圧が実質的に印加されていない。このため、高耐圧トランジスタ120には、あたかも第2ゲート電極126が設けられていない、ドレイン抵抗が付加されたトランジスタのような動作を行わせることができる。 First, as shown in FIG. 15, when a high (Hi) voltage is applied to both the first gate electrode 125 and the second gate electrode 126, the gate insulating film 108 of the first gate electrode 125 in the p-type well 102. A channel 102a made of an inversion layer is formed immediately below the region. At this time, since the high voltage is also applied to the drain region 105, the bias voltage is not substantially applied to the second gate electrode 126 and the drain region 105. For this reason, the high breakdown voltage transistor 120 can be operated like a transistor with a drain resistance added, in which the second gate electrode 126 is not provided.
 次に、図16に示すように、第1ゲート電極125にハイ電圧が印加され、第2ゲート電極126にロウ(Low)電圧が印加された場合は、p型ウェル102における第1ゲート電極125のゲート絶縁膜108の直下の領域には、反転層によるチャネル102aが形成される。一方、ドレイン領域105には、ハイ電圧のバイアスが印加されている。NMISトランジスタの場合は、第2ゲート電極126の下のLDD中濃度領域134の不純物はn型キャリアの電子である。従って、発生した電界により第2ゲート電極126のゲート絶縁膜108の表面の電子がドレイン領域105の方向に移動する。このため、ゲート絶縁膜108の表面に空乏層157が形成されることから、第2ゲート電極126付近の電流パスが細くなり、その結果、ドレイン抵抗を増大させることができる。 Next, as shown in FIG. 16, when a high voltage is applied to the first gate electrode 125 and a low voltage is applied to the second gate electrode 126, the first gate electrode 125 in the p-type well 102. In a region immediately below the gate insulating film 108, a channel 102a of an inversion layer is formed. On the other hand, a high voltage bias is applied to the drain region 105. In the case of an NMIS transistor, the impurities in the LDD medium concentration region 134 under the second gate electrode 126 are electrons of n-type carriers. Accordingly, electrons generated on the surface of the gate insulating film 108 of the second gate electrode 126 move toward the drain region 105 by the generated electric field. Therefore, since the depletion layer 157 is formed on the surface of the gate insulating film 108, the current path near the second gate electrode 126 is narrowed, and as a result, the drain resistance can be increased.
 次に、図17に示すように、第1ゲート電極125にロウ電圧が印加され、第2ゲート電極126にハイ電圧が印加された場合は、p型ウェル102における第1ゲート電極125のゲート絶縁膜108の直下の領域には、チャネル102aが形成されておらず、オフ状態となっている。一方、ドレイン領域105にもハイ電圧が印加されているため、第2ゲート電極126及びドレイン領域105には、バイアス電圧が実質的に印加されていない。このため、高耐圧トランジスタ120には、あたかも第2ゲート電極が設けられていない、ドレイン抵抗が付加されたトランジスタのような動作を行わせることができる。 Next, as shown in FIG. 17, when a low voltage is applied to the first gate electrode 125 and a high voltage is applied to the second gate electrode 126, the gate insulation of the first gate electrode 125 in the p-type well 102 is performed. In a region immediately below the film 108, the channel 102a is not formed and is in an off state. On the other hand, since a high voltage is also applied to the drain region 105, a bias voltage is not substantially applied to the second gate electrode 126 and the drain region 105. For this reason, the high breakdown voltage transistor 120 can be operated like a transistor with a drain resistance added, in which the second gate electrode is not provided.
 次に、図18に示すように、第1ゲート電極125及び第2ゲート電極126に共にロウ電圧が印加された場合は、p型ウェル102における第1ゲート電極125のゲート絶縁膜108の直下の領域には、チャネル102aが形成されておらず、オフ状態となっている。一方、ドレイン領域105にはハイ電圧が印加されているため、第2ゲート電極126及びドレイン領域105には、バイアス電圧が印加されている。NMISトランジスタの場合には、第2ゲート電極126の下のLDD中濃度領域134の不純物はn型キャリアの電子である。従って、発生した電界により第2ゲート電極126のゲート絶縁膜108の表面の電子がドレイン領域105の方向に移動する。このため、ゲート絶縁膜108の表面に空乏層157が形成されて、第2ゲート電極126付近の電流パスが細くなる。その結果、ドレイン抵抗を増大させることができるので、オフリーク電流も低減することができる。 Next, as shown in FIG. 18, when a low voltage is applied to both the first gate electrode 125 and the second gate electrode 126, the p-type well 102 is directly under the gate insulating film 108 of the first gate electrode 125. In the region, the channel 102a is not formed and is in an off state. On the other hand, since a high voltage is applied to the drain region 105, a bias voltage is applied to the second gate electrode 126 and the drain region 105. In the case of the NMIS transistor, the impurities in the LDD medium concentration region 134 under the second gate electrode 126 are electrons of n-type carriers. Accordingly, electrons generated on the surface of the gate insulating film 108 of the second gate electrode 126 move toward the drain region 105 by the generated electric field. Therefore, a depletion layer 157 is formed on the surface of the gate insulating film 108, and the current path near the second gate electrode 126 is narrowed. As a result, drain resistance can be increased, and off-leakage current can also be reduced.
 このように、第2ゲート電極126に所定の電位を付与することにより、外部からLDD中濃度領域134及びLDD低濃度領域135を含むドレイン領域105の空乏層の幅、抵抗値及び電界を調整できるため、回路設計の自由度が高くなると共に、LDD中濃度領域134、LDD低濃度領域135及びドレイン領域105の空乏層157の制御が可能となる。これにより、サステイン耐圧の向上に加え、ホットキャリアが流れる方向と位置とを調整できるので、ホットキャリアの寿命の劣化を改善することができる。 Thus, by applying a predetermined potential to the second gate electrode 126, the width, resistance value, and electric field of the depletion layer of the drain region 105 including the LDD medium concentration region 134 and the LDD low concentration region 135 can be adjusted from the outside. Therefore, the degree of freedom in circuit design is increased, and the depletion layer 157 in the LDD medium concentration region 134, the LDD low concentration region 135, and the drain region 105 can be controlled. Thereby, in addition to the improvement of the sustain breakdown voltage, it is possible to adjust the direction and position in which the hot carriers flow, so that it is possible to improve the deterioration of the hot carrier life.
 なお、図15~図18においては、NMISトランジスタの場合について説明したが、PMISトランジスタの場合にも同様の効果を得ることができる。すなわち、PMISトランジスタの場合は、NMISトランジスタのn型不純物をp型不純物に変更し、p型不純物をn型不純物に変更することにより得られる。また、NMISトランジスタの場合のハイ電圧は、例えば5Vであり、ロウ電圧は、例えば0Vである。従って、PMISトランジスタにおけるハイ電圧は、例えば0Vと、ロウ電圧は、例えば5Vと読みかえればよい。 15 to 18, the case of the NMIS transistor has been described, but the same effect can be obtained also in the case of the PMIS transistor. That is, in the case of the PMIS transistor, the n-type impurity of the NMIS transistor is changed to a p-type impurity, and the p-type impurity is changed to an n-type impurity. In the case of the NMIS transistor, the high voltage is 5 V, for example, and the low voltage is 0 V, for example. Therefore, the high voltage in the PMIS transistor may be read as 0 V, for example, and the low voltage as 5 V, for example.
 (一実施形態の第3変形例)
 図19は一実施形態の第3変形例に係る半導体装置である高耐圧トランジスタの断面構成を示している。
(Third Modification of One Embodiment)
FIG. 19 shows a cross-sectional configuration of a high voltage transistor, which is a semiconductor device according to a third modification of one embodiment.
 図19に示すように、第3変形例に係る高耐圧トランジスタ120は、第2ゲート電極126のゲート長方向の幅寸法(ゲート電極幅142)を大きくした構成を採る。このようにしても、上述した図15~図18までの動作による効果と同様の効果を得ることができる。すなわち、第1ゲート電極125及び第2ゲート電極126に共にハイ電圧が印加された場合には、p型ウェル102における第1ゲート電極125及び第2ゲート電極126の各ゲート絶縁膜108の直下の領域には、それぞれ反転層によるチャネルが形成される。 As shown in FIG. 19, the high breakdown voltage transistor 120 according to the third modification employs a configuration in which the width dimension (gate electrode width 142) of the second gate electrode 126 in the gate length direction is increased. Even in this case, it is possible to obtain the same effects as those obtained by the operations shown in FIGS. That is, when a high voltage is applied to both the first gate electrode 125 and the second gate electrode 126, the first gate electrode 125 and the second gate electrode 126 in the p-type well 102 are directly below the gate insulating films 108. In each region, a channel is formed by an inversion layer.
 なお、第2ゲート電極幅142が比較的に小さい場合には、LDD低濃度領域135とLDD中濃度領域134との空乏層を短絡させることも可能である。 When the second gate electrode width 142 is relatively small, the depletion layer of the LDD low concentration region 135 and the LDD medium concentration region 134 can be short-circuited.
 また、第1ゲート電極125にハイ電圧が印加され、第2ゲート電極126にロウ電圧が印加された場合には、p型ウェル102における第2ゲート電極126のゲート絶縁膜108の下側部分を高抵抗層として使用可能である。 Further, when a high voltage is applied to the first gate electrode 125 and a low voltage is applied to the second gate electrode 126, the lower portion of the gate insulating film 108 of the second gate electrode 126 in the p-type well 102 is applied. It can be used as a high resistance layer.
 また、第1ゲート電極125にロウ電圧が印加され、第2ゲート電極126にハイ電圧が印加された場合は、通常の第1ゲート電極125のみのオフ状態とすることができる。また、第1ゲート電極125及び第2ゲート電極126に共にロウ電圧を印加した場合は、通常のオフ状態とすることができる。 Also, when a low voltage is applied to the first gate electrode 125 and a high voltage is applied to the second gate electrode 126, only the normal first gate electrode 125 can be turned off. In addition, when a low voltage is applied to both the first gate electrode 125 and the second gate electrode 126, a normal off state can be obtained.
 このように、第2ゲート電極幅142の値を適当に調節することによっても、種々のトランジスタ動作が可能となる。 As described above, various transistor operations can be performed by appropriately adjusting the value of the second gate electrode width 142.
 (一実施形態の第4変形例)
 図20は一実施形態の第4変形例に係る半導体装置である高耐圧トランジスタの製造方法の要部の一工程の断面構成を示している。
(Fourth modification of one embodiment)
FIG. 20 shows a cross-sectional configuration of one step of a main part of a method for manufacturing a high voltage transistor, which is a semiconductor device according to a fourth modification of one embodiment.
 図20に示すように、LDD低濃度領域135が形成できる範囲で、第1ゲート電極125と第2ゲート電極126との間のゲート電極間隔136の値を大きく設定した場合には、サイドウォール110をゲート電極同士の隙間に埋め込むことは困難となる。 As shown in FIG. 20, when the value of the gate electrode interval 136 between the first gate electrode 125 and the second gate electrode 126 is set large within a range in which the LDD low concentration region 135 can be formed, the sidewall 110 It is difficult to embed in the gap between the gate electrodes.
 従って、ソース・ドレイン注入151を実施する工程において、第1ゲート電極125及び第2ゲート電極126の上側部分にそれぞれ端面の境界を設けるように、レジストマスク154を形成することにより、アライメントずれの影響を実質的に受けない構造を得ることができる。 Therefore, in the step of performing the source / drain implantation 151, the resist mask 154 is formed so as to provide the boundary of the end face in the upper part of the first gate electrode 125 and the second gate electrode 126, respectively. Can be obtained.
 (一実施形態の第5変形例)
 図21及び図22は一実施形態の第5変形例に係る半導体装置である高耐圧トランジスタの製造方法の要部の工程順の断面構成を示している。
(Fifth Modification of One Embodiment)
21 and 22 show a cross-sectional configuration in the order of steps of a main part of a method for manufacturing a high voltage transistor, which is a semiconductor device according to a fifth modification of the embodiment.
 ゲート電極間隔136を比較的に大きい値に設定している場合には、まず、図21に示すように、半導体基板101の上の全面に、絶縁膜であるシリサイドブロック膜155をゲート電極同士の隙間に埋め込むように堆積する。 When the gate electrode interval 136 is set to a relatively large value, first, as shown in FIG. 21, a silicide block film 155 as an insulating film is formed on the entire surface of the semiconductor substrate 101 between the gate electrodes. It is deposited so as to be embedded in the gap.
 次に、図22に示すように、堆積されたシリサイドブロック膜155に対して、等方性のウェットエッチを行うことにより、シリサイドブロック膜155をゲート電極同士の隙間にのみ残留させる。これにより、ゲート電極同士の隙間がサイドウォール110によって埋め込むことができない場合であっても、ゲート電極同士の隙間にシリサイドブロック膜155を選択的に形成することにより、各シリサイド層112をセルファラインにより形成することができる。 Next, as shown in FIG. 22, isotropic wet etching is performed on the deposited silicide block film 155 to leave the silicide block film 155 only in the gap between the gate electrodes. As a result, even if the gap between the gate electrodes cannot be filled with the sidewall 110, the silicide block film 155 is selectively formed in the gap between the gate electrodes, so that each silicide layer 112 is formed by self-alignment. Can be formed.
 (一実施形態の第6変形例)
 図23に示すように、堆積されたシリサイドロック膜155に対して、等方性のウェットエッチに代えて、異方性のドライエッチを行うことによっても、ゲート電極同士の隙間にのみシリサイドロック膜155を残留させることができる。従って、第5変形例と同様に、各シリサイド層112をセルファラインにより形成することができる。
(Sixth Modification of One Embodiment)
As shown in FIG. 23, the silicide lock film 155 is deposited only in the gap between the gate electrodes by performing anisotropic dry etching instead of isotropic wet etching on the deposited silicide lock film 155. 155 can remain. Therefore, as in the fifth modification, each silicide layer 112 can be formed by self-alignment.
 さらに、第6変形例においては、ゲート電極同士の隙間だけでなく、第1ゲート電極125及び第2ゲート電極126の外側のサイドウォール110の下部の側面上にもシリサイドブロック膜155をサイドウォール状に残留させることができる。このため、ソース領域103及びドレイン領域105において、それらの上部に形成される各シリサイド層112の内側の端部と各ゲート電極125、126の外側の端部との間隔を大きくすることができる。従って、各シリサイド層112からの各ゲート電極125、126に対する電界集中を緩和することができる。 Furthermore, in the sixth modified example, the silicide block film 155 is formed not only on the gap between the gate electrodes but also on the side surface of the lower portion of the sidewall 110 outside the first gate electrode 125 and the second gate electrode 126. Can be left behind. Therefore, in the source region 103 and the drain region 105, the distance between the inner end portion of each silicide layer 112 formed above them and the outer end portion of each gate electrode 125, 126 can be increased. Therefore, electric field concentration from each silicide layer 112 to each gate electrode 125, 126 can be reduced.
 (一実施形態の第7変形例)
 図24に示すように、LDD低濃度領域135が形成できる範囲で、且つゲート電極同士の隙間にシリサイドブロック膜155を埋め込むことができない、すなわちLDD低濃度領域135の上面が露出してしまうような場合は、シリサイドブロック膜155の上における第1ゲート電極125及び第2ゲート電極126の上側部分にそれぞれ端面の境界を設けるように、レジストマスク156を形成すればよい。
(Seventh Modification of One Embodiment)
As shown in FIG. 24, the silicide block film 155 cannot be embedded in the gap where the LDD low concentration region 135 can be formed, that is, the upper surface of the LDD low concentration region 135 is exposed. In that case, the resist mask 156 may be formed so that the boundary of the end face is provided on the upper portion of the first gate electrode 125 and the second gate electrode 126 on the silicide block film 155.
 従って、形成したレジストマスク156を用いて、シリサイドブロック膜155をエッチングした後、図25に示すように、各シリサイド層112を形成することにより、アライメントずれの影響を実質的に受けない半導体装置を得ることができる。 Therefore, after the silicide block film 155 is etched using the formed resist mask 156, the respective silicide layers 112 are formed as shown in FIG. Obtainable.
 なお、上述した実施形態及びその変形例において、オフセットサイドウォール145にTEOS膜又はSiN膜等の絶縁膜を用いたが、ゲート電極125、126又は半導体基板101が被る酸化等を抑制するために、低温で成膜が可能なSA-CVDによるNSG膜、低温LP-TEOS膜、低温ALD-SiN膜、低温炭化シリコン(SiC)膜又は酸窒化シリコン(SiON)等を用いることができる。 In the above-described embodiment and its modifications, an insulating film such as a TEOS film or a SiN film is used for the offset sidewall 145. In order to suppress oxidation or the like that the gate electrodes 125 and 126 or the semiconductor substrate 101 suffer from, however, An NSG film formed by SA-CVD, a low-temperature LP-TEOS film, a low-temperature ALD-SiN film, a low-temperature silicon carbide (SiC) film, silicon oxynitride (SiON), or the like that can be formed at a low temperature can be used.
 また、本実施形態及びその変形例において、シリサイド層112には、Niシリサイドを用いたが、コバルト(Co)、チタン(Ti)、タングステン(W)、白金(Pt)若しくはモリブデン(Mo)、又やそれらの金属合金若しくは積層金属によるシリサイドを用いても特に問題はない。 In this embodiment and its modification, Ni silicide is used for the silicide layer 112, but cobalt (Co), titanium (Ti), tungsten (W), platinum (Pt) or molybdenum (Mo), There is no particular problem even if silicides of those metal alloys or laminated metals are used.
 また、本実施形態及びその変形例において、微細トランジスタ121を構成する薄膜ゲート絶縁膜124の構成材料は、SiOに限られない。例えば、酸化ハフニウム(HfO)、ハフニウムシリケート(HfSixOy)若しくはハフニウムアルミネート(HfAlxOy)等の高誘電率(high-k)材料、又はSiOを含め、これらに窒素を添加した絶縁膜の群から選ばれるいずれか1つを含む単層膜、又はこれらの群から選ばれる少なくとも1つの膜を含む積層膜であってもよい。また、薄膜ゲート絶縁膜124の膜厚は、ゲート長、EOT(等価酸化膜厚)の許容値、及びリーク電流の許容値等を考慮して適宜決定すればよい。 In the present embodiment and its modification, the constituent material of the thin-film gate insulating film 124 constituting the fine transistor 121 is not limited to SiO 2 . For example, a high dielectric constant (high-k) material such as hafnium oxide (HfO 2 ), hafnium silicate (HfSixOy), or hafnium aluminate (HfAlxOy), or a group of insulating films to which nitrogen is added, such as SiO 2 It may be a single layer film including any one selected or a laminated film including at least one film selected from these groups. The film thickness of the thin gate insulating film 124 may be determined as appropriate in consideration of the gate length, the EOT (equivalent oxide film thickness) tolerance, the leakage current tolerance, and the like.
 また、各ゲート電極125、126及び127の構成材料には、アモルファスSi又はノンドープポリシリコンに、燐(P)、砒素(As)、ホウ素(B)又はインジウム(In)等をイオン注入によりドーピングした、シリコン(Si)を含む電極材料を用いることができる。また、ゲルマニウム(Ge)をドーピングしたシリコンゲルマニウム(SiGe)等のSiを含む電極材料でもよく、加工性又はシリサイド反応等の観点から適宜決定すればよい。各ゲート電極125、126及び127の形成方法としては、LP-CVD法、スパッタ法若しくはALD法等の堆積法、又は塗布系シリコン材料による塗布法を用いることもできる。さらには、カーボン若しくは金属をドーピングしたシリコン材料又はポーラスシリコン等も選択が可能である。 The constituent materials of the gate electrodes 125, 126, and 127 are doped with amorphous Si or non-doped polysilicon with phosphorus (P), arsenic (As), boron (B), indium (In), or the like by ion implantation. An electrode material containing silicon (Si) can be used. Further, an electrode material containing Si such as silicon germanium (SiGe) doped with germanium (Ge) may be used, and may be determined as appropriate from the viewpoint of workability or silicide reaction. As a method for forming the gate electrodes 125, 126, and 127, a deposition method such as an LP-CVD method, a sputtering method, or an ALD method, or a coating method using a coating silicon material can be used. Furthermore, a silicon material doped with carbon or metal, porous silicon, or the like can be selected.
 また、本実施形態及びその変形例においては、電圧が5Vの電源電圧と接続された高耐圧トランジスタ120、及び電圧が1.2Vの電源電圧と接続され高速動作用途の微細トランジスタ121を混載した半導体装置を例に説明したが、この構成に限られない。すなわち、据え置きデバイスとして使用される、電圧が12V又は24Vの電源電圧、さらには高耐圧の60Vの電源電圧を持つ車載デバイスに対応するための高効率な電源制御機能付きバッテリー制御回路にも応用可能である。この場合は、当然ながら、電源電圧に応じてゲート絶縁膜108の膜厚、ゲート長及びゲート電極の高さ等はスケーリングする必要がある。 Further, in the present embodiment and its modification, a semiconductor in which a high voltage transistor 120 connected to a power supply voltage having a voltage of 5V and a fine transistor 121 connected to a power supply voltage having a voltage of 1.2V for high-speed operation are mixedly mounted. Although the apparatus has been described as an example, it is not limited to this configuration. In other words, it can be applied to a battery control circuit with a high-efficiency power control function to support in-vehicle devices that have a power supply voltage of 12V or 24V and a high withstand voltage of 60V that are used as stationary devices. It is. In this case, naturally, the film thickness of the gate insulating film 108, the gate length, the height of the gate electrode, and the like need to be scaled in accordance with the power supply voltage.
 本発明に係る半導体装置及びその製造方法は、面積の増大及び製造工程の増加を生じることなくサステイン耐圧を改善し、サステイン耐圧のばらつきの抑制及びトランジスタの形成後のドレイン抵抗及び接合プロファイルの調整が可能な、自由度が高い半導体装置を実現でき、例えば電源電圧が高い環境分野又は車載分野用途の高性能LSIデバイス等に有用である。 The semiconductor device and the manufacturing method thereof according to the present invention improve the sustain withstand voltage without causing an increase in area and an increase in the manufacturing process, suppressing the dispersion of the sustain withstand voltage, and adjusting the drain resistance and the junction profile after forming the transistor. A possible semiconductor device having a high degree of freedom can be realized, and is useful for, for example, a high-performance LSI device for use in the environmental field or in-vehicle field with a high power supply voltage.
101  半導体基板
102  p型ウェル(半導体領域)
102a チャネル
103  ソース領域
105  ドレイン領域
107  素子分離
108  ゲート絶縁膜
109  ポリシリコン膜
110  サイドウォール
112  シリサイド層
120  高耐圧トランジスタ
121  微細トランジスタ
122  p型ウェル
124  薄膜ゲート絶縁膜
125  第1ゲート電極
126  第2ゲート電極
127  第3ゲート電極
128  ソース形成領域
129  第1ドレイン形成領域
130  第2ドレイン形成領域
131  レジストマスク
132  高耐圧LDD注入
133  チルト角
134  LDD中濃度領域
135  LDD低濃度領域
136  ゲート電極間隔
137  第1オーバラップ幅
138  第2オーバラップ幅
139  実効チャネル長
140  第3オーバラップ幅
141  第4オーバラップ幅
142  第2ゲート電極幅
143  ゲート電極高さ
144  LDD注入深さ
145  オフセットサイドウォール
146  レジストマスク
147  エクステンション注入
148  エクステンション領域
149  サイドウォール下層膜
150  サイドウォール上層膜
151  ソース・ドレイン注入
152A ペア型トランジスタ
152B ペア型トランジスタ
154  レジストマスク
155  シリサイドブロック膜
156  レジストマスク
157  空乏層
101 semiconductor substrate 102 p-type well (semiconductor region)
102a channel 103 source region 105 drain region 107 element isolation 108 gate insulating film 109 polysilicon film 110 sidewall 112 silicide layer 120 high voltage transistor 121 fine transistor 122 p-type well 124 thin film gate insulating film 125 first gate electrode 126 second gate Electrode 127 Third gate electrode 128 Source formation region 129 First drain formation region 130 Second drain formation region 131 Resist mask 132 High breakdown voltage LDD implantation 133 Tilt angle 134 LDD medium concentration region 135 LDD low concentration region 136 Gate electrode interval 137 First Overlap width 138 Second overlap width 139 Effective channel length 140 Third overlap width 141 Fourth overlap width 142 Second gate electrode width 143 Gate Electrode height 144 LDD implantation depth 145 Offset sidewall 146 Resist mask 147 Extension implantation 148 Extension region 149 Side wall lower layer film 150 Side wall upper layer film 151 Source / drain implantation 152A Pair transistor 152B Pair transistor 154 Resist mask 155 Silicide block Film 156 Resist mask 157 Depletion layer

Claims (15)

  1.  第1導電型の第1半導体領域の上に第1ゲート絶縁膜を介在させて形成された第1ゲート電極と、
     前記第1半導体領域の上に前記第1ゲート絶縁膜を介在させると共に、前記第1ゲート電極と間隔をおいて並行に形成され、前記第1ゲート電極よりもゲート長方向の幅が小さい第2ゲート電極と、
     前記第1半導体領域における前記第1ゲート電極の両側方の領域にそれぞれ形成され、第2導電型の第1不純物を含む第1ソース領域及び第2導電型の第2不純物を含む第1ドレイン領域と、
     前記第1半導体領域における前記第2ゲート電極の両側方の領域にそれぞれ形成され、第2導電型の第3不純物を含む第2ソース領域及び第2導電型の第4不純物を含む第2ドレイン領域とを備え、
     前記第1ソース領域における前記第1不純物の濃度は、前記第1ドレイン領域における前記第2不純物の濃度よりも高く、
     前記第2ソース領域における前記第3不純物の濃度は、前記第2ドレイン領域における前記第4不純物の濃度よりも低く、
     前記第2ソース領域は、前記第1ドレイン領域と共有されている半導体装置。
    A first gate electrode formed on the first semiconductor region of the first conductivity type with a first gate insulating film interposed;
    The second gate insulating film is interposed on the first semiconductor region, is formed in parallel with the first gate electrode at a distance, and is smaller in width in the gate length direction than the first gate electrode. A gate electrode;
    A first source region containing a first impurity of a second conductivity type and a first drain region containing a second impurity of a second conductivity type, which are respectively formed in regions on both sides of the first gate electrode in the first semiconductor region. When,
    A second source region containing a second impurity of a second conductivity type and a second drain region containing a fourth impurity of a second conductivity type, which are respectively formed in regions on both sides of the second gate electrode in the first semiconductor region. And
    A concentration of the first impurity in the first source region is higher than a concentration of the second impurity in the first drain region;
    A concentration of the third impurity in the second source region is lower than a concentration of the fourth impurity in the second drain region;
    The semiconductor device in which the second source region is shared with the first drain region.
  2.  請求項1において、
     前記第1ゲート電極と前記第2ゲート電極との各側面上にそれぞれ形成され、絶縁体からなるサイドウォールをさらに備え、
     前記第1ゲート電極と前記第2ゲート電極との対向する側面上に形成された前記サイドウォール同士は、互いに接触している半導体装置。
    In claim 1,
    A sidewall formed of an insulator is further formed on each side surface of the first gate electrode and the second gate electrode,
    The side walls formed on the opposing side surfaces of the first gate electrode and the second gate electrode are in contact with each other.
  3.  請求項1又は2において、
     前記第1ソース領域、第1ドレイン領域、第2ソース領域及び第2ドレイン領域は、それぞれの接合深さが互いに同一の接合面を有している半導体装置。
    In claim 1 or 2,
    The semiconductor device in which the first source region, the first drain region, the second source region, and the second drain region have joint surfaces having the same junction depth.
  4.  請求項1又は2において、
     前記第1ドレイン領域は、
     前記第1不純物を含み且つ前記第1ゲート電極と重なるように形成され、前記第1不純物による第1のPN接合と、
     前記第1のPN接合から前記第2ゲート電極側に離れた領域に形成され、前記第1のPN接合よりも高い濃度を持つ、前記第2不純物による第2のPN接合と、
     前記第2のPN接合から前記第2ゲート電極側の領域に形成され、前記第2のPN接合よりも高い濃度を持つ、前記第3不純物による第3のPN接合とを有している半導体装置。
    In claim 1 or 2,
    The first drain region is
    A first PN junction comprising the first impurity and formed to overlap the first gate electrode;
    A second PN junction formed by a second impurity formed in a region away from the first PN junction toward the second gate electrode and having a higher concentration than the first PN junction;
    A semiconductor device formed in a region on the second gate electrode side from the second PN junction and having a third PN junction by the third impurity having a higher concentration than the second PN junction; .
  5.  請求項1において、
     前記第1ソース領域における第1不純物が添加された領域及び前記第2ドレイン領域における第4不純物が添加された領域には、前記第1不純物及び第4不純物よりも高い濃度を持つ第2導電型の第5不純物が添加され、
     前記第5不純物が添加された領域は、前記第1不純物が添加された領域及び前記第4不純物が添加された領域に包含されて形成されている半導体装置。
    In claim 1,
    A region of the first source region to which the first impurity is added and a region of the second drain region to which the fourth impurity is added have a second conductivity type having a higher concentration than the first impurity and the fourth impurity. Of the fifth impurity,
    The region to which the fifth impurity is added is formed by being included in the region to which the first impurity is added and the region to which the fourth impurity is added.
  6.  請求項1又は2において、
     前記第1ソース領域及び第2ドレイン領域の上部に形成された金属層をさらに備え、
     前記金属層は、前記第1ドレイン領域及び第2ソース領域の上部には形成されていない半導体装置。
    In claim 1 or 2,
    A metal layer formed on the first source region and the second drain region;
    The semiconductor device is a semiconductor device in which the metal layer is not formed on the first drain region and the second source region.
  7.  請求項1において、
     前記第1半導体領域の上に前記第1ゲート絶縁膜をそれぞれ介在させると共に、前記第1ソース領域における前記第1ゲート電極のゲート幅方向に沿った中心線をそれぞれ線対称として形成され、前記第1ゲート電極と同一の構成を持つ第3ゲート電極、及び前記第2ゲート電極と同一の構成を持つ第4ゲート電極と、
     前記第1半導体領域における前記第3ゲート電極の両側方の領域にそれぞれ形成され、前記第1不純物を含む第3ソース領域及び前記第2不純物を含む第3ドレイン領域と、
     前記第1半導体領域における前記第4ゲート電極の両側方の領域にそれぞれ形成され、前記第3不純物を含む第4ソース領域及び前記第4不純物を含む第4ドレイン領域とをさらに備え、
     前記第3ソース領域における前記第1不純物の濃度は、前記第3ドレイン領域における前記第2不純物の濃度よりも高く、
     前記第4ソース領域における前記第3不純物の濃度は、前記第4ドレイン領域における前記第4不純物の濃度よりも低く、
     前記第3ソース領域は、前記第1ソース領域と共有され、且つ前記第4ソース領域は、前記第3ドレイン領域と共有されている半導体装置。
    In claim 1,
    The first gate insulating film is interposed on the first semiconductor region, and center lines along the gate width direction of the first gate electrode in the first source region are formed symmetrically with respect to each other. A third gate electrode having the same configuration as one gate electrode, and a fourth gate electrode having the same configuration as the second gate electrode;
    A third source region including the first impurity and a third drain region including the second impurity, which are respectively formed in regions on both sides of the third gate electrode in the first semiconductor region;
    A fourth source region including the third impurity and a fourth drain region including the fourth impurity, each formed in a region on both sides of the fourth gate electrode in the first semiconductor region;
    A concentration of the first impurity in the third source region is higher than a concentration of the second impurity in the third drain region;
    A concentration of the third impurity in the fourth source region is lower than a concentration of the fourth impurity in the fourth drain region;
    The semiconductor device in which the third source region is shared with the first source region, and the fourth source region is shared with the third drain region.
  8.  請求項1において、
     前記第1半導体領域の上に前記第1ゲート絶縁膜をそれぞれ介在させると共に、前記第2ドレイン領域における前記第2ゲート電極のゲート幅方向に沿った中心線をそれぞれ線対称として形成され、前記第2ゲート電極と同一の構成を持つ第4ゲート電極、及び前記第1ゲート電極と同一の構成を持つ第3ゲート電極と、
     前記第1半導体領域における前記第3ゲート電極の両側方の領域にそれぞれ形成され、前記第1不純物を含む第3ソース領域及び前記第2不純物を含む第3ドレイン領域と、
     前記第1半導体領域における前記第4ゲート電極の両側方の領域にそれぞれ形成され、前記第3不純物を含む第4ソース領域及び前記第4不純物を含む第4ドレイン領域とをさらに備え、
     前記第3ソース領域における前記第1不純物の濃度は、前記第3ドレイン領域における前記第2不純物の濃度よりも高く、
     前記第4ソース領域における前記第3不純物の濃度は、前記第4ドレイン領域における前記第4不純物の濃度よりも低く、
     前記第4ドレイン領域は、前記第2ドレイン領域と共有され、且つ前記第4ソース領域は、前記第3ドレイン領域と共有されている半導体装置。
    In claim 1,
    The first gate insulating film is interposed on the first semiconductor region, and center lines along the gate width direction of the second gate electrode in the second drain region are formed symmetrically with respect to each other. A fourth gate electrode having the same configuration as the two gate electrodes, and a third gate electrode having the same configuration as the first gate electrode;
    A third source region including the first impurity and a third drain region including the second impurity, which are respectively formed in regions on both sides of the third gate electrode in the first semiconductor region;
    A fourth source region including the third impurity and a fourth drain region including the fourth impurity, each formed in a region on both sides of the fourth gate electrode in the first semiconductor region;
    A concentration of the first impurity in the third source region is higher than a concentration of the second impurity in the third drain region;
    A concentration of the third impurity in the fourth source region is lower than a concentration of the fourth impurity in the fourth drain region;
    The semiconductor device in which the fourth drain region is shared with the second drain region, and the fourth source region is shared with the third drain region.
  9.  請求項1又は2において、
     前記第1ソース領域と前記第1ゲート電極との重なり部分の第1オーバラップ量は、前記第1ドレイン領域と前記第2ゲート電極との重なり部分の第2オーバラップ量よりも大きい半導体装置。
    In claim 1 or 2,
    A semiconductor device in which a first overlap amount of an overlap portion between the first source region and the first gate electrode is larger than a second overlap amount of an overlap portion between the first drain region and the second gate electrode.
  10.  請求項1又は2において、
     前記第2ソース領域と前記第2ゲート電極との重なり部分の第3オーバラップ量は、前記第2ドレイン領域と前記第2ゲート電極との重なり部分の第4オーバラップ量よりも小さい半導体装置。
    In claim 1 or 2,
    A semiconductor device in which a third overlap amount in an overlapping portion between the second source region and the second gate electrode is smaller than a fourth overlap amount in an overlapping portion between the second drain region and the second gate electrode.
  11.  請求項1又は2において、
     前記第2ソース領域と前記第2ドレイン領域とは、前記第1半導体領域における前記第2ゲート電極の下側部分において接触して短絡している半導体装置。
    In claim 1 or 2,
    The semiconductor device in which the second source region and the second drain region are in contact with each other and short-circuited in a lower portion of the second gate electrode in the first semiconductor region.
  12.  請求項1又は2において、
     前記第1半導体領域における前記第1ゲート電極の中央部の下側部分の導電型と、前記第2ゲート電極の中央部の下側部分の導電型とは、極性が互いに逆である半導体装置。
    In claim 1 or 2,
    The conductivity type of the lower part of the central part of the first gate electrode in the first semiconductor region is opposite to the conductivity type of the lower part of the central part of the second gate electrode.
  13.  請求項1又は2において、
     前記第1ゲート電極と前記第2ゲート電極との間隔は、前記第1ゲート電極及び第2ゲート電極の高さの70%以下であり、
     前記第2ゲート電極のゲート長方向の幅は、前記第1ゲート電極及び第2ゲート電極の高さの1.3倍以上である半導体装置。
    In claim 1 or 2,
    An interval between the first gate electrode and the second gate electrode is 70% or less of a height of the first gate electrode and the second gate electrode;
    The width of the second gate electrode in the gate length direction is 1.3 times or more the height of the first gate electrode and the second gate electrode.
  14.  請求項1において、
     第2半導体領域の上に前記第1ゲート絶縁膜よりも薄い第2ゲート絶縁膜を介在させて形成された第3ゲート電極をさらに備えている半導体装置。
    In claim 1,
    A semiconductor device further comprising a third gate electrode formed on a second semiconductor region with a second gate insulating film thinner than the first gate insulating film interposed therebetween.
  15.  請求項1に記載の半導体装置の製造方法であって、
     前記第1ソース領域、第1ドレイン領域、第2ソース領域及び第2ドレイン領域は、
     前記第1ゲート電極及び第2ゲート電極をマスクとして、互いに異なる少なくとも3方向からのイオン注入によって形成することを特徴とする半導体装置の製造方法。
    A method of manufacturing a semiconductor device according to claim 1,
    The first source region, the first drain region, the second source region, and the second drain region are:
    A method of manufacturing a semiconductor device, wherein the first gate electrode and the second gate electrode are used as masks to form ions by ion implantation from at least three different directions.
PCT/JP2011/002597 2010-11-18 2011-05-10 Semiconductor device and method for manufacturing same WO2012066695A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010-257530 2010-11-18
JP2010257530A JP2012109425A (en) 2010-11-18 2010-11-18 Semiconductor device and method of manufacturing the same

Publications (1)

Publication Number Publication Date
WO2012066695A1 true WO2012066695A1 (en) 2012-05-24

Family

ID=46083652

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/002597 WO2012066695A1 (en) 2010-11-18 2011-05-10 Semiconductor device and method for manufacturing same

Country Status (2)

Country Link
JP (1) JP2012109425A (en)
WO (1) WO2012066695A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4080583A1 (en) * 2021-04-22 2022-10-26 NXP USA, Inc. Semiconductor device and method of making a semiconductor device
CN116568038A (en) * 2023-07-11 2023-08-08 粤芯半导体技术股份有限公司 Method for manufacturing semiconductor device
US11894459B2 (en) * 2020-07-23 2024-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Dual gate structures for semiconductor devices

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI506790B (en) * 2013-02-07 2015-11-01 Vanguard Int Semiconduct Corp High voltage semiconductor device and method for fabricating the same
JP2015056472A (en) 2013-09-11 2015-03-23 株式会社東芝 Semiconductor device
US10825905B2 (en) * 2016-06-01 2020-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. Thin poly field plate design
KR20210124731A (en) 2020-04-07 2021-10-15 삼성전자주식회사 Semiconductor devices including gate spacer

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043861A (en) * 1983-08-19 1985-03-08 Nec Corp Manufacture of semiconductor device
JPS62265765A (en) * 1986-05-13 1987-11-18 Citizen Watch Co Ltd Semiconductor device and manufacture thereof
JPH04246823A (en) * 1990-09-28 1992-09-02 Applied Materials Inc Multi-angle injection method for conducting shallow injection
JPH1012747A (en) * 1996-06-25 1998-01-16 Sony Corp Manufacture of semiconductor device
JP2004042379A (en) * 2002-07-10 2004-02-12 Canon Inc Semiconductor device and liquid ejector employing it
JP2006100404A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2009032725A (en) * 2007-07-24 2009-02-12 Sony Corp Mos transistor and its manufacturing method
JP2010034224A (en) * 2008-07-28 2010-02-12 Renesas Technology Corp Semiconductor device and manufacturing method thereof

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6043861A (en) * 1983-08-19 1985-03-08 Nec Corp Manufacture of semiconductor device
JPS62265765A (en) * 1986-05-13 1987-11-18 Citizen Watch Co Ltd Semiconductor device and manufacture thereof
JPH04246823A (en) * 1990-09-28 1992-09-02 Applied Materials Inc Multi-angle injection method for conducting shallow injection
JPH1012747A (en) * 1996-06-25 1998-01-16 Sony Corp Manufacture of semiconductor device
JP2004042379A (en) * 2002-07-10 2004-02-12 Canon Inc Semiconductor device and liquid ejector employing it
JP2006100404A (en) * 2004-09-28 2006-04-13 Nec Electronics Corp Semiconductor device and its manufacturing method
JP2009032725A (en) * 2007-07-24 2009-02-12 Sony Corp Mos transistor and its manufacturing method
JP2010034224A (en) * 2008-07-28 2010-02-12 Renesas Technology Corp Semiconductor device and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11894459B2 (en) * 2020-07-23 2024-02-06 Taiwan Semiconductor Manufacturing Co., Ltd. Dual gate structures for semiconductor devices
EP4080583A1 (en) * 2021-04-22 2022-10-26 NXP USA, Inc. Semiconductor device and method of making a semiconductor device
CN116568038A (en) * 2023-07-11 2023-08-08 粤芯半导体技术股份有限公司 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JP2012109425A (en) 2012-06-07

Similar Documents

Publication Publication Date Title
US9006843B2 (en) Source/drain extension control for advanced transistors
JP4540438B2 (en) Semiconductor device and manufacturing method thereof
US7538351B2 (en) Method for forming an SOI structure with improved carrier mobility and ESD protection
US7144780B2 (en) Semiconductor device and its manufacturing method
TWI393190B (en) Semiconductor devices and method of fabrication
US7517745B2 (en) Semiconductor device having MOSFET with offset-spacer, and manufacturing method thereof
CN101728273B (en) Semiconductor device and method of fabricating the same
WO2012066695A1 (en) Semiconductor device and method for manufacturing same
CN103311281A (en) Semiconductor device and manufacturing method thereof
JP2015056619A (en) Semiconductor device
JP2005051140A (en) Semiconductor device and its manufacturing method
JP2008270575A (en) Semiconductor device and manufacturing method thereof
JP2008103644A (en) Semiconductor device and production method thereof
WO2013155760A1 (en) Semiconductor structure and manufacturing method thereof
JP2008098640A (en) Manufacturing method for semiconductor device
US20170263770A1 (en) Semiconductor device and manufacturing method of the same
US8048730B2 (en) Semiconductor device and method for manufacturing the same
JP4833527B2 (en) Insulated gate semiconductor device and driving method thereof
KR20060005556A (en) Method for manufacturing an integrated semiconductor device
KR100598284B1 (en) Fabricating method of semiconductor device
KR100546812B1 (en) Fabricating method of semiconductor device
JP2004079748A (en) Insulated gate field effect transistor and its manufacturing method
JP2012248561A (en) Semiconductor device and method of manufacturing the same
Mahmud Vertical MOSFET design
JP2002231937A (en) Semiconductor device and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11841623

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11841623

Country of ref document: EP

Kind code of ref document: A1