JPS5951567A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS5951567A
JPS5951567A JP16251582A JP16251582A JPS5951567A JP S5951567 A JPS5951567 A JP S5951567A JP 16251582 A JP16251582 A JP 16251582A JP 16251582 A JP16251582 A JP 16251582A JP S5951567 A JPS5951567 A JP S5951567A
Authority
JP
Japan
Prior art keywords
region
epitaxial layer
resistance region
lateral extent
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP16251582A
Other languages
Japanese (ja)
Other versions
JPH0420260B2 (en
Inventor
Yuichi Hirofuji
裕一 広藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16251582A priority Critical patent/JPS5951567A/en
Publication of JPS5951567A publication Critical patent/JPS5951567A/en
Publication of JPH0420260B2 publication Critical patent/JPH0420260B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To improve dielectric resistance by forming the shortest distance between two diffusion regions in a substrate. CONSTITUTION:An epitaxial layer 12 and an isolation region 14 are formed, and a resistance region 16 is formed. A section A, in which the concentration of B is maximized in a section deeper than the surface of the Si substrate and a lateral extent thereof is the largest, is formed in the sectional shape of the end section of the resistance region 16 through heat treatment for approximately thirty min in a nitrogen atmosphere at a temperature such a 950 deg.C. That is, the depth of a section B with the largest lateral extent la of the isolation region 14 represents the surface of the epitaxial layer 12, but the largest lateral extent lb is represented at a position A deeper than B by approximately 0.3mum in the resistance region 16, and a lateral extent in the surface of the epitaxial layer 12 is smaller than lb. Accordingly, the shortest distance between the isolation region 14 and the resistance region 16 is a value g'2 which is larger than a value g2 as a value which can be measured simply on a plane.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、半導体装置に関するもので、特に、耐圧の向
上を図った半導体装置に関する。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a semiconductor device, and particularly to a semiconductor device with improved breakdown voltage.

従来例の構成とその問題点 近年、半導体集積回路のパターンの微細化が進み、素子
内や素子間の距離も小さくなる一途をたどっている。す
なわち、微細パターンの形成技術の向」二により、サブ
ミクロン単位でパターンの縮小か行なわれている。とこ
ろが、微細パターンの形成技術が進んでも、半導体組材
の問題から、ある程度の耐圧を確保する為、ある程度の
間隔を必要とし、これか集積回路パターンの微細化の防
げとなっている。
Conventional configurations and their problems In recent years, the patterns of semiconductor integrated circuits have become increasingly finer, and the distances within and between elements are also becoming smaller. In other words, advances in fine pattern formation technology have allowed patterns to be reduced in submicron units. However, even though the technology for forming fine patterns has advanced, due to problems with semiconductor materials, a certain amount of spacing is required to ensure a certain degree of withstand voltage, which is the only way to prevent the miniaturization of integrated circuit patterns.

バイポーラ集積回路の例を第1図を用いて説明する。同
図はバイポーラ集積回路の断面図であってP型Si基板
11に、約1゜5μmの厚さのN型エピタキシャル層1
2を形成し、酸化膜13を用いてP型分離領域14と、
P型抵抗領域15とを形成したものである。この場合、
分離領域14と抵抗領域15とはそれぞれ例えばB B
 r 3のようなガスを用いた拡散方式によって形成さ
れる。そして、分離領域14と抵抗領域15の間の耐圧
は、円領域間の最短距離G2によって決まる。ここで距
離G2は、分離領域14と抵抗領域15に不純物を導入
するための窓13aと13bの端部の距離G1から、両
鎮域に導入された不純物の横方向への広がりを差し引い
た距離であって G2=G1− (La+Lb) となる。ここでLa 、 Lb 、がそれぞれ分離、抵
抗両領域14.15に於ける不純物の横方向への広がり
1B、である。一般に、カス拡散方式等のような拡i’
i’1方式を用いて不純物を導入した場合、拡散窓端部
から横方向への広がり量xjLは、St基板の表面で最
大となり縦方向の最大拡散深さxj■の0 、7−0 
、8倍程度であるが、拡散窓の幅がXj■ に比して小
さくなるとこの数値はもっと大きくなる。
An example of a bipolar integrated circuit will be explained using FIG. The figure is a cross-sectional view of a bipolar integrated circuit, in which a P-type Si substrate 11 is coated with an N-type epitaxial layer 1 with a thickness of approximately 1.5 μm.
2, and a P-type isolation region 14 using an oxide film 13;
A P-type resistance region 15 is formed. in this case,
The isolation region 14 and the resistance region 15 are each, for example, B B
It is formed by a diffusion method using a gas such as R3. The breakdown voltage between the isolation region 14 and the resistance region 15 is determined by the shortest distance G2 between the circular regions. Here, the distance G2 is the distance obtained by subtracting the horizontal spread of the impurity introduced into both regions from the distance G1 between the ends of the windows 13a and 13b for introducing impurities into the separation region 14 and the resistance region 15. Therefore, G2=G1- (La+Lb). Here, La and Lb are the lateral spread 1B of impurities in both the isolation and resistance regions 14 and 15, respectively. In general, expansion i' such as the dregs diffusion method is used.
When impurities are introduced using the i'1 method, the amount of spread xjL in the lateral direction from the end of the diffusion window is maximum at the surface of the St substrate, and the maximum vertical diffusion depth xj■ is 0, 7-0.
, about 8 times, but as the width of the diffusion window becomes smaller than Xj■, this value becomes larger.

従って、エピタキシフル成長層12の厚さte−1,5
μmとした場合、分離領域14の拡散深さXj V i
≧166μm、また抵抗領域15の拡散深さX r y
 R= 0.6 /J mと仮定するとLa ”:= 
0.8 X 1.5=1.2 (μm)Lb =o、s
 x 0.6#0.5(μm)となり、G 2 > 1
.0μmを得ようとするとG1≧1.2+0.5+1.
0=2.7μmを要する。既ち2.7μmの間隔のうち
少なくとも1.711mは不純物拡散の構法がりを補償
するために消費される。
Therefore, the thickness te-1,5 of the epitaxially fully grown layer 12
When μm, the diffusion depth of the isolation region 14 is Xj V i
≧166 μm, and the diffusion depth of the resistance region 15
Assuming R= 0.6/J m, La ”:=
0.8 x 1.5 = 1.2 (μm) Lb = o, s
x 0.6 #0.5 (μm), and G 2 > 1
.. When trying to obtain 0 μm, G1≧1.2+0.5+1.
0=2.7 μm is required. At least 1.711 m of the 2.7 μm spacing is consumed to compensate for the impurity diffusion structure.

発明の目的 本発明はこのような無駄な間隔を減少させ、耐圧低下を
防ぐことが可能な半導体装置を提供せんとするものであ
る。
OBJECTS OF THE INVENTION It is an object of the present invention to provide a semiconductor device that can reduce such unnecessary intervals and prevent a drop in breakdown voltage.

発明の構成 本発明は導入された不純物が最も横方向に広がる深さす
なわち導入された不純物の濃度が最大となる深さを2つ
の領域の間で異なることを特徴とする半導体装置である
Structure of the Invention The present invention is a semiconductor device characterized in that the depth at which the introduced impurity spreads most laterally, that is, the depth at which the concentration of the introduced impurity becomes maximum, is different between two regions.

実施例の説明 本発明の第1の実施例を第2図を参照して説明する。第
2図は、断面図であって、従来例と同様に、エピタキシ
アル層12と分離領域14を形成した後、抵抗領域16
を形成する。抵抗領域16の形成方法としてこの時、イ
オン注入法を用いて、加速電圧100KeV、ドーズ量
1×1014ions/cJの条件でホウ素Bイオンを
注入する。この条件でBをイオン注入した場合、投影飛
程は約0.3μmであって、エピタキシアル層12表面
から0.3μm程度の深さの所で、濃度が最大となる。
DESCRIPTION OF THE EMBODIMENTS A first embodiment of the present invention will be described with reference to FIG. FIG. 2 is a cross-sectional view showing that after forming the epitaxial layer 12 and isolation region 14, the resistive region 16 is
form. At this time, as a method for forming the resistance region 16, boron B ions are implanted using an ion implantation method under conditions of an acceleration voltage of 100 KeV and a dose of 1×10 14 ions/cJ. When B is ion-implanted under these conditions, the projected range is about 0.3 μm, and the concentration reaches its maximum at a depth of about 0.3 μm from the surface of the epitaxial layer 12.

この後例えば950℃の窒素雰囲気中で約30分の熱処
理を施すと抵抗領域16端部の断面形状は、Si基板表
面より深い部分てBの濃度が最大となり、横方同法がり
が最も大きい部分Aが形成される。
After that, heat treatment is performed for about 30 minutes in a nitrogen atmosphere at 950°C, for example, and the cross-sectional shape of the end of the resistance region 16 is such that the concentration of B is maximum in a part deeper than the surface of the Si substrate, and the part A has the largest lateral curvature. is formed.

すなわち、分離領域14の最大構法がりtaを有する部
分Bの深さはエピタキシアル層12表面であるが抵抗領
域16では約0.3μm深い位置Aで最大構法がりtb
を示し、エピタキシアル層12の表面での構法がりはt
bより小さな値であるため、分離領域14と抵抗領域1
6との長短距離は、単純に平面」−で測定できる値であ
る値q2よりも大きな値q / 2になる。実際には、
平面的な最短距離q2に比べて、最短距離q / 2は
さらに0.1μm程度大きいので、その分だけ耐圧の向
上に寄与する。
That is, the depth of the portion B of the isolation region 14 having the maximum structural girth ta is at the surface of the epitaxial layer 12, but in the resistance region 16, the maximum structural gravity tb is approximately 0.3 μm deeper at the position A.
, and the construction method on the surface of the epitaxial layer 12 is t
Since the value is smaller than b, isolation region 14 and resistance region 1
The long and short distances with 6 will be a value q/2, which is larger than the value q2, which is a value that can be measured simply on the plane. in fact,
Since the shortest distance q/2 is approximately 0.1 μm larger than the shortest planar distance q2, it contributes to an improvement in breakdown voltage by that much.

次に第2の実施例として、本発明を短チャンネル型MO
Sト7ンジスタに応用した例を示す。短チャンネルMO
3)ランジスタを形成する場合、平面パターン上でゲー
トの長さが1μm程度より小さくなると、ゲート端部か
ら、ソースおよびドレインを形成するための不純物が入
り込んで実効チャンネル長が短かくなって、耐圧を保持
することが難かしい。本実施例ではこのようなソース。
Next, as a second embodiment, the present invention will be applied to a short channel type MO
An example of application to an ST7 transistor is shown below. short channel MO
3) When forming a transistor, if the length of the gate is smaller than about 1 μm on a planar pattern, impurities for forming the source and drain will enter from the edge of the gate, shortening the effective channel length and reducing the breakdown voltage. difficult to hold. In this example, such a source is used.

ドレイン間の耐圧劣化を改善するために、ソースおよび
ドレインを形成するための不純物が、最も横方向に広が
る深さを、ソースとドレインそれぞれの間で相異なる構
造とするものである。
In order to improve breakdown voltage deterioration between the drains, the depth at which impurities for forming the source and drain extend in the maximum lateral direction is different between the source and the drain.

第3図はIVIO8型トランジスタの断面図を示すもの
で、ゲート幅Lqが1μmのPチャンネル長OSトラン
ジスタを形成するために、N型Si基板17の表面をゲ
ート酸化膜18を形成するために酸化して、ポ1Jsi
19を積層した後、ゲート領域以外のポ1Jsi19と
酸化膜18とを順次、選択蝕刻する。次に、ソース20
およびドレイン21を形成するためのイオン注入を行う
。この時、ドレイン21は加速電圧1oOKeV、ドー
ズ:け1×1o15ions /crlのBをイオン注
入する。この時ソース領域20は、ホトレジストにより
マスクしておく。
FIG. 3 shows a cross-sectional view of an IVIO8 type transistor. In order to form a P-channel length OS transistor with a gate width Lq of 1 μm, the surface of an N-type Si substrate 17 is oxidized to form a gate oxide film 18. Then, Po1Jsi
After laminating the film 19, the film 19 and the oxide film 18 other than the gate region are sequentially selectively etched. Next, source 20
Then, ion implantation is performed to form the drain 21. At this time, B ions are implanted into the drain 21 at an acceleration voltage of 1oOKeV and a dose of 1×1o15ions/crl. At this time, the source region 20 is masked with photoresist.

次に、ドレイン領域21をホトレジストによりマスクし
て、加速電圧30KeV、ドーズ量1×1015ion
s /ctlのBF2イオンを注入する。この後900
℃3o分程度の熱処理を施せば、ソース領域2oの拡散
深さは約0.3μm程度で、横広がりが最大となる深さ
はSt基板17の表面となり、ドレイン領域21の拡散
深さは約o、65μm程度で、横広がりが最大となる深
さはほぼSi基板表面から0.3μmである。そして、
ソース2oとドレイン21の最大距離Ldは約0.56
μmとなるMOS)ランジスタである。
Next, the drain region 21 is masked with photoresist, and an acceleration voltage of 30 KeV and a dose of 1×10 15 ion are applied.
BF2 ions of s/ctl are implanted. 900 after this
If heat treatment is performed for approximately 30°C, the diffusion depth of the source region 2o will be approximately 0.3 μm, the depth at which the lateral spread will be maximum will be at the surface of the St substrate 17, and the diffusion depth of the drain region 21 will be approximately 0.3 μm. o, about 65 μm, and the depth at which the lateral spread reaches its maximum is approximately 0.3 μm from the surface of the Si substrate. and,
The maximum distance Ld between the source 2o and the drain 21 is approximately 0.56
It is a MOS (μm) transistor.

尚、ソースとドレインを1回のイオン注入により、同じ
深さに形成した場合、ソースとドレイン間の最短距離は
、o、48μm程度になるので、本実施例によれば、0
.55−0.48 =0.07μm程度、すなわち14
(銹の距離的余裕ができる。ここで、パンチスルー耐圧
の向上率を計算してみる。St基板17の不純物濃度を
ND、電子電荷をq、 SLの比誘電率をに、真空誘電
率をε。、臨界電界強度をEcとするならば、パンチス
ルー耐圧Vはであるから、ND=IX10  cm、、
Ec=30V/μm。
Note that if the source and drain are formed at the same depth by one ion implantation, the shortest distance between the source and drain will be about 48 μm, so according to this example, 0.
.. 55-0.48 = about 0.07 μm, that is, 14
(There is a distance margin for rust. Now, let's calculate the improvement rate of the punch-through breakdown voltage. The impurity concentration of the St substrate 17 is ND, the electron charge is q, the relative permittivity of SL is ε., If the critical electric field strength is Ec, the punch-through withstand voltage V is, so ND=IX10 cm,,
Ec=30V/μm.

とすると、q=1.602x10   coul、に:
=11.9゜ε。=8.854×1O−14coul/
/v、、ワであるからLd=o、4sμmの時 V舞1
4.2VL d = o、rsrspmの時 V#16
.3Vとなり、本発明によれば耐圧が向上する。
Then, q=1.602x10 coul, to:
=11.9°ε. =8.854×1O-14coul/
/v,,wa, so when Ld=o, 4sμm, V Mai 1
4.2 When VL d = o, rsrspm V#16
.. 3V, and according to the present invention, the withstand voltage is improved.

発明の効果 以上の様に、本発明によれば、二つの拡散領域間の最短
距離を基板内部に設けることにより、耐、圧の向上を図
ることが出来る。しかも本発明によれば、パンチスルー
現象が生じた場合でも基板表面や、5102との界面に
添った電流の流れる割合も減少するので、パンチスルー
現象による表面や界面の損傷も低減され、素子の安定性
、信頼性の向上にも寄与する。
Effects of the Invention As described above, according to the present invention, by providing the shortest distance between two diffusion regions inside the substrate, it is possible to improve the resistance and pressure. Moreover, according to the present invention, even when punch-through phenomenon occurs, the proportion of current flowing along the substrate surface and the interface with 5102 is reduced, so damage to the surface and interface due to punch-through phenomenon is reduced, and the element It also contributes to improved stability and reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来の半導体装置の構造断面図、第2図は本発
明の一実施例を示す構造断面図、第3図は本発明をMO
S)ランジスタに応用した構造断面図である。 12・・・・・・エピタキシアル層、14・・・・・・
分離領域、16・・・・・・抵抗領域、20・・・・・
・ソース、21・・・・・・ドレイン。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名2
FIG. 1 is a structural sectional view of a conventional semiconductor device, FIG. 2 is a structural sectional view showing an embodiment of the present invention, and FIG. 3 is a structural sectional view of a conventional semiconductor device.
S) It is a sectional view of a structure applied to a transistor. 12...Epitaxial layer, 14...
Separation region, 16...Resistance region, 20...
・Source, 21...Drain. Name of agent: Patent attorney Toshio Nakao and 1 other person2

Claims (1)

【特許請求の範囲】[Claims] 一方導電型の半導体基板と、前記半導体基板上に形成さ
れた他方導電型の第1.第2の電極領域とを備え、前記
第1の電極領域の最大不純物濃度部分力(AiJ記第2
の電極領域の最大不純物濃度部分より深い位置に形成さ
れていることを特徴とする半導体装置。
a semiconductor substrate of one conductivity type; and a first semiconductor substrate of the other conductivity type formed on the semiconductor substrate. a second electrode region, the maximum impurity concentration partial force of the first electrode region (second
A semiconductor device characterized in that the electrode region is formed at a position deeper than the maximum impurity concentration portion of the electrode region.
JP16251582A 1982-09-17 1982-09-17 Semiconductor device Granted JPS5951567A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16251582A JPS5951567A (en) 1982-09-17 1982-09-17 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16251582A JPS5951567A (en) 1982-09-17 1982-09-17 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS5951567A true JPS5951567A (en) 1984-03-26
JPH0420260B2 JPH0420260B2 (en) 1992-04-02

Family

ID=15756084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16251582A Granted JPS5951567A (en) 1982-09-17 1982-09-17 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS5951567A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572565A (en) * 1980-06-06 1982-01-07 Hitachi Ltd Semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS572565A (en) * 1980-06-06 1982-01-07 Hitachi Ltd Semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPH0420260B2 (en) 1992-04-02

Similar Documents

Publication Publication Date Title
US9349816B2 (en) Method of manufacturing semiconductor device with offset sidewall structure
US7687853B2 (en) System and method for making a LDMOS device with electrostatic discharge protection
EP0187016A2 (en) MISFET with lightly doped drain and method of manufacturing the same
JPH0123954B2 (en)
JPH0352224B2 (en)
JPS62113474A (en) Manufacture of semiconductor integrated circuit
CN1812103B (en) Semiconductor device having a silicon layer in a gate electrode
JPH04239760A (en) Manufacture of semiconductor device
EP0308612A2 (en) Field effect transistor and manufacturing method thereof
KR950011020B1 (en) Semiconductor device and its making method
JPS5951567A (en) Semiconductor device
JP2000216108A (en) Manufacture of semiconductor device
JPS6153774A (en) Semiconductor device and production thereof
JPS59119870A (en) Manufacture of semiconductor device
JPH05235346A (en) Semiconductor device and manufacture thereof
US6432759B1 (en) Method of forming source and drain regions for CMOS devices
JPH05291573A (en) Semiconductor device and manufacture thereof
JP2880885B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6072274A (en) Manufacture of semiconductor device
JP2002057222A (en) Semiconductor device and its manufacturing method
JPS60226168A (en) Complementary mos semiconductor device
JPH0590574A (en) Semiconductor device
JPS59114859A (en) Semiconductor device and manufacture thereof
JPS62219965A (en) Manufacture of insulated-gate field-effect transistor
JPS6197970A (en) Semiconductor device and manufacture thereof