JPH0590574A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0590574A
JPH0590574A JP24586091A JP24586091A JPH0590574A JP H0590574 A JPH0590574 A JP H0590574A JP 24586091 A JP24586091 A JP 24586091A JP 24586091 A JP24586091 A JP 24586091A JP H0590574 A JPH0590574 A JP H0590574A
Authority
JP
Japan
Prior art keywords
gate electrode
source
type
mosfet
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24586091A
Other languages
Japanese (ja)
Inventor
Akio Natori
明生 名取
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP24586091A priority Critical patent/JPH0590574A/en
Publication of JPH0590574A publication Critical patent/JPH0590574A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a semiconductor device, which is capable of obtaining stably desired characteristics and is provided with MOSFETs, by a method wherein source and drain regions are formed in a self-alignment manner using the gate electrodes of the MOSFETs as masks and a constant amount is removed from the surfaces of the gate electrodes. CONSTITUTION:A P-channel MOSFET 6 is formed of source and drain regions 4, which consist of a P-type impurity diffused layer in an N-type well region 2 in an N-type semiconductor substrate 1, and a gate electrode 5, which consists of an N-type polycrystalline silicon film. An N-channel MOSFET 9 is formed of source and drain regions 7, which consist of an N-type impurity diffused layer in a P-type well region 3, and a gate electrode 8, which consists of an N-type polycrystalline silicon film. The gate electrodes of the MOSFETs of both channels are formed into a structure, wherein after the source and drain regions of the MOSFET of each channel are formed, a constant amount is removed from the surface of the polycrystalline silicon film. As a result, a semiconductor device capable of stably obtaining desired characteristics can be realized.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の構造、特
にMOSFETのゲート電極の構造に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a structure of a semiconductor device, and more particularly to a structure of a gate electrode of MOSFET.

【0002】[0002]

【従来の技術】従来のMOSFETにおいては、半導体
基板上全面に形成された多結晶シリコン膜に不純物を導
入し、MOSFETのゲート電極の形にパターニング後
に、MOSFETのソース・ドレイン領域形成時にマス
クとして使用した多結晶シリコン膜を、そのままゲート
電極として用いていた。
2. Description of the Related Art In a conventional MOSFET, impurities are introduced into a polycrystalline silicon film formed on the entire surface of a semiconductor substrate and patterned into a gate electrode of the MOSFET, and then used as a mask when forming a source / drain region of the MOSFET. The obtained polycrystalline silicon film was used as it was as a gate electrode.

【0003】[0003]

【発明が解決しようとする課題】しかし、従来のよう
に、MOSFETのソース・ドレイン領域形成時にマス
クとなった多結晶シリコン膜をそのままゲート電極とし
て用いることには以下のような問題があった。
However, there is the following problem in using the polycrystalline silicon film, which has been used as a mask as it is when forming the source / drain regions of the MOSFET, as it is as a gate electrode as in the prior art.

【0004】例えば、N型不純物が導入された多結晶シ
リコン膜を、PチャンネルMOSFETのソース・ドレ
イン領域形成時のマスクとした場合、N型多結晶シリコ
ン膜中に、P型不純物が注入されるため、多結晶シリコ
ン膜中のN型不純物濃度が下がり、P型不純物濃度がN
型不純物濃度を超えた場合、PチャンネルMOSFET
のゲート電極がP型になってしまう。すると、N型多結
晶シリコン膜がゲート電極であるときは、エンハンスメ
ント型であったPチャンネルMOSFETが、ゲート電
極がP型になることにより、デプレッション型に変化し
てしまう。
For example, when a polycrystalline silicon film into which an N-type impurity is introduced is used as a mask for forming a source / drain region of a P-channel MOSFET, a P-type impurity is implanted into the N-type polycrystalline silicon film. Therefore, the N-type impurity concentration in the polycrystalline silicon film is reduced, and the P-type impurity concentration is N
Type impurity concentration is exceeded, P channel MOSFET
The gate electrode becomes P-type. Then, when the N-type polycrystalline silicon film is the gate electrode, the enhancement-type P-channel MOSFET is changed to the depletion type because the gate electrode is changed to the P-type.

【0005】また、N型多結晶シリコン膜を、Nチャン
ネルMOSFETのソース・ドレイン領域形成時のマス
クとした場合、N型多結晶シリコン膜中に、更にN型不
純物が注入されるため、ゲート電極中のN型不純物濃度
が非常に高くなってしまい、ゲート電極上にシリサイド
を形成する場合、そのシリサイド化が阻害されてしま
い、シリサイドの抵抗値が高くなってしまう。
Further, when the N-type polycrystalline silicon film is used as a mask for forming the source / drain regions of the N-channel MOSFET, N-type impurities are further injected into the N-type polycrystalline silicon film, so that the gate electrode is formed. When the N-type impurity concentration in the inside becomes extremely high and silicide is formed on the gate electrode, the silicidation is hindered and the resistance value of the silicide becomes high.

【0006】これらの現象を防ぐ方法の一つとして、ソ
ース・ドレイン領域形成時の不純物量を減らし、ソース
・ドレイン領域形成時にゲート電極中に入る不純物の量
を減らすという方法があるが、この方法では、ソース・
ドレイン領域の抵抗値が高くなってしまい、MOSFE
Tの特性が劣化してしまう。
As one of the methods of preventing these phenomena, there is a method of reducing the amount of impurities when forming the source / drain regions and reducing the amount of impurities entering the gate electrode when forming the source / drain regions. So the source
Since the resistance value of the drain region becomes high, MOSFE
The characteristic of T deteriorates.

【0007】また、PチャンネルMOSFETのゲート
電極の極性反転を防ぐために、あらかじめ多結晶シリコ
ン中のN型不純物濃度を高くしておく方法があるが、不
純物の固溶限界以上は不可能であり、近年の半導体装置
の微細化にともないゲート電極は薄膜化される傾向にあ
るため、ゲート電極中に固溶できる不純物量は、ますま
す減少する傾向にある。このため、ゲート電極の極性反
転を防ぐために十分な量の不純物の導入が出来なくなっ
てきている。
There is a method of increasing the N-type impurity concentration in the polycrystalline silicon in advance in order to prevent the polarity reversal of the gate electrode of the P-channel MOSFET, but it is impossible to exceed the solid solution limit of impurities. With the recent miniaturization of semiconductor devices, the thickness of the gate electrode tends to be reduced, so that the amount of impurities that can be dissolved in the gate electrode tends to decrease. For this reason, it has become impossible to introduce a sufficient amount of impurities to prevent polarity inversion of the gate electrode.

【0008】また、多結晶シリコン膜への過剰な不純物
の導入は、ゲート電極下のゲート膜あるいはゲート膜の
下のシリコンへの不純物の侵入を招き、MOSFETの
特性に悪影響を及ぼす。
Further, the introduction of excessive impurities into the polycrystalline silicon film causes the impurities to enter the gate film under the gate electrode or the silicon under the gate film, which adversely affects the characteristics of the MOSFET.

【0009】さらに、あらかじめ多結晶シリコン中のN
型不純物濃度を高くしておくことは、NチャンネルMO
SFETのソース・ドレイン領域形成後の、ゲート電極
中の不純物濃度が、さらに高くなってしまい、ゲート電
極上へのシリサイド形成がますます阻害されてしまう。
Further, N in polycrystalline silicon is previously prepared.
To increase the type impurity concentration is to increase the N channel MO
The impurity concentration in the gate electrode after the formation of the source / drain regions of the SFET is further increased, and the formation of silicide on the gate electrode is further hindered.

【0010】上記のように、従来のゲート電極の構造で
は、数多くの問題点を有していた。そこで、本発明はこ
れらの課題を解決しようとするもので、その目的とする
ところは、半導体基板表面上にMOSFETを具備する
半導体装置において、ソース・ドレイン領域形成時にマ
スクとなったゲート電極の構造に起因する諸特性の劣
化、不安定さを無くし、所望の特性を安定して得られる
MOSFETを具備する半導体装置を提供するところに
ある。
As described above, the conventional gate electrode structure has many problems. Therefore, the present invention is intended to solve these problems, and it is an object of the present invention to provide a structure of a gate electrode used as a mask when forming a source / drain region in a semiconductor device including a MOSFET on the surface of a semiconductor substrate. An object of the present invention is to provide a semiconductor device equipped with a MOSFET capable of stably obtaining desired characteristics by eliminating deterioration and instability of various characteristics due to the above.

【0011】[0011]

【課題を解決するための手段】本発明の半導体装置は、
半導体基板表面上にMOSFETを具備する半導体装置
において、前記MOSFETのゲート電極をマスクとし
て自己整合的に形成されたソース・ドレイン領域と、前
記ソース・ドレイン領域形成後に、前記ゲート電極の表
面から一定量を除去した残存部からなるゲート電極を有
するMOSFETを具備することを特徴とする。
The semiconductor device of the present invention comprises:
In a semiconductor device having a MOSFET on the surface of a semiconductor substrate, a source / drain region is formed in a self-aligned manner by using a gate electrode of the MOSFET as a mask, and a fixed amount from the surface of the gate electrode after the source / drain region is formed. It is characterized by comprising a MOSFET having a gate electrode composed of the remaining portion after removal of.

【0012】[0012]

【実施例】以下、本発明の実施例を図面により詳細に説
明する。
Embodiments of the present invention will now be described in detail with reference to the drawings.

【0013】図1は、本発明による半導体装置の構造断
面図であり、NチャンネルMOSFETとPチャンネル
MOSFETを同一基板上に形成した構造の一例を示
す。
FIG. 1 is a structural sectional view of a semiconductor device according to the present invention, showing an example of a structure in which an N-channel MOSFET and a P-channel MOSFET are formed on the same substrate.

【0014】N型半導体基板1内に、N型ウエル領域2
とP型ウエル領域3が形成されている。N型ウエル領域
2内にはP型不純物拡散層からなるソース・ドレイン領
域4とN型多結晶シリコン膜からなるゲート電極5によ
りPチャンネルMOSFET6が形成されており、P型
ウエル領域3内にはN型不純物拡散層からなるソース・
ドレイン領域7とN型多結晶シリコン膜からなるゲート
電極8によりNチャンネルMOSFET9が形成されて
いる。両チャンネルのMOSFETのゲート電極は、各
チャンネルのソース・ドレイン領域形成後に、多結晶シ
リコンの表面から一定量を除去した構造になっている。
An N type well region 2 is formed in an N type semiconductor substrate 1.
And a P-type well region 3 are formed. A P-channel MOSFET 6 is formed in the N-type well region 2 by a source / drain region 4 made of a P-type impurity diffusion layer and a gate electrode 5 made of an N-type polycrystalline silicon film. Source composed of N-type impurity diffusion layer
An N-channel MOSFET 9 is formed by the drain region 7 and the gate electrode 8 made of an N-type polycrystalline silicon film. The gate electrodes of the MOSFETs of both channels have a structure in which a certain amount is removed from the surface of the polycrystalline silicon after forming the source / drain regions of each channel.

【0015】各々のMOSFETは、素子分離膜10に
よって、周囲の素子から分離されている。また、ゲート
電極5,8の下部にはゲート酸化膜11が配設されてい
る。本発明の半導体装置の製造方法の一実施例を図2
(a)〜図2(d)に基づき説明する。
Each MOSFET is isolated from surrounding elements by an element isolation film 10. A gate oxide film 11 is provided below the gate electrodes 5 and 8. FIG. 2 shows an embodiment of a method for manufacturing a semiconductor device of the present invention.
A description will be given based on (a) to FIG. 2 (d).

【0016】まず、N型半導体基板1内に、N型ウエル
領域2とP型ウエル領域3を形成し、次に、N型半導体
基板1表面に素子分離膜10とゲート膜11を形成す
る。この状態を図2(a)に示す。
First, an N-type well region 2 and a P-type well region 3 are formed in the N-type semiconductor substrate 1, and then an element isolation film 10 and a gate film 11 are formed on the surface of the N-type semiconductor substrate 1. This state is shown in FIG.

【0017】次に、半導体基板1上全面に、約6000
Åの多結晶シリコン膜を形成し、熱拡散法により1018
〜1020個/cm3のリンを導入し、N型多結晶シリコ
ン膜にする。フォトエッチによりパターニングし、MO
SFETのゲート電極5,8を形成後、前記ゲート電極
をマスクとして、PチャンネルMOSFET,Nチャン
ネルMOSFETそれぞれのソース・ドレイン領域4,
7を形成する。PチャンネルMOSFETのソース・ド
レイン領域4は、弗化ボロンイオンを、80KeVで1
x1015〜5x1015個/cm2打ち込むことで形成
し、この時、PチャンネルMOSFETのゲート電極中
には、表面から約1000Åの中に、約1020個のボロ
ンイオンが注入される。また、NチャンネルMOSFE
Tのソース・ドレイン領域7は、リンイオンを、60K
eVで1x1015〜5x1015個/cm2打ち込むこと
で形成し、この時、NチャンネルMOSFETのゲート
電極中には、表面から約2000Åの中に、約1020
のリンイオンが注入される。この状態を図2(b)に示
す。
Next, about 6000 is formed on the entire surface of the semiconductor substrate 1.
A polycrystalline silicon film of Å is formed and 10 18 is formed by the thermal diffusion method.
About 10 20 pieces / cm 3 of phosphorus is introduced to form an N-type polycrystalline silicon film. Pattern by photo-etching, MO
After forming the gate electrodes 5 and 8 of the SFET, the source / drain regions 4 of the P-channel MOSFET and the N-channel MOSFET 4 are formed using the gate electrode as a mask.
Form 7. The source / drain region 4 of the P-channel MOSFET contains boron fluoride ions at 1 at 80 KeV.
It is formed by implanting x10 15 to 5x10 15 / cm 2 , and at this time, about 10 20 boron ions are implanted into the gate electrode of the P-channel MOSFET at about 1000 Å from the surface. Also, N channel MOSFE
The source / drain region 7 of T contains phosphorus ions at 60K.
formed by implanting 1x10 15 ~5x10 15 pieces / cm 2 in eV, this time, is in the gate electrode of the N-channel MOSFET, and in the surface of about 2000 Å, about 10 20 phosphorus ions are implanted. This state is shown in FIG.

【0018】次に、半導体基板全面に化学的気相成長法
により約1μmのシリコン酸化膜12を形成し、更に、
表面を平坦化するために、シリコン酸化膜12上に、塗
布膜、例えばシリカ塗布膜を約1μm塗布する。次に、
アルゴンガスを用いたスパッタエッチング法、或は、C
2F6,CHF3,CF4などのガスを用いた反応性イオン
エッチング法などにより、シリコン酸化膜12とシリカ
塗布膜を等速度で、ゲート電極5,8の表面が露出する
までエッチングする。この状態を図2(c)に示す。
Next, a silicon oxide film 12 of about 1 μm is formed on the entire surface of the semiconductor substrate by chemical vapor deposition, and further,
To flatten the surface, a coating film, for example, a silica coating film, is applied on the silicon oxide film 12 by about 1 μm. next,
Sputter etching method using argon gas or C
The silicon oxide film 12 and the silica coating film are etched at a constant rate until the surfaces of the gate electrodes 5 and 8 are exposed by a reactive ion etching method using a gas such as 2F6, CHF3, CF4 or the like. This state is shown in FIG.

【0019】次に、露出されたゲート電極5,8の表面
から約2000Åをエッチング除去する。これにより、
ソース・ドレイン領域4,7の形成時に、ゲート電極
5,8の表面に注入された不純物は除去される。この状
態を図2(d)に示す。
Next, about 2000 Å is removed by etching from the exposed surfaces of the gate electrodes 5 and 8. This allows
When the source / drain regions 4 and 7 are formed, the impurities implanted into the surfaces of the gate electrodes 5 and 8 are removed. This state is shown in FIG.

【0020】その後は、通常の工程を通して、MOSF
ETが形成される。
After that, through the usual process, MOSF
ET is formed.

【0021】以上実施例に基づき具体的に説明したが、
本発明は上記実施例に限定されるものではなく、例え
ば、半導体基板全面に形成された多結晶シリコン膜への
不純物導入は、イオン打ち込みによっても可能であり、
また、導入される不純物が、P型不純物である場合でも
本発明は適用できる。また、MOSFETの構造はシン
グルドレイン構造の場合だけでなく、LDD構造等、ゲ
ート電極をマスクとしてソース・ドレイン領域を形成す
る、全てのMOSFETにおいて適応できる。
Although the specific description has been given based on the embodiment,
The present invention is not limited to the above-mentioned embodiment, and for example, the introduction of impurities into the polycrystalline silicon film formed on the entire surface of the semiconductor substrate can be performed by ion implantation.
The present invention can be applied even when the introduced impurities are P-type impurities. Further, the structure of the MOSFET is not limited to the single drain structure, but is applicable to all MOSFETs such as the LDD structure in which the source / drain regions are formed using the gate electrode as a mask.

【0022】[0022]

【発明の効果】以上述べたように本発明によれば、半導
体基板表面上にMOSFETを具備する半導体装置にお
いて、MOSFETのゲート電極が、ソース・ドレイン
領域形成後に、その表面から一定量を除去された構造か
らなることにより、ゲート電極の構造に起因する諸特性
の劣化、不安定さを無くし、所望の特性を安定して得ら
れるという多大な効果を有する。
As described above, according to the present invention, in the semiconductor device having the MOSFET on the surface of the semiconductor substrate, the gate electrode of the MOSFET is removed from the surface by a certain amount after the source / drain regions are formed. By having such a structure, it is possible to eliminate the deterioration and instability of various characteristics due to the structure of the gate electrode and to obtain a desired effect in a stable manner.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の半導体装置の構造を示す断面図。FIG. 1 is a cross-sectional view showing a structure of a semiconductor device of the present invention.

【図2】本発明の半導体装置の製造方法の一実施例を示
す工程断面図。
FIG. 2 is a process sectional view showing an embodiment of a method for manufacturing a semiconductor device of the present invention.

【符号の説明】[Explanation of symbols]

1 半導体基板 2 N型ウエル領域 3 P型ウエル領域 4 PチャンネルMOSFETのソース・ドレイン領域 5 PチャンネルMOSFETのゲート電極 6 PチャンネルMOSFET 7 NチャンネルMOSFETのソース・ドレイン領域 8 NチャンネルMOSFETのゲート電極 9 NチャンネルMOSFET 10 素子分離膜 11 ゲート酸化膜 12 シリコン酸化膜 1 semiconductor substrate 2 N-type well region 3 P-type well region 4 source / drain region of P-channel MOSFET 5 gate electrode of P-channel MOSFET 6 P-channel MOSFET 7 source / drain region of N-channel MOSFET 8 gate electrode of N-channel MOSFET 9 N-channel MOSFET 10 Element isolation film 11 Gate oxide film 12 Silicon oxide film

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板表面上にMOSFETを具備
する半導体装置において、前記MOSFETのゲート電
極をマスクとして自己整合的に形成されたソース・ドレ
イン領域と、前記ソース・ドレイン領域形成後に、前記
ゲート電極の表面から一定量を除去した残存部からなる
ゲート電極を有するMOSFETを具備することを特徴
とする半導体装置。
1. A semiconductor device comprising a MOSFET on the surface of a semiconductor substrate, the source / drain regions formed in a self-aligned manner using the gate electrode of the MOSFET as a mask, and the gate electrode after the source / drain regions are formed. A semiconductor device comprising: a MOSFET having a gate electrode formed of a remaining portion obtained by removing a certain amount from the surface of the semiconductor device.
JP24586091A 1991-09-25 1991-09-25 Semiconductor device Pending JPH0590574A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24586091A JPH0590574A (en) 1991-09-25 1991-09-25 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24586091A JPH0590574A (en) 1991-09-25 1991-09-25 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0590574A true JPH0590574A (en) 1993-04-09

Family

ID=17139907

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24586091A Pending JPH0590574A (en) 1991-09-25 1991-09-25 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0590574A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186285A (en) * 2004-12-28 2006-07-13 Toshiba Corp Semiconductor device, wiring and their manufacturing method
JP2009076768A (en) * 2007-09-21 2009-04-09 Fujitsu Microelectronics Ltd Method for manufacturing semiconductor device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006186285A (en) * 2004-12-28 2006-07-13 Toshiba Corp Semiconductor device, wiring and their manufacturing method
US7879723B2 (en) 2004-12-28 2011-02-01 Kabushiki Kaisha Toshiba Semiconductor device manufacturing method, wiring and semiconductor device
JP2009076768A (en) * 2007-09-21 2009-04-09 Fujitsu Microelectronics Ltd Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US6475887B1 (en) Method of manufacturing semiconductor device
US4597824A (en) Method of producing semiconductor device
US20030059983A1 (en) Method of manufacturing semiconductor device with offset sidewall structure
JPH06275636A (en) Manufacture of semiconductor device
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US6054357A (en) Semiconductor device and method for fabricating the same
US7247919B1 (en) Method and device to reduce gate-induced drain leakage (GIDL) current in thin gate oxides MOSFETs
EP0459398B1 (en) Manufacturing method of a channel in MOS semiconductor devices
US6008100A (en) Metal-oxide semiconductor field effect transistor device fabrication process
JPH0147016B2 (en)
JPH02270335A (en) Semiconductor device and manufacture thereof
JPH1027854A (en) Semiconductor device and manufacture thereof
KR0156156B1 (en) Method of fabricating semiconductor device
JPH0590574A (en) Semiconductor device
JPH0653492A (en) Semiconductor device and fabrication thereof
JP3438395B2 (en) Method for manufacturing semiconductor device
JP2513634B2 (en) Method for manufacturing semiconductor device
JPH05243262A (en) Manufacture of semiconductor device
JPH0927620A (en) Method of forming semiconductor element and misfet formed by the method
KR0124642B1 (en) Manufacture of semiconductor device
JP3371600B2 (en) Method for manufacturing MIS transistor
JPH06151451A (en) Manufacture of semiconductor device
KR940000986B1 (en) Manufacturing method of stack type cmos
JPH04346476A (en) Manufacture of mosfet
JPH0479336A (en) Production of semiconductor device