JPS6197970A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS6197970A
JPS6197970A JP21830284A JP21830284A JPS6197970A JP S6197970 A JPS6197970 A JP S6197970A JP 21830284 A JP21830284 A JP 21830284A JP 21830284 A JP21830284 A JP 21830284A JP S6197970 A JPS6197970 A JP S6197970A
Authority
JP
Japan
Prior art keywords
region
conductivity type
semiconductor
forming
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21830284A
Other languages
Japanese (ja)
Inventor
Takashi Azuma
吾妻 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP21830284A priority Critical patent/JPS6197970A/en
Publication of JPS6197970A publication Critical patent/JPS6197970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7833Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's
    • H01L29/7834Field effect transistors with field effect produced by an insulated gate with lightly doped drain or source extension, e.g. LDD MOSFET's; DDD MOSFET's with a non-planar structure, e.g. the gate or the source or the drain being non-planar

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce the channel effect by means of forming a channel region in the longitudinal direction while minimizing the same. CONSTITUTION:The distance between a source region 2 and a drain region 3 may be shortened by means of providing N<-> type regions 4, 5 in the longitudinal direction along sidewall of a mesa type channel region. Resultantly the punchthrough voltage between the source region 2 and the drain region 3 may be reduced promoting the short channel effect to be traded off by a P type buried region 11 in the mesa type channel region. In such a constitution, height H of N<-> type regions 4, 5, impurity concentration Nb<-> thereof, another impurity concentration NA of P type region 6, width LP of P type buried region 11 and impurity concentration NA thereof may be specified to reduce the trade off between the short channel effect of element and the hot carrier effect down to the optimum value.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、丈ブミクロンのMOS LSI に適用して
有効な半導体装置およびその製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a semiconductor device that is effective when applied to a long-length micron MOS LSI, and a method for manufacturing the same.

C発明の背景〕 サブミクロンスケールのMOS LSI  の基本素子
であるMOS FET  としては、第1図に示す構造
のものが知られている(A、Reisman、“LOW
 temperatureProcegging an
d small dlmension DeviceF
abrication ” 165 th meeti
ng of Electro −chemical 5
ociety A 199.May、 1984)。
BACKGROUND OF THE INVENTION As a MOS FET, which is a basic element of a submicron scale MOS LSI, the structure shown in FIG. 1 is known (A, Reisman, “LOW
temperatureProcegging an
d small dlmension DeviceF
165th meeti
ng of Electro-chemical 5
ociety A 199. May, 1984).

第1図において、1はP″″形のシリコン基板、2゜3
は/リコン基板1の主訝面に形成されたそれぞれ乎形の
ソース領域、ドレイン領域、4,5はシリコン基板1の
主表面にそれぞれソース領域2゜ドレイン領域3からチ
ャンネル領域側にのびて形成されたP形の領域、6はシ
リコン基板1の主表面で領域4と5の間に形成されたP
形の領域、7は7リコン基板1の主表面に形成された5
IO2からならゲートv化膜、8はゲート酸化膜γ上に
形成きれたポリシリコンまたは金属シリサイドからなる
ゲート1極、9はゲート電極8上に形成されたりフラク
トリ金属からなるゲート電極、10はゲート電極8,9
の両端に形成されたSIO,からなるサイドウオールで
ある。ゲート電極8の下の薄いP形の領域6はゲートし
きい値電圧Vthコントロールのために形成されており
、MOS FETのショートチャンネル効果を軽減する
作用をする。まだ、rの領域4,5はホットキャリア効
果を軽減するために設けられており、ソース側、ドレイ
ン側にそれぞれN+F P接合のダイオード構造が形成
されている。
In Fig. 1, 1 is a P''-shaped silicon substrate, 2゜3
4 and 5 are o-shaped source regions and drain regions formed on the main flank of the silicon substrate 1, respectively, extending from the source region 2° and the drain region 3 toward the channel region side on the main surface of the silicon substrate 1. 6 is a P-type region formed between regions 4 and 5 on the main surface of silicon substrate 1.
5 formed on the main surface of the silicon substrate 1
If it is from IO2, it is a gate oxide film, 8 is a gate pole made of polysilicon or metal silicide completely formed on the gate oxide film γ, 9 is a gate electrode formed on the gate electrode 8 or made of a fracture metal, and 10 is a gate Electrodes 8, 9
This is a sidewall consisting of SIO formed on both ends of the . The thin P-type region 6 under the gate electrode 8 is formed to control the gate threshold voltage Vth, and serves to reduce the short channel effect of the MOS FET. Still, the r regions 4 and 5 are provided to reduce the hot carrier effect, and N+F P junction diode structures are formed on the source side and the drain side, respectively.

このような構成において、ソース・ドレイン間に電圧V
Dを印加すると、N−P接合からN″パ形領域4.5と
P形の領域6とに空乏層といわれる高電界領域が拡がる
。このように空乏層は領域4,5の全域に拡がるため、
その幅W1が広いほどN″′P′P接合電界強度が低く
なり、ホットキャリア効果を軽減できる。したがって、
領域4,5の幅W工は広くすればよいことにはなるが、
別の点かららまり大きくはできない。すなわち、ゲート
電極に電圧を印加してFETをオン状態にしたとき、こ
の領域4,5はドレイン電流に対する寄生抵抗として働
くために、幅W工が広いと電圧降下を起こし電流効率が
低くなるという問題がある。
In such a configuration, a voltage V between the source and drain
When D is applied, a high electric field region called a depletion layer spreads from the N-P junction to the N''P-type region 4.5 and the P-type region 6. In this way, the depletion layer spreads over the entire area of regions 4 and 5. For,
The wider the width W1, the lower the N″′P′P junction electric field strength, and the hot carrier effect can be reduced.
Although it would be better to make the width W of areas 4 and 5 wider,
The tangle cannot be increased from another point of view. In other words, when a voltage is applied to the gate electrode to turn on the FET, these regions 4 and 5 act as parasitic resistance to the drain current, so if the width W is wide, a voltage drop will occur and the current efficiency will decrease. There's a problem.

一方、チャンネル長さLは小石いほど電流効率が大きく
、しかもゲート領域が小さくなって素子の微細化が可能
となって好ましい。しかし、チャンネル長さLがサブミ
クロンスケール(例工ば0.5μm)に小嘆くなると著
しいショートチャンネル効果が起こり、vth値が極端
に低くなる上にそのバラツキ変動が大きくなって、安定
な性能を得ることが困難になり小さくするにも限度があ
る。
On the other hand, the smaller the channel length L is, the higher the current efficiency is, and the smaller the gate region is, which makes it possible to miniaturize the device, which is preferable. However, when the channel length L reaches the submicron scale (for example, 0.5 μm), a significant short channel effect occurs, and the vth value becomes extremely low and its variation becomes large, making it difficult to maintain stable performance. It becomes difficult to obtain, and there is a limit to how small it can be made.

したがって、サブミクロンの素子を得るにはホットキャ
リア効果とショートチャンネル効果とを同時に軽減して
なお微細化をはかるために特別に工夫を施妊なければな
らない。
Therefore, in order to obtain a submicron element, special measures must be taken to simultaneously reduce the hot carrier effect and the short channel effect and still achieve miniaturization.

〔発明の目的〕[Purpose of the invention]

本発明は、このような点に鑑みて考えられたものであυ
、その目的とするところは、サブミクロンスケールの微
細化素子であってもホットキャリア効果やショートチャ
ンネル効果が十分に軽減でき高性能を保持できるような
半導体装置およびその製造方法を提供することにある。
The present invention was conceived in view of these points.
The purpose is to provide a semiconductor device and its manufacturing method that can sufficiently reduce hot carrier effects and short channel effects and maintain high performance even in submicron-scale miniaturized elements. .

〔発明の概要〕[Summary of the invention]

本発明は、このような目的を達成するために、チャンネ
ル領域が主表面より凸状に形成された第1導電形で低濃
度の半導体基板に、ソース、ドレインとなる第2導電形
の高濃度領域とこれに接融しかつ凸状チャンネル領域の
側壁に接触する第2導電形の低濃度領域を形成し、さら
にチャンネル領域に埋込まれた第1導電形の領域とチャ
ンネル領域のゲート絶縁膜下に第1導電形の領域を形成
し、例えばNNPP 構造にして最大電界強度を低くし
ホットキャリア効果を経減し、かつチャンネルを縦方向
にも形成して平面的チャンネル長舌を短かくしながら実
効的チャンネル長ざは十分にとってショートチャンネル
効果を軽減するようにしたものでおる。
In order to achieve such an object, the present invention provides a first conductivity type, low concentration semiconductor substrate in which a channel region is formed in a convex shape from the main surface, and a second conductivity type, high concentration semiconductor substrate, which serves as a source and a drain. a second conductivity type low concentration region welded to the region and in contact with the sidewalls of the convex channel region, and a first conductivity type region embedded in the channel region and a gate insulating film in the channel region. A region of the first conductivity type is formed below, and a region of the NNPP structure is formed, for example, to lower the maximum electric field strength and reduce the hot carrier effect, and a channel is also formed in the vertical direction to shorten the length of the planar channel. The target channel length is set to a sufficient length to reduce the short channel effect.

また、第1導電形の低一度の半導体基板の主表面に、幅
の異なる2つのサイドウオールを利用して凸状にチャン
ネル領域を形成するとともに、凸状チャンネル領域の内
部に第3半導体領域、半導体基板の凸状チャンネル領域
外に第1半導体装置および凸状チャンネル領域の側壁に
第2半導体領域を形成し、次いでゲート絶縁膜上にゲー
ト電極を形成するようにしたものである。
Further, a convex channel region is formed on the main surface of the low-degree semiconductor substrate of the first conductivity type using two sidewalls having different widths, and a third semiconductor region is formed inside the convex channel region. A first semiconductor device is formed outside the convex channel region of the semiconductor substrate, a second semiconductor region is formed on the sidewall of the convex channel region, and then a gate electrode is formed on the gate insulating film.

〔発明の実施例〕[Embodiments of the invention]

次に本発明を実施例にもとづいて詳細に説明する。 Next, the present invention will be explained in detail based on examples.

第2図は本発明に係わる半導体装置の一実施例の断面図
であり、第1図と同一または相当部分には同一符号を付
しておる。同図において、シリコン基板1はチャンネル
領域の部分が主表面よシ突き出て凸状に形成されてお9
、この凸状のチャンネル領域の主嚢面にはP形の領域6
が形成されている。また、N′″形の領域4,5は従来
よりも幅W2が不埒く、凸状のチャンネル領域の側壁に
沿って縦方向に長く形成されており、その間のシリコン
基板1中には所定の間隔をおいてP形の領域11が形成
されている。また、ゲート酸化膜7はP影領域6の表面
とてれ、サイドフォール10はN形の領域4,5の側壁
に沿って形成されている。
FIG. 2 is a sectional view of one embodiment of a semiconductor device according to the present invention, and the same or corresponding parts as in FIG. 1 are given the same reference numerals. In the figure, a silicon substrate 1 has a channel region portion projected from the main surface and formed in a convex shape.
, there is a P-shaped region 6 on the main capsule surface of this convex channel region.
is formed. Further, the N'''-shaped regions 4 and 5 have a width W2 wider than that of the conventional one, and are formed to be long in the vertical direction along the side wall of the convex channel region, and a predetermined portion is formed in the silicon substrate 1 between them. P-type regions 11 are formed at intervals.Furthermore, the gate oxide film 7 is peeled off from the surface of the P-shaded region 6, and side falls 10 are formed along the side walls of the N-type regions 4 and 5. ing.

なお、ゲート電極は図示しないが、ゲート酸化膜7上に
形成される。
Note that although the gate electrode is not shown, it is formed on the gate oxide film 7.

このような構成において、N−形の領域4.5を凸状を
有するチャンネル領域の側壁に沿って縦方向に設けたこ
とによって、ソース領域2とドレイン領域3との間の距
離が短かくなるので、ソース領域2とドレイン領域3間
のパンチスルー電圧が小さくなり、ショートチャンネル
効果が促進されるが、凸状を有するチャンネル領域内に
埋設されたP形の領域11によって相殺することができ
る。
In such a configuration, the distance between the source region 2 and the drain region 3 is shortened by providing the N-type region 4.5 vertically along the sidewall of the channel region having a convex shape. Therefore, the punch-through voltage between the source region 2 and the drain region 3 becomes small and the short channel effect is promoted, but this can be offset by the P-type region 11 buried in the channel region having a convex shape.

この場合、N形の領域4.5の高さHとその不純物濃度
N、、、p形の領域6の不純物濃度NAおよび埋込みP
形の領域11の幅り、とその不純物濃度Nムが素子のシ
ョートチャンネル効果とホットキャリア効果とのトレー
ドオフを最適値に軽減するように決められる。
In this case, the height H of the N-type region 4.5 and its impurity concentration N, the impurity concentration NA of the P-type region 6 and the buried P
The width of the shaped region 11 and its impurity concentration N are determined so as to reduce the trade-off between the short channel effect and the hot carrier effect of the device to an optimum value.

次にこのような半導体装置を製造する方法について説明
する。
Next, a method for manufacturing such a semiconductor device will be described.

第3図(a)〜(2))は本発明に係わる半導体装置の
製造方法の一実施例における各工程の断面図である。
FIGS. 3(a) to 3(2) are cross-sectional views of each step in an embodiment of the method for manufacturing a semiconductor device according to the present invention.

まず、同図(、)に示すようにP″″形のシリコン基板
1にLOCO8等のアイソレーション処理をした後、主
表面に極めて薄い第1の5i8N、膜15と5in2膜
16と膜厚が比較的厚い(約100OA ) LPCV
D法により形成される第2の5i8N、膜17とを順次
形成し、しかる後にリソグラフィ技術にょ9ゲート領域
とするサブミクロン幅の溝を形成すべくこの部分の第1
O818N、膜15,51o2膜16と第2の5i8N
、膜17とを除去する。ここで、薄い5io2膜16は
第1のS i 、N、膜15のストレス緩和膜である。
First, as shown in FIG. Relatively thick (approximately 100OA) LPCV
A second 5i8N film 17 formed by the D method is sequentially formed, and then a lithography technique is applied to the first 5i8N film 17 in this portion to form a submicron width groove that will become a gate region.
O818N, film 15, 51o2 film 16 and second 5i8N
, film 17 are removed. Here, the thin 5io2 film 16 is a stress relieving film for the first S i , N film 15 .

次いで、Qつ法により5in2膜を溝がほぼ埋められる
程度の厚さく例えば約1000A程度)に形成した後、
方向性エツチング(例えばRIE(ReactiveI
on Etching))を行なって同図(b)に示す
ように前記溝の内壁に所定幅のslo、からなるサイド
フォール18を形成する。次に第1の518N、膜15
゜Sin、膜16および第2の5IBN4膜17をマス
クとしてシリコン基板1にB(ホウ素)をイオン注入し
てP形の領域11を形成する。この領域11は例えば深
でか0.1μm程度、?a度が10 〜lO個/cm 
 のオーダに設定されるが、これらは各条件を考慮して
最適値が選ばれる。次に丈イドウオール18を酸処理等
により除去した後、同図(C)に示すように溝部にエピ
タキシャル生長によりシリコン基板゛1と同程度の不純
物濃度のP形のエピタキシャル層19を形成する。この
場合、このエピタキシャル層19の厚さは溝の深さより
も大きくても小さくても良い。次いで熱酸化によりエピ
タキシャル層19の表面にSiO□の酸化膜20を形成
する。この場合、この熱酸化膜20の厚ては、後の工程
においてA、 (砒素)を注入する際にこれがエピタキ
シャル層1Sまで到達しない程度の浮石に設定式れる。
Next, a 5 in 2 film is formed using the Q method to a thickness that almost fills the trench (for example, about 1000 A), and then
Directional etching (e.g. RIE (ReactiveI)
On Etching)) is performed to form a side fall 18 having a predetermined width slo on the inner wall of the groove as shown in FIG. 2(b). Next, the first 518N, film 15
A P-type region 11 is formed by ion-implanting B (boron) into the silicon substrate 1 using the .degree. Sin film 16 and the second 5IBN4 film 17 as masks. This region 11 is, for example, about 0.1 μm deep. A degree is 10 to 10 pieces/cm
The optimum values are selected taking into account each condition. After removing the long side wall 18 by acid treatment or the like, a P-type epitaxial layer 19 having an impurity concentration similar to that of the silicon substrate 1 is formed in the groove by epitaxial growth, as shown in FIG. In this case, the thickness of this epitaxial layer 19 may be larger or smaller than the depth of the groove. Next, an oxide film 20 of SiO□ is formed on the surface of the epitaxial layer 19 by thermal oxidation. In this case, the thickness of the thermal oxide film 20 is set so that when A (arsenic) is implanted in a later step, it does not reach the epitaxial layer 1S.

一方、エピタキシャル層19の実効的な厚さは、後の工
程において形成されるN領域の高さHを設定することに
なる。次に第2の5L8N4膜17のみを燐酸処理によ
り除去し、この除去した後のシリコン基板1上にA、 
(砒素)を注入して主表面にP形のソース領域2とドレ
イン領域3とを形成する(同図(d))。次にHF液の
酸処理により熱酸化膜20と5102膜16とを、さら
に燐酸液の酸処理により第1の8,8N、膜15をそれ
ぞれ除去した後、全表面にG〕法によシPSG膜を形成
し、方向性エツチング(例えばRIE )を行なって同
図(、)に示すようにエピタキシャル層19の側壁KP
SGサイドウオール21を形成する。しかる後、ウェッ
ト雰囲気中でゲート酸化を行なって同図(f)に示すよ
うにエピタキシャル層19の表面にはゲート酸化膜22
を、N層形のソース領域2とドレイン領域3上にはそれ
よりも膜厚の厚い5IO2膜23を形成する。同時にP
SGサイドワオール21からエピタキシャル層19の側
壁に燐の拡散が発生し、r層24が形成される。次に、
Qつ法によりW(タングステン)等のリフラクトリ金属
をゲート酸化膜22上に選択形成場せてゲート電極9を
形成する。この場合、ゲート電極9のパターニングはゲ
ート酸化膜22の領域をはみ出し、PSGティドウオー
ル21を覆うような形状で可能であり、厳密な寸法コン
トロールは不要である。その後、全面に保護用のPSG
膜を(至)法で形成し、コンタクト孔を介して各電極の
配線を行なって素子を完成させることは言うまでもない
On the other hand, the effective thickness of the epitaxial layer 19 determines the height H of the N region formed in a later step. Next, only the second 5L8N4 film 17 is removed by phosphoric acid treatment, and A,
(arsenic) is implanted to form a P-type source region 2 and drain region 3 on the main surface (FIG. 4(d)). Next, the thermal oxide film 20 and the 5102 film 16 are removed by acid treatment with HF solution, and the first 8,8N film 15 is removed by acid treatment with phosphoric acid solution, and then the entire surface is coated with the G method. A PSG film is formed and directional etching (for example, RIE) is performed to form the sidewall KP of the epitaxial layer 19 as shown in the figure (, ).
SG sidewall 21 is formed. Thereafter, gate oxidation is performed in a wet atmosphere to form a gate oxide film 22 on the surface of the epitaxial layer 19, as shown in FIG.
A 5IO2 film 23, which is thicker than the N-layer source region 2 and drain region 3, is formed on the N-layer type source region 2 and drain region 3. At the same time P
Phosphorus diffuses from the SG sidewall 21 to the sidewall of the epitaxial layer 19, forming an r layer 24. next,
The gate electrode 9 is formed by selectively forming a refractory metal such as W (tungsten) on the gate oxide film 22 using the Q method. In this case, the gate electrode 9 can be patterned in a shape that extends beyond the area of the gate oxide film 22 and covers the PSG mud wall 21, and strict dimensional control is not required. After that, protective PSG was applied to the entire surface.
Needless to say, the device is completed by forming the film using a method and wiring each electrode through the contact holes.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による半導体装置によると、
チャンネル領域が主表面よりも凸状に形成された第1導
電形低濃度の半導体基板に、ソース、ドレインとなる第
2導電形の高濃度領域とこれに接触しかつ凸状チャンネ
ル領域の側壁に接触する第2導電形の低濃度領域を形成
し、さらにチャンネル領域に埋込まれた第1導電形の領
域とゲート絶縁膜下の第1導電形の領域とを形成してソ
ース側、ドレイン側に例えばNNP P 接合のダイオ
ード構造を形成することによシ、N領域の幅を大きくす
ることなく、NP 接合の最大電界強度を低くできるた
めに、微細化をはかりながら、ホットキャリア効果を軽
減することができ、かつチャンネル領域を縦方向にも形
成することによυ、平面的チャンネル長を短かくしなが
ら、実効的チャンネル長は十分にとることができるため
に微細化をはかりながらショートチャンネル効果を軽減
することができる。
As explained above, according to the semiconductor device according to the present invention,
A low concentration semiconductor substrate of a first conductivity type in which a channel region is formed in a convex shape relative to the main surface, and a high concentration region of a second conductivity type which becomes a source and a drain and in contact with this and on a side wall of the convex channel region. A low concentration region of the second conductivity type is formed in contact, and a region of the first conductivity type buried in the channel region and a region of the first conductivity type under the gate insulating film are formed to form a contact region on the source side and the drain side. For example, by forming a NNP junction diode structure, the maximum electric field strength of the NP junction can be lowered without increasing the width of the N region, thereby reducing the hot carrier effect while achieving miniaturization. By forming the channel region in the vertical direction, it is possible to shorten the planar channel length while maintaining a sufficient effective channel length. It can be reduced.

また、幅の異なる2つのサイドウォールを利用して半導
体基板に主表面よりも凸状にチャンネル領域を形成する
とともに、凸状チャンネル領域の内部に第3半導体領域
、半導体基板の凸状チャンネル領域外に第1半導体領域
および凸状チャンネル領域の側壁に第2半導体領域を形
成し、次いでゲート絶縁膜上にゲート電極を形成するよ
うにしたため、簡単な工程で高精度に各領域を形成する
ことができ、生産性を向上させることができる。
In addition, a channel region is formed in the semiconductor substrate in a convex shape relative to the main surface by using two sidewalls having different widths, and a third semiconductor region is formed inside the convex channel region, and a third semiconductor region is formed outside the convex channel region of the semiconductor substrate. Since the second semiconductor region is formed on the sidewalls of the first semiconductor region and the convex channel region, and then the gate electrode is formed on the gate insulating film, each region can be formed with high precision in a simple process. It is possible to improve productivity.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来の半導体装置の断面図、第2図は本発明に
よる半導体装置の一実施例の断面図、第3図(a)〜請
は本発明による半導体装置の製造方法の一実施例におけ
る各工程の断面図である。 1・・・・シリコン基板、2・・・・ソース領域、3・
・・・ドレイン領域、4,5・・・・N″″形の領域、
6・・・・P形の領域、1・・・・ゲート絶縁膜、8,
9・・・・ゲート電極、11・・・・P形の領域、15
・・・・第1の518N、膜、16・・・・5in2膜
、17・・・・第2の5i8N。 膜、18・・ ・・サイドウォール、19・・・・エピ
タキシャル層、20・・・・熱酸化膜、21・・・・P
SGサイドウオール、22・・・・ゲート酸化膜、23
・・・・5102膜、24・・・・N層。
FIG. 1 is a sectional view of a conventional semiconductor device, FIG. 2 is a sectional view of an embodiment of a semiconductor device according to the present invention, and FIGS. It is a sectional view of each process in . 1... Silicon substrate, 2... Source region, 3...
...Drain region, 4,5...N''''-shaped region,
6...P-type region, 1...gate insulating film, 8,
9...Gate electrode, 11...P-type region, 15
...First 518N film, 16...5in2 film, 17...Second 5i8N. Film, 18...Side wall, 19...Epitaxial layer, 20...Thermal oxide film, 21...P
SG side wall, 22...gate oxide film, 23
...5102 film, 24...N layer.

Claims (1)

【特許請求の範囲】 1、チャンネル領域が主表面よりも凸状に形成された第
1導電形の低濃度の半導体基板と、前記半導体基板の主
表面に形成された第2導電形の高濃度の第1半導体領域
と、前記第1半導体領域に接触しかつ前記チャンネル領
域の側壁に接触して形成された第2導電形の低濃度の第
2半導体領域と、前記チャンネル領域に埋設された第1
導電形の第3半導体領域と、前記チャンネル領域の主表
面に形成された第1導電形の第4半導体領域と、前記チ
ャンネル領域上に絶縁膜を介して形成されたゲート電極
とを備えたことを特徴とする半導体装置。 2、第1導電形の低濃度の半導体基板上に溝を有する第
1の絶縁膜を形成する工程と、前記溝の内側に第1のサ
イドウォールを形成しこれをマスクとして前記半導体基
板上に不純物を注入して第1導電形の第3半導体領域を
形成する工程と、前記第1のサイドウォールを除去した
後に溝内に第1導電形の半導体層を形成する工程と、前
記第1導電形の半導体層の表面に第2の絶縁膜を形成し
前記第2の絶縁膜をマスクとして前記半導体基板上に不
純物を注入して第2導電形の高濃度の第1半導体領域を
形成する工程と、前記第1、第2の絶縁膜を除去した後
に第1導電形の半導体層の側壁に第2のサイドウォール
を形成する工程と、前記第1導電形の半導体層、第1導
電形の第3半導体領域の表面に第3の絶縁膜を形成する
とともに前記第2のサイドウオールの第1導電形の半導
体層側に第2導電形の低濃度の第2半導体領域を形成す
る工程と、前記第3の絶縁膜上に前記第1導電形の半導
体層、前記第2の半導体領域および前記第2のサイドウ
ォールを覆うようにゲート電極を形成する工程とを有す
ることを特徴とした半導体装置の製造方法。
[Claims] 1. A low concentration semiconductor substrate of a first conductivity type in which a channel region is formed to be more convex than the main surface, and a high concentration semiconductor substrate of a second conductivity type formed on the main surface of the semiconductor substrate. a second semiconductor region of a second conductivity type and a low concentration formed in contact with the first semiconductor region and a sidewall of the channel region; 1
A third conductivity type semiconductor region, a first conductivity type fourth semiconductor region formed on the main surface of the channel region, and a gate electrode formed on the channel region with an insulating film interposed therebetween. A semiconductor device characterized by: 2. Forming a first insulating film having a groove on a low concentration semiconductor substrate of a first conductivity type, and forming a first sidewall inside the groove and using this as a mask, forming a first insulating film on the semiconductor substrate. a step of implanting impurities to form a third semiconductor region of a first conductivity type; a step of forming a semiconductor layer of a first conductivity type in the trench after removing the first sidewall; and a step of forming a semiconductor layer of the first conductivity type in the trench. forming a second insulating film on the surface of the shaped semiconductor layer, and using the second insulating film as a mask, implanting impurities onto the semiconductor substrate to form a highly concentrated first semiconductor region of a second conductivity type; forming a second sidewall on the sidewall of the first conductivity type semiconductor layer after removing the first and second insulating films; forming a third insulating film on the surface of the third semiconductor region, and forming a low concentration second semiconductor region of the second conductivity type on the first conductivity type semiconductor layer side of the second sidewall; a step of forming a gate electrode on the third insulating film so as to cover the semiconductor layer of the first conductivity type, the second semiconductor region, and the second sidewall. manufacturing method.
JP21830284A 1984-10-19 1984-10-19 Semiconductor device and manufacture thereof Pending JPS6197970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21830284A JPS6197970A (en) 1984-10-19 1984-10-19 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21830284A JPS6197970A (en) 1984-10-19 1984-10-19 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS6197970A true JPS6197970A (en) 1986-05-16

Family

ID=16717707

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21830284A Pending JPS6197970A (en) 1984-10-19 1984-10-19 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS6197970A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177027A (en) * 1990-08-17 1993-01-05 Micron Technology, Inc. Process for fabricating, on the edge of a silicon mesa, a MOSFET which has a spacer-shaped gate and a right-angled channel path
US5262337A (en) * 1991-03-13 1993-11-16 Gold Star Electron Co., Ltd. Method of making a metal oxide semiconductor field effect transistor having a convex channel region

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5177027A (en) * 1990-08-17 1993-01-05 Micron Technology, Inc. Process for fabricating, on the edge of a silicon mesa, a MOSFET which has a spacer-shaped gate and a right-angled channel path
US5262337A (en) * 1991-03-13 1993-11-16 Gold Star Electron Co., Ltd. Method of making a metal oxide semiconductor field effect transistor having a convex channel region

Similar Documents

Publication Publication Date Title
JP2826924B2 (en) Method of manufacturing MOSFET
JP2751612B2 (en) Vertical power transistor and method of manufacturing the same
JPH0629532A (en) Mosfet and its manufacture
US4402761A (en) Method of making self-aligned gate MOS device having small channel lengths
JPWO2008087763A1 (en) Semiconductor device and manufacturing method thereof
JP2005520319A (en) Symmetrical trench metal oxide semiconductor field effect transistor device and method for manufacturing the same
JP2002299620A (en) Method for manufacturing silicon carbide semiconductor device
JPH0846196A (en) Mos transistor and its preparation
JPS6153774A (en) Semiconductor device and production thereof
JPH04259258A (en) Manufacture of mis field effect semiconductor device
JP2001119019A (en) Semiconductor device and manufacturing method therefor
JPS6197970A (en) Semiconductor device and manufacture thereof
JPH10107276A (en) Fabrication of semiconductor device
US20090230515A1 (en) Insulated gate semiconductor device and method for manufacturing the same
JPS61174666A (en) Semiconductor device
JPS62229880A (en) Semiconductor device and manufacture thereof
JPS60175458A (en) Semiconductor device and manufacture thereof
JPS63142676A (en) Manufacture of semiconductor device
JP3017838B2 (en) Semiconductor device and manufacturing method thereof
JP3031282B2 (en) Semiconductor device
JP2003289145A (en) Horizontal power mos transistor and manufacturing method therefor
JPS6237543B2 (en)
JP3532494B2 (en) Method for manufacturing semiconductor device
JPH06244415A (en) Semiconductor device and manufacture thereof
JP2966037B2 (en) Method for manufacturing semiconductor device