JPS58131773A - Semiconductor device and its manufacture - Google Patents

Semiconductor device and its manufacture

Info

Publication number
JPS58131773A
JPS58131773A JP57013260A JP1326082A JPS58131773A JP S58131773 A JPS58131773 A JP S58131773A JP 57013260 A JP57013260 A JP 57013260A JP 1326082 A JP1326082 A JP 1326082A JP S58131773 A JPS58131773 A JP S58131773A
Authority
JP
Japan
Prior art keywords
film
drain
source
substrate
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP57013260A
Other languages
Japanese (ja)
Other versions
JPH05870B2 (en
Inventor
Eiji Takeda
英次 武田
Hitoshi Kume
久米 均
Yoshinobu Nakagome
儀延 中込
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP57013260A priority Critical patent/JPS58131773A/en
Publication of JPS58131773A publication Critical patent/JPS58131773A/en
Publication of JPH05870B2 publication Critical patent/JPH05870B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42364Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity
    • H01L29/42368Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the insulating layer, e.g. thickness or uniformity the thickness being non-uniform

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To obtain a MOS transistor having high dielectric resistance by burying the peak of the impurity concentration of at least one of a source and a drain into a substrate. CONSTITUTION:A gate oxide film 7 is grown onto the p type Si substrate 1 with a channel-implantation 10, and a conductor 6 consisting of polycrystalline Si is deposited. A Si nitride film is deposited onto the conductor, and a photosensitive resin film 9 is applied onto the nitride film, thus forming a gate section. The photosensitive resin film is removed, and the whole wafer is oxidized. High- energy ion-implantation is executed and phosphorus ions are implanted in order to form source-drain layers. The peak of the distribution of impurity concentration formed at that time extends over the distance of approximately 0.2-0.3mum from the surface of Si. The stopper 8 of ion-implantation is removed, and the whole wafer is coated with a protective film 3 made of phosphorus silicate glass. Contact holes for contact with source-drain sections are bored into the protective film 3, and As ions are implanted through the holes.

Description

【発明の詳細な説明】 従来、MOSトランジスタと呼ばれるものは1第1図(
a)に示すように、半導体基板1上に、ゲート絶縁膜7
を介してゲート導体6を形成し、そのゲートの両側にソ
ース・ドレイン2の拡散層を持っている構造を有してい
る。図中、3および5は保護膜、4はソースおよびドレ
イン電極を示す8・そのとき、拡散層の不純物濃度のピ
ークは81表面近くにある。そのため、ゲート導体6の
寸法が短かくなるにしたがって、MOSトランジスタの
動作時のドレイン端の電界が非常に大きくなり、1)ソ
ース・ドレイン耐圧、2)ドレイン端に発生するホット
エレクトロンの注入による耐圧低下が大きな問題となる
。素子寸法が小さくなることにより、それに伴なって閾
値電圧vthを制御するためにチャネル・インプランテ
ーシ冒ン10を高濃度にしなければならないので、この
傾向はさらに強くなる。第2図に示すように、実効チャ
ネル長さμmの素子でホットエレクトロン耐圧は4.5
V程度に低下するので、この耐圧を上げる必要がある。
[Detailed Description of the Invention] Conventionally, what is called a MOS transistor is shown in Fig. 1 (
As shown in a), a gate insulating film 7 is formed on the semiconductor substrate 1.
It has a structure in which a gate conductor 6 is formed through the gate conductor 6, and source/drain 2 diffusion layers are provided on both sides of the gate. In the figure, 3 and 5 indicate protective films, and 4 indicates source and drain electrodes.8 At that time, the peak of the impurity concentration of the diffusion layer is near the surface of 81. Therefore, as the dimensions of the gate conductor 6 become shorter, the electric field at the drain end becomes extremely large during operation of the MOS transistor, resulting in 1) source-drain breakdown voltage, and 2) breakdown voltage due to injection of hot electrons generated at the drain end. The decline is a big problem. This tendency becomes even stronger as device dimensions become smaller, requiring a correspondingly higher concentration of the channel implantation agent 10 to control the threshold voltage vth. As shown in Figure 2, the hot electron breakdown voltage is 4.5 for a device with an effective channel length of μm.
Since the voltage decreases to about V, it is necessary to increase this breakdown voltage.

第2図は実効チャネル長の関数とする耐圧の変化を示し
、図は21はホットエレクトロン耐圧を示し122はド
レイン耐圧を示し、実線が従来のMOSトランジスタの
耐圧を表わし、比較のために後に述べる本発明によるM
O8)ランジスタの耐圧が点線で一緒に記載されている
Figure 2 shows the change in breakdown voltage as a function of effective channel length, in which 21 indicates the hot electron breakdown voltage, 122 indicates the drain breakdown voltage, and the solid line represents the breakdown voltage of a conventional MOS transistor, which will be discussed later for comparison. M according to the invention
O8) The breakdown voltage of the transistor is also indicated with a dotted line.

本発明の目的は、したがって、素子寸法が小さくても高
い耐圧を有するMO8)ランジスタおよびそれを製造す
るための方法を提供することである。
The object of the present invention is therefore to provide an MO8) transistor with a high breakdown voltage even with small component dimensions and a method for manufacturing the same.

上記目的を達成するために、本発明による絶縁効果トラ
ンジスタは、ソースおよびドレインの少なくとも一方の
不純物濃度のピークが半導体基板表面ではなく、基板内
に埋−め込まれていることを要旨とする。
In order to achieve the above object, the insulating effect transistor according to the present invention is characterized in that the impurity concentration peak of at least one of the source and drain is not at the surface of the semiconductor substrate but is buried within the substrate.

本発明による絶縁効果トランジスタの製造方法は、半導
体基板表面にゲート酸化膜を形成する工程、上記ゲート
酸化膜上にゲートとなる導体を被着させる工程、上記導
体上にイオン・インプランテーションのストッパとなる
膜を形成する工程、以上のようにして形成された積層膜
を所定のパターンに形成する工程、不純物濃度のピーク
が半導体基板表面ではなく、基板内に埋め込まれるよう
に、所定のパターンに形成されたストッパをマスクとし
て高エネルギのイオンを上記半導体基板表面に打ち込み
、ソース・ドレインを形成する工程九全面を保護膜で被
覆する工程、上記保護膜の所定の位置に孔をあけ、ソー
スおよびドレイン電極を設ける工程を含む。
The method for manufacturing an insulation effect transistor according to the present invention includes a step of forming a gate oxide film on the surface of a semiconductor substrate, a step of depositing a conductor to become a gate on the gate oxide film, and a step of depositing an ion implantation stopper on the conductor. A process of forming the laminated film formed in the above manner into a predetermined pattern.A process of forming a laminated film formed as described above into a predetermined pattern so that the peak of impurity concentration is not on the surface of the semiconductor substrate but embedded within the substrate. Using the stopper as a mask, high-energy ions are implanted into the surface of the semiconductor substrate to form sources and drains. 9. A step of covering the entire surface with a protective film. Holes are formed at predetermined positions in the protective film to form sources and drains. The method includes a step of providing an electrode.

本発明により、不純物濃度ピークが81表面から離れて
基板内に埋め込まれ、ドレイン端がチャネル・インプラ
ンテーションからも離れることになり、そこの電界が著
しく減少し、そのことによって素子の耐圧が改善される
According to the present invention, the impurity concentration peak is moved away from the 81 surface and buried in the substrate, and the drain end is also moved away from the channel implantation, which significantly reduces the electric field there, thereby improving the breakdown voltage of the device. Ru.

以下に実施例を用いて本発明を一層詳しく説明するがそ
れらは例示に過ぎず、本発明の枠を越えることなく、い
ろいろの改良や変形があり得るこ−とは勿論である。
The present invention will be described in more detail below using examples, but these are merely illustrative, and it goes without saying that various improvements and modifications may be made without going beyond the scope of the present invention.

実施例 1 第3図(a)に示すように、チャネル・インプランテー
ション10を有する100Ω・伽のp型S1基板1上に
、ゲート酸化膜7を20nm成長させ、その上に、CV
D法により多結晶S1から成る導体6(メタルシリサイ
ド、純メタルWまたはMOでもよい。)を約300 n
m堆積する。その導体の上に、イオン・インプランテー
ションのストッパー8になるもの、ここではS1窒化膜
200 nmを堆積する。その上に感光性樹脂膜9を塗
り、写真蝕刻法によりパターンを形成し、下の積層膜7
.6.8を・エツチングし、ゲート部分を形成する。こ
のエツチングには、μ波プラズマエッチを用いた。
Example 1 As shown in FIG. 3(a), a gate oxide film 7 of 20 nm is grown on a 100Ω p-type S1 substrate 1 having a channel implant 10, and a CV
A conductor 6 (metal silicide, pure metal W or MO may be used) made of polycrystalline S1 is formed by the D method to a thickness of about 300 nm.
Deposit m. On top of the conductor, a 200 nm thick S1 nitride film, which will become the stopper 8 for ion implantation, is deposited. A photosensitive resin film 9 is applied thereon, a pattern is formed by photolithography, and a laminated film 7 below is formed.
.. 6. Etch 8 to form a gate part. For this etching, μ-wave plasma etching was used.

つぎに感光性樹脂膜を除去し、ウェハ全体を酸化する。Next, the photosensitive resin film is removed and the entire wafer is oxidized.

この実施例では、ゲート導体6として多結晶S1を用い
たため、酸化することができるが、もしゲート導体とし
て純メタルMOまたはWを用いる場合には、酸化する必
要はない。この時、酸化膜11が約20 nm形成され
た。つぎに、この上か)、第3図(b)に図式的に矢印
で示すように、ソース・ドレイン耐圧を形成するため、
高エネルギのイオン・インプランテーションを行なう。
In this embodiment, since polycrystalline S1 is used as the gate conductor 6, it can be oxidized, but if pure metal MO or W is used as the gate conductor, oxidation is not necessary. At this time, the oxide film 11 was formed to a thickness of about 20 nm. Next, as shown schematically by the arrows in FIG. 3(b), in order to form a source/drain breakdown voltage,
Perform high-energy ion implantation.

ここでは150 keVの燐イオンを打ち込んだ。その
時の形成される不純物濃度分布のピークは、第4図に2
3で示すように、Si表面から、約0.2〜0.3μm
の距離にあった。
Here, 150 keV phosphorus ions were implanted. The peak of the impurity concentration distribution formed at that time is shown in Figure 4.
As shown in 3, about 0.2 to 0.3 μm from the Si surface.
It was at a distance of

つぎに、第3図(C)に示すように、イオン・インプラ
ンテーションのストン/パー8を除き、ウェハ全体を燐
硅酸ガラスの保護膜3で覆う。その保護膜3に、ソース
・ドレイン部にコンタクトを取るためのフンタクト孔を
あけ、その孔を通して、Asのイオン打込みを行なう。
Next, as shown in FIG. 3C, the entire wafer except for the ion implantation stone/par 8 is covered with a protective film 3 of phosphosilicate glass. A hole is made in the protective film 3 to make contact with the source/drain portion, and As ions are implanted through the hole.

その条件は% 60 keV5 X 1015cr;”
であった。このときのイオン打込みによって得られる不
純物濃度分布を第4図に24で示す。勿論1燐のイオン
を打ち込むこともできる。この工程まででできあがった
素子構造は、第3図(c)に示すような断面構造になっ
ている。最後に為第3図(d)に示すようにソースおよ
びドレイン電極4を設ける。
The conditions are %60 keV5 x 1015cr;”
Met. The impurity concentration distribution obtained by the ion implantation at this time is shown at 24 in FIG. Of course, it is also possible to implant 1 phosphorus ions. The element structure completed up to this step has a cross-sectional structure as shown in FIG. 3(c). Finally, source and drain electrodes 4 are provided as shown in FIG. 3(d).

以上説明したように、本発明によれば、ドレイン端15
はチャネル・インプランテーション10からも離れるこ
とになり、そこの電界は著しく減少し、そのことによっ
て素子の耐圧が向上する。
As explained above, according to the present invention, the drain end 15
is also moved away from the channel implant 10, and the electric field there is significantly reduced, thereby improving the breakdown voltage of the device.

以上において、ソース・ドレインは対称的な構造になっ
ているため、多少ソース側のチャネル抵抗が大きくなる
可能性があるので、これを避るためには、第5図(b)
に示すプロセス工程を用いればよい。
In the above, since the source and drain have a symmetrical structure, there is a possibility that the channel resistance on the source side becomes somewhat large.
The process steps shown in can be used.

第5図(a)までは、前記の第3図(b)までのプロセ
ス工程を用い、つぎに第5図(b)に示すように、感光
性樹脂膜9′をパターン形成する。この場ら 合、ソース部分全体には感光性樹脂膜がかぶさな八 いようにし、また、ドレイン部分は1コンタクト・サイ
ズと同程度の孔をあけるようにする。その後、この感光
性樹脂膜9′をマスクにして、前記と同じ条件でA8の
イオン打込みを行なう。このプロセス工程を用いること
により第5図(c)に示すような、片方の拡散層部だけ
埋め込まれたMOS)ランジスタを形成することができ
た。これによつτ作られた素子の耐圧は、従来型と較べ
て第2図に示す様に約2vの耐圧向上を図ることができ
b実施例 2 第6図(a)に示すように、81基板1上にゲート酸化
膜7′を20 nm形成し、その上に81窒化膜12を
50 nm堆積する。その後、第6図(a)に示すよう
にパターニングし、第6図(b)のようにLOCO8酸
化を行なった。そのLOOO8酸化膜は約0.6μmで
あった。その後、このLOOO8酸化膜をエツチングし
て除去する。その断面図が第6図(C)である。この状
態で、ドレイン2を形成するため、AE]のイオン打込
みを60keV、5X10”crn−2の条件で行なう
。そのときの不純物濃度分布を第7図に示す。
Up to FIG. 5(a), the process steps up to FIG. 3(b) described above are used, and then, as shown in FIG. 5(b), the photosensitive resin film 9' is patterned. In this case, the entire source portion should not be covered with a photosensitive resin film, and the drain portion should have a hole about the same size as one contact. Thereafter, using this photosensitive resin film 9' as a mask, ion implantation of A8 is performed under the same conditions as above. By using this process step, it was possible to form a MOS transistor in which only one diffusion layer portion was buried, as shown in FIG. 5(c). As a result, the breakdown voltage of the element made with τ can be improved by about 2V compared to the conventional type as shown in Fig. 2.Example 2 As shown in Fig. 6(a), A gate oxide film 7' is formed to a thickness of 20 nm on an 81 substrate 1, and an 81 nitride film 12 is deposited thereon to a thickness of 50 nm. Thereafter, patterning was performed as shown in FIG. 6(a), and LOCO8 oxidation was performed as shown in FIG. 6(b). The LOOO8 oxide film had a thickness of about 0.6 μm. Thereafter, this LOOO8 oxide film is removed by etching. Its cross-sectional view is shown in FIG. 6(C). In this state, in order to form the drain 2, ion implantation using AE is performed under the conditions of 60 keV and 5×10'' crn-2.The impurity concentration distribution at that time is shown in FIG.

その後、第6図(d)に示すように、Si基板が見えて
いる所だけに選択的にエピタキシャル成長を行なう。1
3はこのとき得られるエピタキシャル成長層を示す。つ
ぎに81窒化膜12と酸化膜7′を一度削除する。その
後、改めて、ゲート酸化膜7を第6図(c)のように約
20 nm形成する。その酸化膜7を通して閾値電圧v
thを制御するために。
Thereafter, as shown in FIG. 6(d), epitaxial growth is selectively performed only where the Si substrate is visible. 1
3 shows the epitaxially grown layer obtained at this time. Next, the 81 nitride film 12 and the oxide film 7' are removed once. Thereafter, a gate oxide film 7 is again formed to a thickness of about 20 nm as shown in FIG. 6(c). Threshold voltage v through the oxide film 7
To control th.

チャネルドープ10を行なう。Channel doping 10 is performed.

つぎに、ゲート・メタル6(または多結晶51)300
 nmを堆積し、第6図(f)のように形成する。この
場合、実質的チャネルは第6図(f)ノ14に相当する
ので、ゲート・メタル6の寸法はそれほど小さくする必
要はない。
Next, gate metal 6 (or polycrystalline 51) 300
nm is deposited and formed as shown in FIG. 6(f). In this case, since the actual channel corresponds to No. 14 in FIG. 6(f), the dimensions of the gate metal 6 do not need to be so small.

ゲート・メタル6を形成したのち、第6図(g)に示す
ように、感光性樹脂膜9をゲート・メタルノドレイン側
の一部を覆うようにパターニングする。その後、この感
光性樹脂膜9をマスクにしてAθまたはPを通常のプロ
セス条件でイオン打込しソース・ドレインを形成する。
After forming the gate metal 6, as shown in FIG. 6(g), the photosensitive resin film 9 is patterned to cover a part of the gate metal node side. Thereafter, using this photosensitive resin film 9 as a mask, Aθ or P ions are implanted under normal process conditions to form sources and drains.

この様にして、ドレイン側の拡散層が埋め込まれたMO
S)ランジスタが形成され、高耐圧化が第2図に示すよ
うに実現された。
In this way, the MO with the drain side diffusion layer buried
S) A transistor was formed, and a high breakdown voltage was realized as shown in FIG.

以上説明した通り本発明によれば高い耐圧を有するMO
S)ランジスタを得ることができる。
As explained above, according to the present invention, an MO having a high breakdown voltage
S) A transistor can be obtained.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は従来のMOS)ランジスタの断面図、第2図は
実効チ、ヤネルと耐圧の間の関係を示す図、第3図は本
発明に、よるMOS)ランジスタの製造工程を示す断面
図、第4図は第3図に示す装置における不純物濃度分布
を示す図、第5図は他の実施の態様における本発明によ
るMOS)ランジスタの製造工程を示す断面図、第6図
はさらに他の一つの実施の態様における本発明によるM
OS)ランジスタの製造工程を示す断面図、第7図は第
6図にテす装置における不純物濃度分布を示す図である
。 1°・°半導体基板12・・・ソース拳ドレイン、3゜
5・・・保護膜、4・・・ソースおよびドレイン電極1
6・・・ゲート導体、7・・・ゲート酸化膜、7′・・
・酸化膜、8・・・ストッパー、9,9′・・・感光性
樹脂膜、1o・・・チャネルOインプランテーション、
11・・・酸化膜12・・・S1窒化膜、13・・・エ
ピタキシャル成長層114・・・実効チャネル長、15
・・・ドレイン端、21・・・従来のMOS)ランジス
タの耐圧の変化を示す曲線、22・・・本発明によるM
OS)ランジスタの耐圧の変化を示す曲線、23・・・
打ち込まれた燐イオン濃度分布を示す曲線、24・・・
打ち込まれた砒素イオン濃度分布を示す曲線。 代理人弁理士  中 村 純之助 1’1図 1’3図 4−2園 賃効手aル4ン□1 才3図 (Q) (b) 才4図 5i 4(g6・う、nvt1mシ々−第5図 (C) オ6区
FIG. 1 is a cross-sectional view of a conventional MOS transistor, FIG. 2 is a diagram showing the relationship between effective channel, channel, and withstand voltage, and FIG. 3 is a cross-sectional view showing the manufacturing process of a MOS transistor according to the present invention. , FIG. 4 is a diagram showing the impurity concentration distribution in the device shown in FIG. 3, FIG. 5 is a cross-sectional view showing the manufacturing process of a MOS transistor according to the present invention in another embodiment, and FIG. M according to the invention in one embodiment
FIG. 7 is a cross-sectional view showing the manufacturing process of the OS) transistor, and is a diagram showing the impurity concentration distribution in the device shown in FIG. 6. 1°·°Semiconductor substrate 12...source fist drain, 3°5...protective film, 4...source and drain electrode 1
6...Gate conductor, 7...Gate oxide film, 7'...
・Oxide film, 8...Stopper, 9,9'...Photosensitive resin film, 1o...Channel O implantation,
11... Oxide film 12... S1 nitride film, 13... Epitaxial growth layer 114... Effective channel length, 15
...Drain end, 21...Curve showing changes in breakdown voltage of a conventional MOS transistor, 22...M according to the present invention
OS) Curve showing changes in resistor voltage resistance, 23...
Curve showing the implanted phosphorus ion concentration distribution, 24...
A curve showing the implanted arsenic ion concentration distribution. Representative Patent Attorney Junnosuke Nakamura 1'1 Figure 1'3 Figure 4-2 School fee a4n□1 Age 3 Figure (Q) (b) Age 4 Figure 5i 4 (g6・U, nvt1mshishi) -Figure 5 (C) O 6th ward

Claims (2)

【特許請求の範囲】[Claims] (1)半導体基板上に作製された絶縁効果トランジスタ
において、ソースおよびドレインの少なくとも一方の不
純物濃度のピークが半導体基板表面ではなく、基板内に
埋め込まれていることを特徴とする半導体装置。
(1) A semiconductor device characterized in that, in an insulating effect transistor fabricated on a semiconductor substrate, the impurity concentration peak of at least one of the source and drain is buried in the substrate rather than at the surface of the semiconductor substrate.
(2)半導体基板表面にゲート酸化膜を形成する工程、
上記ゲート酸化膜上にゲートとなる導体を被着させる工
程、上記導体上にイオン・インプランテーシフンのスト
ッパとなる膜を形成する工程、以上のようにして形成さ
れた積層膜を所定のパターンに形成する工程、不純物濃
度のピークが半導体基板表面ではなく、基板内に埋め込
まれるように、所定のパターンに形成されたストッパを
マスクとして高エネルギのイオンを上記半導体基板表面
に打ち込み、ソース・ドレインを形成する工程全面を保
護膜で被覆する工程、上記保護膜の所定の位置に孔をあ
け、ソースおよびドレイン電極を設ける工程を含゛む、
ことを特徴とする半導体装置の製造方法。
(2) forming a gate oxide film on the surface of the semiconductor substrate;
A step of depositing a conductor to serve as a gate on the gate oxide film, a step of forming a film to serve as a stopper for ion implantation on the conductor, and a step of forming a laminated film formed in the above manner into a predetermined pattern. High-energy ions are implanted into the surface of the semiconductor substrate using a stopper formed in a predetermined pattern as a mask so that the impurity concentration peak is not at the surface of the semiconductor substrate but buried within the substrate. The process includes the steps of: coating the entire surface with a protective film; forming holes at predetermined positions in the protective film to provide source and drain electrodes;
A method for manufacturing a semiconductor device, characterized in that:
JP57013260A 1982-02-01 1982-02-01 Semiconductor device and its manufacture Granted JPS58131773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57013260A JPS58131773A (en) 1982-02-01 1982-02-01 Semiconductor device and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57013260A JPS58131773A (en) 1982-02-01 1982-02-01 Semiconductor device and its manufacture

Publications (2)

Publication Number Publication Date
JPS58131773A true JPS58131773A (en) 1983-08-05
JPH05870B2 JPH05870B2 (en) 1993-01-06

Family

ID=11828244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57013260A Granted JPS58131773A (en) 1982-02-01 1982-02-01 Semiconductor device and its manufacture

Country Status (1)

Country Link
JP (1) JPS58131773A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259574A (en) * 1985-04-12 1986-11-17 ゼネラル・エレクトリツク・カンパニイ Hybrid extension drain construction for reducing effect of hot electron
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315773A (en) * 1976-07-28 1978-02-14 Hitachi Ltd Mis type semiconductor device and its production
JPS5318982A (en) * 1976-08-05 1978-02-21 Nec Corp Insulated gate type semiconductor device
JPS5530873A (en) * 1978-08-28 1980-03-04 Fujitsu Ltd High withstand field-effect transistor of mis type

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5315773A (en) * 1976-07-28 1978-02-14 Hitachi Ltd Mis type semiconductor device and its production
JPS5318982A (en) * 1976-08-05 1978-02-21 Nec Corp Insulated gate type semiconductor device
JPS5530873A (en) * 1978-08-28 1980-03-04 Fujitsu Ltd High withstand field-effect transistor of mis type

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61259574A (en) * 1985-04-12 1986-11-17 ゼネラル・エレクトリツク・カンパニイ Hybrid extension drain construction for reducing effect of hot electron
JP2008235407A (en) * 2007-03-19 2008-10-02 Fujitsu Ltd Semiconductor device and its manufacturing method

Also Published As

Publication number Publication date
JPH05870B2 (en) 1993-01-06

Similar Documents

Publication Publication Date Title
JP2936624B2 (en) Method for manufacturing semiconductor device
JPH073813B2 (en) Field effect transistor and bipolar transistor structure manufacturing method, integrated circuit manufacturing method, semiconductor device manufacturing method, and semiconductor structure manufacturing method
JPS59220971A (en) Manufacture of semiconductor device
JPS626671B2 (en)
JP2997377B2 (en) Semiconductor device and manufacturing method thereof
JPS59219967A (en) Method of producing field effect transistor
JPH07153952A (en) Semiconductor device and manufacture thereof
JPS58131773A (en) Semiconductor device and its manufacture
JPS6251216A (en) Manufacture of semiconductor device
JPS6126264A (en) Manufacture of semiconductor device
JPS63227059A (en) Semiconductor device and manufacture thereof
JPH05343413A (en) Bipolar transistor and manufacture thereof
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
JPH01251669A (en) Manufacture of field effect transistor
JP3141492B2 (en) Method for manufacturing nonvolatile memory element
JPS6043865A (en) Manufacture of semiconductor device
JP2623647B2 (en) Method for manufacturing semiconductor device
JPH05206461A (en) Manufacture of semiconductor device
JPS62179157A (en) Manufacture of semiconductor device
JPH05343515A (en) Semiconductor device and its manufacture
JPH05343703A (en) Manufacture of nonvolatile memory
JPH0527995B2 (en)
JPS60234373A (en) Manufacture of semiconductor device
JPH0644604B2 (en) Manufacturing method of complementary semiconductor device
JPH02125433A (en) Mos type transistor and manufacture thereof