JPH0644604B2 - Manufacturing method of complementary semiconductor device - Google Patents

Manufacturing method of complementary semiconductor device

Info

Publication number
JPH0644604B2
JPH0644604B2 JP58191924A JP19192483A JPH0644604B2 JP H0644604 B2 JPH0644604 B2 JP H0644604B2 JP 58191924 A JP58191924 A JP 58191924A JP 19192483 A JP19192483 A JP 19192483A JP H0644604 B2 JPH0644604 B2 JP H0644604B2
Authority
JP
Japan
Prior art keywords
region
impurity
type
silicide layer
gate electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP58191924A
Other languages
Japanese (ja)
Other versions
JPS6084859A (en
Inventor
一彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP58191924A priority Critical patent/JPH0644604B2/en
Publication of JPS6084859A publication Critical patent/JPS6084859A/en
Publication of JPH0644604B2 publication Critical patent/JPH0644604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型半導体装置の製造方法の改良に関す
る。
Description: TECHNICAL FIELD OF THE INVENTION The present invention relates to an improvement in a method for manufacturing a complementary semiconductor device.

〔発明の技術的背景〕[Technical background of the invention]

従来、相補型半導体装置例えば相補型(C)MOSインバ
ータとしては、第1図に示す如く、N型(100)シリコ
ン基板1にP型ウエル領域2を設け、前記基板1のP型
ウエル領域2外にPチヤネルトランジスタTを、かつ
P型ウエル領域2内にNチヤネルトランジスタTを設
けた構造のものが知られている。以下に、このインバー
タの製造手順について説明する。
Conventionally, as a complementary semiconductor device such as a complementary (C) MOS inverter, as shown in FIG. 1, a P-type well region 2 is provided on an N-type (100) silicon substrate 1 and the P-type well region 2 of the substrate 1 is provided. There is known a structure in which a P channel transistor T p is provided outside and an N channel transistor T N is provided in the P type well region 2. The manufacturing procedure of this inverter will be described below.

まず、前記基板1にウエル領域2を形成した後、基板1
に厚い素子分離領域3を形成する。つづいて、前記基板
1、ウエル領域2上に夫々ゲート絶縁膜4,4を介
してポリシリコン等によるゲート電極5,5を形成
する。次いで、ウエル領域2上にフオトレジスト膜を選
択的に塗布し、PチヤネルトランジスタT側のゲート
電極5と上記フオトレジスト膜をマスクとして基板1
に例えばボロンをイオン注入し、p型のソース、ドレ
イン領域6,7を形成する。同様に、Pチヤネルトラン
ジスタT側にフオトレジスト側を塗布し、このフオト
レジスト膜とゲート電極5をマスクとして砒素または
リンをイオン注入し、N型のソース、ドレイン領域
8,9を形成する。その後、更に層間絶縁膜10を被着
し、コンタクトホール11…を開口して配線層12…を
被着する。これにより、基板1にPチヤネルトランジス
タ(T)を有し、ウエル領域2にNチヤネルトランジ
スタ(T)を有したCMOSインバータが製造され
る。なお、このCMOSインバータの各ソース、ドレイ
ン領域6〜9は、1019〜1020cm-3の略均一な不純物
濃度を有している。
First, after forming the well region 2 on the substrate 1, the substrate 1 is formed.
Then, a thick element isolation region 3 is formed. Subsequently, gate electrodes 5 1 and 5 2 made of polysilicon or the like are formed on the substrate 1 and the well region 2 via gate insulating films 4 1 and 4 2 , respectively. Then, on the well region 2 is selectively coated photoresist film, the substrate 1 a gate electrode 5 1 and the photoresist film P Channel transistor T p-side as a mask
Then, for example, boron is ion-implanted to form p + type source and drain regions 6 and 7. Similarly, applying a photoresist side P Channel transistor T p side, arsenic or phosphorus is ion-implanted the photoresist film and the gate electrode 5 2 as a mask, N + -type source and drain regions 8 and 9 form To do. After that, the interlayer insulating film 10 is further deposited, the contact holes 11 are opened, and the wiring layers 12 are deposited. As a result, a CMOS inverter having the P-channel transistor (T p ) on the substrate 1 and the N-channel transistor (T N ) on the well region 2 is manufactured. The source and drain regions 6 to 9 of this CMOS inverter have a substantially uniform impurity concentration of 10 19 to 10 20 cm −3 .

〔背景技術の問題点〕[Problems of background technology]

しかしながら、前述したCMOSインバータによれば、
次に示す欠点を有する。
However, according to the CMOS inverter described above,
It has the following drawbacks.

上記のような装置において、集積度を上げるために
ゲート長を短かくすると、前記ソース・ドレイン領域6
〜9の電界が強くなり、いわゆるインパクトアイオナイ
ゼイシヨン(衝突電離)を生じ、Nチヤネルトランジス
タではホツトエクトロン、Pチヤネルトランジスタでは
ホツトホールがそれぞれのゲート絶縁膜4,4に注
入され、それぞれのトランジスタの閾値変動を引き起こ
す。特にこのインパクトアイオナイゼイシヨン化の効率
は、NチヤネルトランジスタTで著しく大きいため、
NチヤネルトランジスタTのゲート長の短縮化は困難
でしばしば問題となる。
In the above device, if the gate length is shortened in order to increase the degree of integration, the source / drain region 6
The electric field of up to 9 becomes strong and causes so-called impact ionization (collision ionization). In the N-channel transistor, a photoelectron is injected into the gate insulating films 4 1 and 42, and in the P-channel transistor, a photohole is injected into each gate insulating film 4 1 and 4 2. Cause a threshold fluctuation of. Especially, the efficiency of this impact ionization is significantly high in the N-channel transistor T N.
It is difficult and often problematic to reduce the gate length of the N-channel transistor T N.

PチヤネルトランジスタTのソース、ドレイン領
域6,7に注入されたボロンは拡散係数が大きいため、
前記ソース、ドレイン領域6,9形成後の熱処理工程に
おいて、図における深さ方向ばかりでなく横方向にも拡
散し、ゲート絶縁膜4下にソース、ドレイン領域6,
7が大きく伸びる。特に、ゲート絶縁膜4下に伸びる
横方向拡散は0.7〜0.8μmもある場合があり、ゲート電
極5とソース、ドレイン領域6,7との寄生容量の増大
を招いて特性を悪化させる。
Boron implanted in the source and drain regions 6 and 7 of the P channel transistor T p has a large diffusion coefficient,
The source, in the heat treatment step after the drain region 6 and 9 form, also diffuse laterally as well as the depth direction in the figure, the gate insulating film 4 1 source down the drain region 6,
7 greatly increases. In particular, lateral diffusion extending 4 1 under the gate insulating film may also 0.7~0.8Myuemu, gate electrode 5 and the source worsens characteristics inviting increase in parasitic capacitance between the drain region 6,7.

前述した如く、PチヤネルトランジスタTのソー
ス、ドレイン領域6,7に注入されたボロンは拡散係数
が大きく、トランジスタが微細化されるにつれ、前記ソ
ース、ドレイン領域6,7の接合深さを浅くする為には
不純物濃度を低くする必要があり、これはソース、ドレ
イン領域6,7の抵抗増加を招き、トランジスタ特性を
悪化させる。なお、一般にトランジスタのゲート電極は
配線としても用いられ、この抵抗も信号伝達特性を悪化
させるので好ましくない。
As described above, boron injected into the source and drain regions 6 and 7 of the P-channel transistor T p has a large diffusion coefficient, and the junction depth of the source and drain regions 6 and 7 is reduced as the transistor is miniaturized. In order to do so, it is necessary to lower the impurity concentration, which causes an increase in the resistance of the source / drain regions 6 and 7 and deteriorates the transistor characteristics. Note that the gate electrode of a transistor is generally used also as a wiring, and this resistance also deteriorates the signal transfer characteristic, which is not preferable.

〔発明の目的〕[Object of the Invention]

本発明は、上記事情に鑑みてなされたもので、Nチヤネ
ルトランジスタにおけるホツトエレクトロンによる閾値
の変動と、Pチヤネルトランジスタにおけるゲート絶縁
膜を挾みゲート電極下に伸びるソース、ドレイン領域の
横方向拡散による特性の劣化とを防止するとともに、P
チヤネルトランジスタのソース、ドレイン領域の抵抗、
ゲート電極の抵抗を下げることのできる相補型半導体装
置の製造方法を提供することを目的とするものである。
The present invention has been made in view of the above circumstances and is based on the fluctuation of the threshold value due to the photoelectrons in the N-channel transistor and the lateral diffusion of the source and drain regions extending below the gate electrode across the gate insulating film in the P-channel transistor. Prevents deterioration of characteristics and
Source and drain region resistance of channel transistor,
It is an object of the present invention to provide a method for manufacturing a complementary semiconductor device capable of reducing the resistance of a gate electrode.

[発明の概要] 本発明は、表面にウェル領域を有する半導体基板上に形
成されたゲート電極とソース、ドレイン領域とを有する
NチヤネルトランジスタおよびPチヤネルトランジスタ
からなる相補型半導体装置の製造方法において、 半導体基板にウェル領域を形成し前記基板表面をP型半
導体領域とN型半導体領域とに区分する工程と、前記P
型半導体領域、N型半導体領域上にゲート絶縁膜を介し
てゲート電極を夫々形成する工程と、一方のゲート電極
をマスクとして前記P型半導体領域に低濃度のN型の第
1不純物をイオン注入し、低不純物領域を形成する工程
と、前記ゲート電極の側壁に夫々絶縁物を形成する工程
と、前記ゲート電極、絶縁物をマスクとして前記P型半
導体領域に夫々高濃度のN型の第2不純物をイオン注入
して高不純物領域を形成するとともに、前記第1不純
物,第2不純物より拡散係数の大きいP型の第3不純物
を前記N型半導体領域にイオン注入して高不純物領域を
形成する工程と、上記2種のトランジスタの少なくとも
Pチヤネルトランジスタのソース、ドレイン領域及びゲ
ート電極上にメタルシリサイド層を形成する工程とを具
備し、 前記イオン注入後あるいはメタルシリサイド層の形成後
に熱処理を施して前記P型半導体領域に低不純物領域及
び高不純物領域からなるN型のソース、ドレイン領域を
形成すると同時に、前記N型半導体領域に高不純物領域
からなるP型のソース、ドレイン領域を形成することを
特徴とする相補型半導体装置の製造方法である。
[Summary of the Invention] The present invention provides a method for manufacturing a complementary semiconductor device including an N-channel transistor and a P-channel transistor each having a gate electrode, a source, and a drain region formed on a semiconductor substrate having a well region on the surface thereof. Forming a well region on a semiconductor substrate and dividing the substrate surface into a P-type semiconductor region and an N-type semiconductor region;
Forming a gate electrode on each of the N-type semiconductor region and the N-type semiconductor region via a gate insulating film, and ion-implanting a low concentration N-type first impurity into the P-type semiconductor region using one of the gate electrodes as a mask. Then, a step of forming a low-impurity region, a step of forming an insulator on the side wall of the gate electrode, and a step of forming a high-concentration N-type second region in the P-type semiconductor region using the gate electrode and the insulator as a mask, respectively. An impurity is ion-implanted to form a high-impurity region, and a P-type third impurity having a larger diffusion coefficient than the first impurity and the second impurity is ion-implanted into the N-type semiconductor region to form a high-impurity region. And a step of forming a metal silicide layer on the source and drain regions and the gate electrode of at least the P-channel transistor of the above-mentioned two types of transistors. After the formation of the metal silicide layer or the formation of the metal silicide layer, a heat treatment is performed to form N-type source / drain regions composed of a low impurity region and a high impurity region in the P-type semiconductor region, and at the same time, from the high impurity region And a P-type source / drain region are formed.

[発明の実施例] 以下、本発明の一実施例を第2図(a)〜(e)を参照して説
明する。
[Embodiment of the Invention] An embodiment of the present invention will be described below with reference to FIGS. 2 (a) to (e).

〔i〕まず、半導体基板としてのN型(100)シリコ
ン基板(ウエハ)21表面にP型ウエル領域22を形成
した後、基板21上に素子分離領域23を形成した。つ
づいて、前記基板21上に熱酸化膜及び例えばポリシリ
コン等の電極材とを積層被着した後、これらを同時に写
真蝕刻してゲート絶縁膜24,24とこのゲート絶
縁膜24,24上のゲート電極25,25とを
夫々形成した(第2図(a)図示)。次いで、P型チヤネ
ルトランジスタ形成予定部側に図示しないレジスト膜を
塗布し、ゲート電極25をマスクとしてNチヤネルト
ランジスタ形成予定部側に例えばリンをイオン注入し、
1017〜1019cm-3の低濃度の第1の不純物領域(低不
純物領域)26,26を形成した。更に、上記レジ
スト膜を除去した後、ウエハ21上面に厚さ2000〜
5000ÅのSiO2膜27をCVD(Chemical Vapour
Deposition)法によつて堆積した(第2図(b)図示)。
ここで、このSiO2膜27は、被着すべき面の方向に拘ら
ず略一定の膜厚で被着するため、段差部においてはウエ
ハ21面の垂直方向の膜厚が厚いものとなる。しかる
後、前記SiO2膜27をRIE(Reactive Ion Etchin
g)法等の異方性エツチングによりエツチングを行つ
た。このとき、ゲート電極25,25の端面の段差
部に被着するSiO2膜27が厚いため、ゲート電極2
,25の側壁にSiO2膜27′が残つた。なお、図
では素子分離領域23側に残つた側壁SiO2膜は特に示し
ていない。この後、ウエハ21上にレジスト膜を被着
し、Nチヤネルトランジスタ形成予定部側が露出するよ
うに該レジスト膜を選択的にエツチング除去してレジス
トパターン28を形成した。ひきつづき、このレジスト
パターン28及び前記ゲート電極25等をマスクとし
て砒素をドーズ量3×1011cm-2でイオン注入し、高濃
度の第2の不純物領域(高不純物領域)29,29
を形成した。なお、その結果、一方の第1、第2の不純
物領域26,29からソース領域30が形成され、
他方の第1、第2の不純物領域26,29からドレ
イン領域31が形成された(第2図(c)図示)。
[I] First, a P-type well region 22 was formed on the surface of an N-type (100) silicon substrate (wafer) 21 as a semiconductor substrate, and then an element isolation region 23 was formed on the substrate 21. Subsequently, a thermal oxide film and an electrode material such as polysilicon are laminated and deposited on the substrate 21, and these are photo-etched at the same time to form gate insulating films 24 1 and 24 2 and the gate insulating films 24 1 and 24 1 . 24 gate electrode 25 on the 2 1, 25 2 and were formed respectively (FIG. 2 (a) illustrated). Then, by applying a resist film (not shown) in the P-type Channel transistor forming scheduled portion side, the N Channel transistor forming scheduled portion side, for example, phosphorus ions are implanted using the gate electrode 25 2 is used as a mask,
Low concentration first impurity regions (low impurity regions) 26 1 and 26 2 of 10 17 to 10 19 cm −3 were formed. Further, after removing the resist film, a thickness of 2000 to
A 5000 Å SiO 2 film 27 is formed by CVD (Chemical Vapor
Deposition) method was used (Fig. 2 (b)).
Here, since the SiO 2 film 27 is deposited with a substantially constant film thickness regardless of the direction of the surface to be deposited, the film thickness in the vertical direction of the wafer 21 surface is large in the step portion. Then, the SiO 2 film 27 is removed by RIE (Reactive Ion Etchin).
g) Etching was performed by anisotropic etching such as the method. At this time, since the SiO 2 film 27 deposited on the step portion of the end faces of the gate electrodes 25 1 and 25 2 is thick, the gate electrode 2
The SiO 2 film 27 ′ remained on the side walls of 5 1 , 25 2 . The side wall SiO 2 film left on the element isolation region 23 side is not shown in the drawing. After that, a resist film was deposited on the wafer 21, and the resist film was selectively etched and removed so that the N channel transistor formation planned portion side was exposed to form a resist pattern 28. Subsequently, the resist pattern 28 and the gate electrode 25 2 and the like arsenic is ion-implanted at a dose 3 × 10 11 cm -2 as a mask, the second impurity regions (high impurity region) of the high concentration 29 1, 29 2
Was formed. As a result, the source region 30 is formed from one of the first and second impurity regions 26 1 and 29 1 .
First while the second impurity region 26 2, 29 2 from the drain region 31 are formed (FIG. 2 (c) shown).

〔ii〕次に、前記レジストパターン28を除去した後、
P型ウエル22をフオトレジスト膜で覆いボロンを1×
1013〜3×1015cm-3の濃度でイオン注入した。ここ
で、このイオン注入は、Nチヤネルトランジスタの場合
と同様に段差部に残存SiO2膜27′が形成されているた
め、残存SiO2膜27′もマスクとして用いられる。そし
て、PチヤネルトランジスタのP型のソース、ドレイ
ン領域32,33が形成された。つづいて、700〜1
000℃の熱処理によつて、注入した不純物の活性化と
拡散を行なつた。この結果、ソース、ドレイン領域3
2,33は、Pチヤネルトランジスタのゲート電極25
に対して自己整合的となつた。次いで、厚さ500〜
1000Åのチタン層を全面に蒸着した後、700〜9
00℃で30分間熱処理を施した。その結果、Nチヤネ
ル、Pチヤネルトランジスタのソース、ドレイン領域3
0〜33及びゲート電極25,25のシリコンは前
記チタンと反応し、低抵抗層としてのチタンシリサイド
層34…を形成した。この際、他の領域ではチタンシリ
サイド層を形成せずチタン層のままである。更に、過酸
化水素:アンモニア:水=5:1:1の混合液でチタン
層のみを選択的にエツチング除去した(第2図(d)図
示)。しかる後、全面に層間絶縁層35を形成した後、
Nチヤネル、Pチヤネルトランジスタのソース、ドレイ
ン領域30〜33及びゲート電極25,25の一部
に対応する層間絶縁膜35を選択的に開口してコンタク
トホール36…を形成し、更にAl配線37…を形成し
てCMOSインバータを製造した(第2図(e)図示)。
[Ii] Next, after removing the resist pattern 28,
Cover the P-type well 22 with a photoresist film so that boron is 1 ×.
Ion implantation was performed at a concentration of 10 13 to 3 × 10 15 cm -3 . Here, in this ion implantation, since the residual SiO 2 film 27 ′ is formed in the step portion as in the case of the N channel transistor, the residual SiO 2 film 27 ′ is also used as a mask. Then, P + type source and drain regions 32 and 33 of the P channel transistor are formed. Continuing, 700-1
The implanted impurities were activated and diffused by heat treatment at 000 ° C. As a result, the source / drain regions 3
2 and 33 are the gate electrodes 25 of the P-channel transistor
It became self-aligned to 1 . Then, the thickness 500 ~
After depositing a titanium layer of 1000Å on the whole surface, 700 ~ 9
It heat-processed at 00 degreeC for 30 minutes. As a result, the source and drain regions 3 of the N channel and P channel transistors are formed.
Silicon of 0 to 33 and the gate electrodes 25 2 and 25 1 reacted with the titanium to form titanium silicide layers 34 ... As a low resistance layer. At this time, in other regions, the titanium silicide layer is not formed and the titanium layer remains as it is. Further, only the titanium layer was selectively removed by etching with a mixed solution of hydrogen peroxide: ammonia: water = 5: 1: 1 (shown in FIG. 2 (d)). Then, after forming the interlayer insulating layer 35 on the entire surface,
N-channel, P Channel transistor source, and selectively opening the interlayer insulating film 35 corresponding to a portion of the drain region 30 to 33 and the gate electrode 25 2, 25 1 to form a contact hole 36 ... further Al wiring 37 are formed to manufacture a CMOS inverter (shown in FIG. 2 (e)).

本発明に係るCMOSインバータは、第2図(e)に示す
如く、シリコン基板21にP型ウエル領域22を設け、
このウエル領域22に低濃度、高濃度の不純物領域26
,29からなるソース領域20をかつ低濃度、高濃
度の不純物領域26,29からなるドレイン領域3
1を設け、更にNチヤネル、Pチヤネルトランジスタの
ソース、ドレイン領域29〜32及びゲート電極2
,25上にチタンシリサイド層33…を設けた構
造になつている。
The CMOS inverter according to the present invention is provided with a P-type well region 22 on a silicon substrate 21 as shown in FIG.
The well region 22 has a low concentration and a high concentration impurity region 26.
A source region 20 made of 1 , 29 1 and a drain region 3 made of low-concentration and high-concentration impurity regions 26 2 , 29 2.
1 is provided, and the source and drain regions 29 to 32 and the gate electrode 2 of the N channel and P channel transistors are further provided.
5 2, 25 is decreased to the structure in which a titanium silicide layer 33 ... on 1.

しかして、本発明に係るCMOSインバータによれば、
高濃度の第2の不純物領域26,29とゲート絶縁
膜24との間に低濃度の第1の不純物領域26,2
が形成されているため、ドレイン領域31に電圧を
印加したときにドレイン領域31近傍に発生する電界を
分散させることができ、インパクトアイオナイゼイシヨ
ンを制御できる。また、Nチヤネル、Pチヤネルのトラ
ンジスタのソース、ドレイン領域30〜33及びゲート
電極25,25上のメタルシリサイド層34…の存
在により、ソース、ドレイン領域30〜33及びゲート
電極25,25を低抵抗化でき、デバイス特性を向
上できる。
Thus, according to the CMOS inverter of the present invention,
Between the high-concentration second impurity regions 26 2 and 29 2 and the gate insulating film 24 2 , the low-concentration first impurity regions 26 1 and 2 2 are formed.
Since 9 1 is formed, a voltage can be dispersed electric field generated near the drain region 31 upon application to the drain region 31, can control the impact Iona Lee THEY Chillon. Further, due to the presence of the metal silicide layer 34 on the source and drain regions 30 to 33 and the gate electrodes 25 2 and 25 1 of the N-channel and P-channel transistors, the source and drain regions 30 to 33 and the gate electrodes 25 2 and 25. 1 can be reduced in resistance, and device characteristics can be improved.

また、本発明によれば、Pチヤネルトランジスタの製造
に際し、拡散係数の大きなボロンの横方向拡散を予め見
込んでゲート電極25の側壁に残存SiO2膜27′を形
成しておき、この残存SiO2膜27′もマスクとしてボロ
ンをイオン注入するため、ゲート絶縁膜24を挾んで
ゲート電極25下に伸びるソース、ドレイン領域3
1,32を容易に0.2μm以下に抑制でき、寄生容量を
低減できる。
Further, according to the present invention, in the production of P Channel transistor, previously formed residual SiO 2 film 27 'on the side walls of the gate electrode 25 1 is expected to lateral diffusion of large boron diffusion coefficient in advance, the remaining SiO 2 film 27 'boron to ion implantation as a mask, source extending down one gate electrode 25 sandwiching the gate insulating film 24 1, the drain region 3
1, 32 can be easily suppressed to 0.2 μm or less, and the parasitic capacitance can be reduced.

なお、上記実施例では、チタンシリサイド層をNチヤネ
ル、Pチヤネルトランジスタの夫々のソース、ドレイン
領域及びゲート電極上に形成する場合について述べた
が、これに限らず、例えばPチヤネルトランジスタの夫
々のソース、ドレイン領域及びゲート電極上のみに形成
する場合でも同様の効果が期待できる。以下、かかる場
合について第3図(a),(b)を用いて説明する。即ち、上
記実施例のようにP型のソース、ドレイン領域32,
33を形成後、厚さ1000〜1500Åのチタンシリ
サイド層41をスパツタ法により全面に蒸着し、写真蝕
刻法によりPチヤネルトランジスタのソース、ドレイン
領域31,32及びゲート電極25上のみにチタンシ
リサイド層41を残した(第3図(a)図示)。以下、実
施例と同様にして層間絶縁膜34、コンタクトホール3
6…及びAl配線37を形成してCMOSインバータを
製造する(第3図(b)図示)。
In the above embodiment, the case where the titanium silicide layer is formed on the source and drain regions and the gate electrode of each of the N-channel and P-channel transistors has been described. However, the present invention is not limited to this, and the source of each of the P-channel transistors can be used, for example. Even when it is formed only on the drain region and the gate electrode, the same effect can be expected. Hereinafter, such a case will be described with reference to FIGS. 3 (a) and 3 (b). That is, as in the above embodiment, the P + type source / drain regions 32,
After forming 33, the titanium silicide layer 41 having a thickness of 1000~1500Å deposited on the entire surface by sputter method, a titanium silicide layer in the P-Channel transistor source, only the drain regions 31 and 32 and the gate electrode 25 on one by photoetching method 41 was left (shown in FIG. 3 (a)). Thereafter, the interlayer insulating film 34 and the contact hole 3 are formed in the same manner as in the embodiment.
6 and Al wiring 37 are formed to manufacture a CMOS inverter (shown in FIG. 3 (b)).

また、上記実施例では、低抵抗層としてチタンシリサイ
ド層を用いたが、これに限らず、モリブデンシリサイド
層、プラチナシリサイド層、タンタルシリサイド層、タ
ングステンシリサイド層等のメタルシリサイド層、ある
いは他の材料層でもよい。ただし、材料によつてはシリ
サイド形成温度が変わるので、熱処理温度を適宜変更す
る必要がある。
Further, although the titanium silicide layer is used as the low resistance layer in the above-mentioned embodiments, the present invention is not limited to this, and a metal silicide layer such as a molybdenum silicide layer, a platinum silicide layer, a tantalum silicide layer, a tungsten silicide layer, or another material layer. But it's okay. However, since the silicide formation temperature changes depending on the material, it is necessary to appropriately change the heat treatment temperature.

〔発明の効果〕〔The invention's effect〕

以上詳述した如く本発明によれば、Nチヤネルトランジ
スタのホツトエレクトロンによる閾値の変動と、Pチヤ
ネルトランジスタのゲート電極に伸びるソース、ドレイ
ン領域の横方向拡散による特性の劣化、ソース、ドレイ
ン領域及びゲート電極の高抵抗化による特性の劣化を抑
制できる信頼性の高い相補型半導体装置の製造方法を提
供できるものである。
As described above in detail, according to the present invention, the threshold variation due to the photoelectrons of the N-channel transistor, the deterioration of the characteristics due to the lateral diffusion of the source and drain regions extending to the gate electrode of the P-channel transistor, the source, the drain region and the gate. It is possible to provide a highly reliable method of manufacturing a complementary semiconductor device capable of suppressing deterioration of characteristics due to high resistance of electrodes.

【図面の簡単な説明】[Brief description of drawings]

第1図は従来のCMOSインバータの断面図、第2図
(a)〜(e)は本発明の一実施例に係るCMOSインバータ
の製造方法を工程順に示す断面図、第3図(a),(b)は本
発明の他の実施例に係るCMOSインバータの製造方法
を工程順に示す断面図である。 21……N型(100)シリコン基板(半導体基板)、
22……P型ウエル領域、23……素子分離領域、24
,24……ゲート絶縁膜、25,25……ゲー
ト電極、26,26,29,29……不純物領
域、27,27′……SiO2膜、30,32……ソース領
域、31,33……ドレイン領域、34,41……チタ
ンシリサイド層(低抵抗層)、35……層間絶縁膜、3
6……コンタクトホール、37……Al配線。
FIG. 1 is a sectional view of a conventional CMOS inverter, and FIG.
3A to 3E are sectional views showing a method of manufacturing a CMOS inverter according to an embodiment of the present invention in the order of steps, and FIGS. 3A and 3B are CMOS inverters according to another embodiment of the present invention. FIG. 6 is a cross-sectional view showing the method of manufacturing in the order of steps. 21 ... N-type (100) silicon substrate (semiconductor substrate),
22 ... P-type well region, 23 ... Element isolation region, 24
1 , 24 2 ... Gate insulating film, 25 1 , 25 2 ... Gate electrode, 26 1 , 26 2 , 29 1 , 29 2 ... Impurity region, 27, 27 ′ ... SiO 2 film, 30, 32 ... Source region, 31, 33 ... Drain region, 34, 41 ... Titanium silicide layer (low resistance layer), 35 ... Interlayer insulating film, 3
6 ... Contact hole, 37 ... Al wiring.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】表面にウェル領域を有する半導体基板上に
形成されたゲート電極とソース、ドレイン領域とを有す
るNチャネルトランジスタおよびPチャネルトランジス
タからなる相補型半導体装置の製造方法において、 半導体基板にウェル領域を形成し前記基板表面をP型半
導体領域とN型半導体領域とに区分する工程と、前記P
型半導体領域、N型半導体領域上にゲート絶縁膜を介し
てゲート電極を夫々形成する工程と、一方のゲート電極
をマスクとして前記P型半導体領域に低濃度のN型の第
1不純物をイオン注入し、低不純物領域を形成する工程
と、前記ゲート電極の側壁に夫々絶縁物を形成する工程
と、前記ゲート電極、絶縁物をマスクとして前記P型半
導体領域に夫々高濃度のN型の第2不純物をイオン注入
して高不純物領域を形成するとともに、前記第1不純
物,第2不純物より拡散係数の大きいP型の第3不純物
を前記N型半導体領域にイオン注入して高不純物領域を
形成する工程と、上記2種のトランジスタの少なくとも
Pチャネルトランジスタのソース、ドレイン領域及びゲ
ート電極上にメタルシリサイド層を形成する工程とを具
備し、 前記イオン注入後あるいはメタルシリサイド層の形成後
に熱処理を施して前記P型半導体領域に低不純物領域及
び高不純物領域からなるN型のソース、ドレイン領域を
形成すると同時に、前記N型半導体領域に高不純物領域
からなるP型のソース、ドレイン領域を形成することを
特徴とする相補型半導体装置の製造方法。
1. A method of manufacturing a complementary semiconductor device comprising an N-channel transistor and a P-channel transistor having a gate electrode, a source, and a drain region formed on a semiconductor substrate having a well region on the surface, and a well on the semiconductor substrate. Forming a region and dividing the surface of the substrate into a P-type semiconductor region and an N-type semiconductor region;
Forming a gate electrode on each of the N-type semiconductor region and the N-type semiconductor region via a gate insulating film, and ion-implanting a low concentration N-type first impurity into the P-type semiconductor region using one of the gate electrodes as a mask. Then, a step of forming a low-impurity region, a step of forming an insulator on the side wall of the gate electrode, and a step of forming a high-concentration N-type second region in the P-type semiconductor region using the gate electrode and the insulator as a mask, respectively. An impurity is ion-implanted to form a high-impurity region, and a P-type third impurity having a larger diffusion coefficient than the first impurity and the second impurity is ion-implanted into the N-type semiconductor region to form a high-impurity region. And a step of forming a metal silicide layer on at least a source / drain region and a gate electrode of at least a P-channel transistor of the above two types of transistors. After the formation of the metal silicide layer or the formation of the metal silicide layer, a heat treatment is performed to form N-type source / drain regions composed of a low impurity region and a high impurity region in the P-type semiconductor region, and at the same time, from the high impurity region And a P-type source / drain region are formed.
【請求項2】前記第2不純物が砒素で、かつ第3不純物
がボロンである特許請求の範囲第1項記載の相補型半導
体装置の製造方法。
2. The method of manufacturing a complementary semiconductor device according to claim 1, wherein the second impurity is arsenic and the third impurity is boron.
【請求項3】メタルシリサイド層が、チタンシリサイド
層、モリブデンシリサイド層、プラチナシリサイド層、
タンタルシリサイド層、タングステンシリサイド層のい
ずれかであることを特徴とする特許請求の範囲第1項記
載の相補型半導体装置の製造方法。
3. A metal silicide layer is a titanium silicide layer, a molybdenum silicide layer, a platinum silicide layer,
The method for manufacturing a complementary semiconductor device according to claim 1, wherein the method is a tantalum silicide layer or a tungsten silicide layer.
【請求項4】半導体基板の材質がシリコンで、かつゲー
ト電極の材質がポリシリコンであることを特徴とする特
許請求の範囲第1項記載の相補型半導体装置の製造方
法。
4. The method of manufacturing a complementary semiconductor device according to claim 1, wherein the material of the semiconductor substrate is silicon, and the material of the gate electrode is polysilicon.
【請求項5】N型、P型ソース、ドレイン領域を形成し
た後、全面にメタルを蒸着し熱処理することにより、メ
タルをソース、ドレイン領域及びゲート電極中のシリコ
ンと反応させてメタルシリサイド層を形成することを特
徴とする特許請求の範囲第1項記載の相補型半導体装置
の製造方法。
5. After forming N-type and P-type source and drain regions, a metal is vapor-deposited on the entire surface and heat-treated to react the metal with the silicon in the source and drain regions and the gate electrode to form a metal silicide layer. The method for manufacturing a complementary semiconductor device according to claim 1, wherein the complementary semiconductor device is formed.
JP58191924A 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device Expired - Lifetime JPH0644604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191924A JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191924A JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS6084859A JPS6084859A (en) 1985-05-14
JPH0644604B2 true JPH0644604B2 (en) 1994-06-08

Family

ID=16282702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191924A Expired - Lifetime JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPH0644604B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716000B2 (en) * 1985-10-25 1995-02-22 株式会社日立製作所 Method for manufacturing semiconductor integrated circuit device
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138169A (en) * 1981-02-20 1982-08-26 Hitachi Ltd Complementary type insulating gate field-effect semiconductor device
JPS57152161A (en) * 1981-03-16 1982-09-20 Seiko Epson Corp Manufacture of semiconductor device
JPS57192063A (en) * 1981-05-20 1982-11-26 Fujitsu Ltd Manufacture of semiconductor device
JPS57192079A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Semiconductor device

Also Published As

Publication number Publication date
JPS6084859A (en) 1985-05-14

Similar Documents

Publication Publication Date Title
US4597824A (en) Method of producing semiconductor device
US5341028A (en) Semiconductor device and a method of manufacturing thereof
US4455740A (en) Method of manufacturing a self-aligned U-MOS semiconductor device
JP2605008B2 (en) Method for manufacturing semiconductor device
US4622735A (en) Method for manufacturing a semiconductor device utilizing self-aligned silicide regions
US4808544A (en) LDD structure containing conductive layer between gate oxide and sidewall spacer
US5512502A (en) Manufacturing method for semiconductor integrated circuit device
US5648673A (en) Semiconductor device having metal silicide film on impurity diffused layer or conductive layer
JPH0434819B2 (en)
JPH0426542B2 (en)
JPS5961071A (en) Insulated gate field effect transistor and method of produc-ing same
US4069067A (en) Method of making a semiconductor device
JP2550235B2 (en) Method of manufacturing semiconductor device having GOLD structure
US5731240A (en) Manufacturing method for semiconductor depositing device
US20030111689A1 (en) Process for the selective formation of salicide on active areas of MOS devices
JPS6362108B2 (en)
JPH098135A (en) Manufacture of semiconductor device
JPS6360549B2 (en)
JP2948486B2 (en) Method for manufacturing semiconductor device
JPH0644604B2 (en) Manufacturing method of complementary semiconductor device
JPH06216151A (en) Semiconductor device and manufacture thereof
JPH1064898A (en) Manufacturing method of semiconductor device
JP2569809B2 (en) Method for manufacturing semiconductor device
JP3397804B2 (en) Manufacturing method of nonvolatile memory
JPH04186733A (en) Semiconductor device and manufacture thereof