JPH06216151A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPH06216151A
JPH06216151A JP5021720A JP2172093A JPH06216151A JP H06216151 A JPH06216151 A JP H06216151A JP 5021720 A JP5021720 A JP 5021720A JP 2172093 A JP2172093 A JP 2172093A JP H06216151 A JPH06216151 A JP H06216151A
Authority
JP
Japan
Prior art keywords
conductivity type
film
side wall
gate electrode
sidewall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5021720A
Other languages
Japanese (ja)
Inventor
Minoru Ishida
実 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP5021720A priority Critical patent/JPH06216151A/en
Publication of JPH06216151A publication Critical patent/JPH06216151A/en
Pending legal-status Critical Current

Links

Landscapes

  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To provide a minute semiconductor device having the high reliability by reducing the diffusion of impurities, and enhancing the dielectric strength of a sidewall with respect to a conductor film. CONSTITUTION:The first sidewall comprising an SiO2 film 22 formed by high- temperature CVD is formed on the side surfaces of a polycide film 16 and an SiO2 film 17. The second sidewall comprising an SiO2 film 24 formed by low-temperature CVD is formed on the outer surface of the SiO2 film 22. Therefore, heat treatment to be applied is less and the diffusion of impurities 21 and 23, which are already introduced, is less in comparison with the case, wherein the entire sidewall is formed of the SiO2 film 22. The etching of the SiO2 film 22 having the excellent film quantity can be prevented with the SiO2 film 24.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本願の発明は、ゲート電極等の導
電膜の側面に側壁が形成されている半導体装置及びその
製造方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device having a sidewall formed on a side surface of a conductive film such as a gate electrode and a method for manufacturing the same.

【0002】[0002]

【従来の技術】電界効果型半導体装置のドレインにおけ
る電界集中を緩和してドレイン耐圧を高めるためのLD
D構造や、コンタクト孔の開孔に際して余裕領域の確保
を不要にするための自己整合コンタクト構造では、絶縁
膜から成る側壁をゲート電極等の導電膜の側面に形成し
ている。そして、従来は、この側壁を単一の絶縁膜で形
成していた。
2. Description of the Related Art An LD for relaxing the electric field concentration in the drain of a field effect semiconductor device and increasing the drain breakdown voltage.
In the D structure and the self-aligned contact structure for making it unnecessary to secure a margin area when opening the contact hole, the side wall made of an insulating film is formed on the side surface of the conductive film such as the gate electrode. And conventionally, this side wall was formed with a single insulating film.

【0003】[0003]

【発明が解決しようとする課題】ところで、導電膜の側
面に形成されている側壁は、この導電膜と上層の導電膜
との層間耐圧の少なくとも一部を担う。従って、絶縁耐
圧の点からは、減圧下で800℃程度以上の高温のCV
Dで形成され、ピンホールの密度が低くて膜質の良い絶
縁膜が好ましい。しかし、高温のCVDでは、単位時間
に加えられる熱量が多いのみならず、堆積速度も遅い。
例えば、820℃でSiO2 膜を形成しても、2nm/
分の速度でしか堆積しない。
By the way, the sidewall formed on the side surface of the conductive film plays at least part of the interlayer breakdown voltage between this conductive film and the upper conductive film. Therefore, from the standpoint of dielectric strength, a high temperature CV of about 800 ° C or higher under reduced pressure is used.
An insulating film formed of D and having a low pinhole density and good film quality is preferable. However, in high temperature CVD, not only a large amount of heat is applied per unit time, but also the deposition rate is slow.
For example, even if a SiO 2 film is formed at 820 ° C., 2 nm /
It only deposits at the rate of minutes.

【0004】このため、820℃のCVDでは、加えら
れる熱量の点から50分間で100nm程度の膜厚のS
iO2 膜しか堆積させることができない。このため、特
に自己整合コンタクト構造では、コンタクト孔の開孔に
際して、形成されている側壁が更にエッチングされるの
で、側壁の絶縁耐圧が十分ではない場合がある。しか
し、これ以上の膜厚のSiO2 膜を形成すると、加えら
れる熱量が多くなり過ぎて、既に導入してある不純物の
拡散が多くなり過ぎる。
Therefore, in the case of CVD at 820 ° C., S having a film thickness of about 100 nm in 50 minutes is added in view of the amount of heat applied.
Only the iO 2 film can be deposited. For this reason, particularly in the self-aligned contact structure, the side wall formed is further etched when the contact hole is opened, so that the withstand voltage of the side wall may not be sufficient. However, when a SiO 2 film having a film thickness larger than this is formed, the amount of heat applied becomes too large, and the diffusion of impurities already introduced becomes too large.

【0005】この結果、特に、P型の不純物層を形成す
るためのボロンは拡散係数が大きいので、Pチャネルト
ランジスタではパンチスルーが生じ易い。従って、高温
のCVDのみで側壁用の絶縁膜を形成する従来例では、
微細でしかも側壁の絶縁耐圧が高いために信頼性も高い
半導体装置を提供することができなかった。
As a result, in particular, since boron for forming a P-type impurity layer has a large diffusion coefficient, punch-through easily occurs in a P-channel transistor. Therefore, in the conventional example in which the sidewall insulating film is formed only by high temperature CVD,
It was not possible to provide a highly reliable semiconductor device which is fine and has high withstand voltage of the side wall.

【0006】一方、減圧下で800℃程度以下、常圧下
では400℃程度以下の低温のCVDでSiO2 膜を形
成すると、このSiO2 膜はピンホールの密度が高くて
膜質が良くないので、絶縁耐圧を確保するためには、4
00nm程度の膜厚に堆積させる必要がある。
On the other hand, when a SiO 2 film is formed by low temperature CVD at a temperature of about 800 ° C. or less under reduced pressure and about 400 ° C. or less under normal pressure, the SiO 2 film has high pinhole density and poor film quality. To secure the dielectric strength, 4
It is necessary to deposit it to a film thickness of about 00 nm.

【0007】しかし、LDD構造では側壁下に低濃度不
純物層が形成される。そして、特に、N型の不純物層を
形成するためのヒ素は拡散係数が小さいので、側壁の幅
が400nm程度であると、低濃度不純物層の幅も40
0nm近くになって、Nチャネルトランジスタでは電流
駆動能力が大幅に低下する。従って、低温のCVDのみ
で側壁用の絶縁膜を形成する従来例では、電流駆動能力
が高い半導体装置を提供することができなかった。
However, in the LDD structure, a low concentration impurity layer is formed under the side wall. In particular, arsenic for forming the N-type impurity layer has a small diffusion coefficient, so if the width of the side wall is about 400 nm, the width of the low-concentration impurity layer is also 40.
The current driving capability of the N-channel transistor is drastically reduced when the value is close to 0 nm. Therefore, in the conventional example in which the sidewall insulating film is formed only by the low temperature CVD, it is not possible to provide a semiconductor device having a high current driving capability.

【0008】[0008]

【課題を解決するための手段】請求項1の半導体装置の
製造方法は、相対的に高い温度で生成した第1の絶縁膜
22から成る第1の側壁を導電膜16の側面に形成する
工程と、相対的に低い温度で生成した第2の絶縁膜24
から成る第2の側壁を前記第1の側壁の前記導電膜16
とは反対側の側面に形成する工程とを具備している。
According to a first aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a first side wall made of a first insulating film 22 formed at a relatively high temperature is formed on a side surface of the conductive film 16. And the second insulating film 24 formed at a relatively low temperature
The second side wall of the conductive film 16 on the first side wall.
And a step of forming the side surface on the opposite side.

【0009】請求項2の半導体装置は、相対的に高い温
度で生成された第1の絶縁膜22から成っており導電膜
16の側面に形成されている第1の側壁と、相対的に低
い温度で生成された第2の絶縁膜24から成っており前
記第1の側壁の前記導電膜16とは反対側の側面に形成
されている第2の側壁とを具備している。
According to another aspect of the semiconductor device of the present invention, the first sidewall is formed of the first insulating film 22 generated at a relatively high temperature, and the first sidewall is formed on the side surface of the conductive film 16. The second sidewall is formed of the second insulating film 24 generated at the temperature, and the second sidewall is formed on the side surface of the first sidewall opposite to the conductive film 16.

【0010】請求項3の半導体装置の製造方法は、半導
体基板11の第1及び第2導電型領域12、13にゲー
ト電極16を形成する工程と、前記第1導電型領域12
の前記ゲート電極16をマスクにして、この第1導電型
領域12に第2導電型不純物21を相対的に低濃度に導
入する工程と、前記第2導電型不純物21を導入した後
に、前記第1及び第2導電型領域12、13の前記ゲー
ト電極16の側面に、相対的に高い温度で生成した第1
の絶縁膜22から成る第1の側壁を形成する工程と、前
記第2導電型領域13の前記ゲート電極16及び前記第
1の側壁をマスクにして、この第2導電型領域13に第
1導電型不純物23を相対的に低濃度に導入する工程
と、前記第1導電型不純物23を導入した後に、前記第
1及び第2導電型領域12、13の前記第1の側壁の前
記ゲート電極16とは反対側の側面に、相対的に低い温
度で生成した第2の絶縁膜24から成る第2の側壁を形
成する工程と、前記第1導電型領域12の前記ゲート電
極16並びに前記第1及び第2の側壁をマスクにして、
この第1導電型領域12に第2導電型不純物26を相対
的に高濃度に導入する工程と、前記第2導電型領域13
の前記ゲート電極16並びに前記第1及び第2の側壁を
マスクにして、この第2導電型領域13に第1導電型不
純物27を相対的に高濃度に導入する工程とを具備して
いる。
According to a third aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a step of forming a gate electrode 16 on the first and second conductivity type regions 12 and 13 of the semiconductor substrate 11 and the first conductivity type region 12 are performed.
Using the gate electrode 16 as a mask, and introducing the second conductivity type impurity 21 into the first conductivity type region 12 at a relatively low concentration; and after introducing the second conductivity type impurity 21, The first and second conductive regions 12 and 13 formed on the side surface of the gate electrode 16 at a relatively high temperature.
Forming a first side wall of the insulating film 22 of the second conductive type region 13, and using the gate electrode 16 and the first side wall of the second conductive type region 13 as a mask, the second conductive type region 13 of the first conductive type is formed. The step of introducing the type impurity 23 in a relatively low concentration, and the step of introducing the first conductivity type impurity 23, and then the gate electrode 16 on the first sidewall of the first and second conductivity type regions 12 and 13. A second side wall made of a second insulating film 24 formed at a relatively low temperature on a side surface opposite to the side surface, and the gate electrode 16 of the first conductivity type region 12 and the first side wall of the first conductivity type region 12. And using the second sidewall as a mask,
Introducing a second conductivity type impurity 26 into the first conductivity type region 12 in a relatively high concentration; and the second conductivity type region 13
Using the gate electrode 16 and the first and second side walls as a mask, and introducing the first conductivity type impurity 27 into the second conductivity type region 13 at a relatively high concentration.

【0011】請求項4の半導体装置の製造方法は、半導
体基板11の第1及び第2導電型領域12、13にゲー
ト電極16を形成する工程と、前記第1導電型領域12
の前記ゲート電極16をマスクにして、この第1導電型
領域12に第2導電型不純物21を相対的に低濃度に導
入する工程と、前記第2導電型不純物21を導入した後
に、前記第1及び第2導電型領域12、13の前記ゲー
ト電極16の側面に、相対的に高い温度で生成した第1
の絶縁膜22から成る第1の側壁を形成する工程と、前
記第1導電型領域12の前記ゲート電極16及び前記第
1の側壁をマスクにして、この第1導電型領域12に第
2導電型不純物26を相対的に高濃度に導入する工程
と、前記第2導電型領域13の前記ゲート電極16及び
前記第1の側壁をマスクにして、この第2導電型領域1
3に第1導電型不純物23を相対的に低濃度に導入する
工程と、前記第2導電型不純物26を相対的に高濃度に
導入し且つ前記第1導電型不純物23を導入した後に、
前記第1及び第2導電型領域12、13の前記第1の側
壁の前記ゲート電極16とは反対側の側面に、相対的に
低い温度で生成した第2の絶縁膜24から成る第2の側
壁を形成する工程と、前記第2導電型領域13の前記ゲ
ート電極16並びに前記第1及び第2の側壁をマスクに
して、この第2導電型領域13に第1導電型不純物27
を相対的に高濃度に導入する工程とを具備している。
According to a fourth aspect of the present invention, there is provided a method of manufacturing a semiconductor device, wherein a step of forming a gate electrode 16 on the first and second conductivity type regions 12 and 13 of the semiconductor substrate 11 and the first conductivity type region 12 are performed.
Using the gate electrode 16 as a mask, and introducing the second conductivity type impurity 21 into the first conductivity type region 12 at a relatively low concentration; and after introducing the second conductivity type impurity 21, The first and second conductive regions 12 and 13 formed on the side surface of the gate electrode 16 at a relatively high temperature.
Forming a first side wall made of the insulating film 22 of the first conductive type region 12, and using the gate electrode 16 and the first side wall of the first conductive type region 12 as a mask, a second conductive type region is formed in the first conductive type region 12. The second conductivity type region 1 is formed by using the step of introducing the type impurities 26 in a relatively high concentration and the gate electrode 16 and the first sidewall of the second conductivity type region 13 as a mask.
3, a step of introducing the first conductivity type impurity 23 at a relatively low concentration, and a step of introducing the second conductivity type impurity 26 at a relatively high concentration and introducing the first conductivity type impurity 23,
A second insulating film 24 formed at a relatively low temperature is formed on a side surface of the first sidewall of the first and second conductivity type regions 12 and 13 opposite to the gate electrode 16. A step of forming a side wall, and using the gate electrode 16 and the first and second side walls of the second conductivity type region 13 as a mask, the first conductivity type impurity 27 is formed in the second conductivity type region 13.
Is introduced in a relatively high concentration.

【0012】[0012]

【作用】請求項1の半導体装置の製造方法では、相対的
に高い温度で生成した第1の絶縁膜22から成る第1の
側壁と相対的に低い温度で生成した第2の絶縁膜24か
ら成る第2の側壁とを形成しているので、高い温度で生
成した絶縁膜で側壁の全体を形成する方法に比べて、加
えるべき熱処理が少なく、既に導入してある不純物2
1、23、26の拡散が少ない。
According to the method of manufacturing a semiconductor device of the first aspect, the first side wall made of the first insulating film 22 formed at a relatively high temperature and the second insulating film 24 formed at a relatively low temperature are used. Since the second side wall is formed, the amount of heat treatment to be applied is smaller than that of the method of forming the entire side wall with the insulating film formed at a high temperature, and the impurity 2 which has already been introduced is used.
There is little diffusion of 1, 23, and 26.

【0013】また、相対的に高い温度で生成した第1の
絶縁膜22から成る第1の側壁を相対的に低い温度で生
成した第2の絶縁膜24から成る第2の側壁で覆ってい
るので、後に側壁がエッチングを受けても、第2の側壁
によって、膜質の良い第1の側壁がエッチングされない
様にすることができる。従って、低い温度で生成した絶
縁膜で側壁の全体を形成したり、相対的に低い温度で生
成した絶縁膜から成る側壁を相対的に高い温度で生成し
た絶縁膜から成る側壁で覆ったりする方法に比べて、導
電膜16に対する絶縁耐圧が高い側壁を形成することが
できる。
Further, the first side wall of the first insulating film 22 formed at a relatively high temperature is covered with the second side wall of the second insulating film 24 formed at a relatively low temperature. Therefore, even if the side wall is subsequently etched, the second side wall can prevent the first side wall having good film quality from being etched. Therefore, a method of forming the entire sidewall with an insulating film formed at a low temperature or covering the sidewall formed of an insulating film formed at a relatively low temperature with a sidewall formed of an insulating film formed at a relatively high temperature As compared with the above, it is possible to form a sidewall having a higher dielectric strength voltage with respect to the conductive film 16.

【0014】請求項2の半導体装置では、相対的に高い
温度で生成された第1の絶縁膜22から成る第1の側壁
と相対的に低い温度で生成された第2の絶縁膜24から
成る第2の側壁とが形成されているので、高い温度で生
成された絶縁膜で側壁の全体が形成されている構造に比
べて、加えられた熱処理が少なく、不純物21、23、
26の拡散が少ない。
According to another aspect of the semiconductor device of the present invention, the first side wall made of the first insulating film 22 formed at a relatively high temperature and the second side insulating film 24 formed at a relatively low temperature are formed. Since the second side wall is formed, the heat treatment applied is smaller and the impurities 21, 23, and 23 are formed as compared with the structure in which the entire side wall is formed of an insulating film formed at a high temperature.
26 is less diffused.

【0015】また、相対的に高い温度で生成された第1
の絶縁膜22から成る第1の側壁が相対的に低い温度で
生成された第2の絶縁膜24から成る第2の側壁で覆わ
れているので、後に側壁がエッチングを受けていても、
第2の側壁によって、膜質の良い第1の側壁がエッチン
グされていない様にすることができる。従って、低い温
度で生成された絶縁膜で側壁の全体が形成されていた
り、相対的に低い温度で生成された絶縁膜から成る側壁
が相対的に高い温度で生成された絶縁膜から成る側壁で
覆われていたりする構造に比べて、導電膜16に対する
側壁の絶縁耐圧が高い。
Further, the first produced at a relatively high temperature
Since the first side wall of the insulating film 22 is covered with the second side wall of the second insulating film 24 generated at a relatively low temperature, even if the side wall is etched later,
The second side wall can prevent the first side wall having good film quality from being etched. Therefore, the entire sidewall is formed of an insulating film formed at a low temperature, or the sidewall formed of an insulating film formed at a relatively low temperature is formed by an insulating film formed at a relatively high temperature. The withstand voltage of the side wall with respect to the conductive film 16 is higher than that of the covered structure.

【0016】請求項3の半導体装置の製造方法では、第
1導電型領域12に対する第2導電型不純物21の相対
的に低濃度の導入はゲート電極16をマスクにしている
が、第2導電型領域13に対する第1導電型不純物23
の相対的に低濃度の導入はゲート電極16のみならず第
1の側壁をもマスクにしている。このため、第1導電型
不純物23の拡散係数が第2導電型不純物21の拡散係
数より大きくても、第1導電型不純物層33同士がゲー
ト電極16の両側から接近し過ぎるのを防止することが
できる。
In the method of manufacturing a semiconductor device according to the third aspect, the gate electrode 16 is used as a mask for introducing the impurity 21 of the second conductivity type into the first conductivity type region 12 at a relatively low concentration. First conductivity type impurity 23 for region 13
The introduction of a relatively low concentration of is performed by using not only the gate electrode 16 but also the first sidewall as a mask. Therefore, even if the diffusion coefficient of the first conductivity type impurity 23 is larger than the diffusion coefficient of the second conductivity type impurity 21, it is possible to prevent the first conductivity type impurity layers 33 from being too close to each other from both sides of the gate electrode 16. You can

【0017】また、相対的に高い温度で生成した第1の
絶縁膜22から成る第1の側壁を相対的に低い温度で生
成した第2の絶縁膜24から成る第2の側壁で覆ってい
るので、後に側壁がエッチングを受けても、第2の側壁
によって、膜質の良い第1の側壁がエッチングされない
様にすることができる。従って、低い温度で生成した絶
縁膜で側壁の全体を形成したり、相対的に低い温度で生
成した絶縁膜から成る側壁を相対的に高い温度で生成し
た絶縁膜から成る側壁で覆ったりする方法に比べて、ゲ
ート電極16に対する絶縁耐圧が高い側壁を形成するこ
とができる。
Further, the first side wall made of the first insulating film 22 formed at a relatively high temperature is covered with the second side wall made of the second insulating film 24 formed at a relatively low temperature. Therefore, even if the side wall is subsequently etched, the second side wall can prevent the first side wall having good film quality from being etched. Therefore, a method of forming the entire sidewall with an insulating film formed at a low temperature or covering the sidewall formed of an insulating film formed at a relatively low temperature with a sidewall formed of an insulating film formed at a relatively high temperature It is possible to form a sidewall having a higher withstand voltage with respect to the gate electrode 16 as compared with.

【0018】請求項4の半導体装置の製造方法では、第
1導電型領域12に対する第2導電型不純物21の相対
的に低濃度の導入はゲート電極16をマスクにしている
が、第2導電型領域13に対する第1導電型不純物23
の相対的に低濃度の導入はゲート電極16のみならず第
1の側壁をもマスクにしている。このため、第1導電型
不純物23の拡散係数が第2導電型不純物21の拡散係
数より大きくても、第1導電型不純物層33同士がゲー
ト電極16の両側から接近し過ぎるのを防止することが
できる。
In the method of manufacturing a semiconductor device according to the fourth aspect, the gate electrode 16 is used as a mask for introducing the impurity 21 of the second conductivity type into the first conductivity type region 12 at a relatively low concentration. First conductivity type impurity 23 for region 13
The introduction of a relatively low concentration of is performed by using not only the gate electrode 16 but also the first sidewall as a mask. Therefore, even if the diffusion coefficient of the first conductivity type impurity 23 is larger than the diffusion coefficient of the second conductivity type impurity 21, it is possible to prevent the first conductivity type impurity layers 33 from being too close to each other from both sides of the gate electrode 16. You can

【0019】また、第2導電型領域13に対する第1導
電型不純物27の相対的に高濃度の導入はゲート電極1
6並びに第1及び第2の側壁をマスクにしているが、第
1導電型領域12に対する第2導電型不純物26の相対
的に高濃度の導入はゲート電極16及び第1の側壁のみ
をマスクにしているので、第2の側壁をもマスクにして
導入する方法に比べて、相対的に低濃度の第2導電型不
純物層31の幅が狭い。
The introduction of the first conductivity type impurity 27 into the second conductivity type region 13 at a relatively high concentration is required for the gate electrode 1.
6 and the first and second sidewalls are used as a mask, the introduction of the second conductivity type impurity 26 into the first conductivity type region 12 at a relatively high concentration uses only the gate electrode 16 and the first sidewall as a mask. Therefore, the width of the second-conductivity-type impurity layer 31 having a relatively low concentration is narrower than that of the method in which the second sidewall is also used as a mask.

【0020】更に、相対的に高い温度で生成した第1の
絶縁膜22から成る第1の側壁を相対的に低い温度で生
成した第2の絶縁膜24から成る第2の側壁で覆ってい
るので、後に側壁がエッチングを受けても、第2の側壁
によって、膜質の良い第1の側壁がエッチングされない
様にすることができる。従って、低い温度で生成した絶
縁膜で側壁の全体を形成したり、相対的に低い温度で生
成した絶縁膜から成る側壁を相対的に高い温度で生成し
た絶縁膜から成る側壁で覆ったりする方法に比べて、ゲ
ート電極16に対する絶縁耐圧が高い側壁を形成するこ
とができる。
Further, the first side wall of the first insulating film 22 formed at a relatively high temperature is covered with the second side wall of the second insulating film 24 formed at a relatively low temperature. Therefore, even if the side wall is subsequently etched, the second side wall can prevent the first side wall having good film quality from being etched. Therefore, a method of forming the entire sidewall with an insulating film formed at a low temperature or covering the sidewall formed of an insulating film formed at a relatively low temperature with a sidewall formed of an insulating film formed at a relatively high temperature It is possible to form a sidewall having a higher withstand voltage with respect to the gate electrode 16 as compared with.

【0021】[0021]

【実施例】以下、LDD構造で且つ自己整合コンタクト
構造のCMOSトランジスタに適用した本願の発明の第
1及び第2実施例を、図1、2を参照しながら説明す
る。図1が、第1実施例の製造方法を工程順に示してい
る。この第1実施例では、図1(a)に示す様に、Si
基板11にPウェル12とNウェル13とをまず形成す
る。そして、Si基板11の素子分離領域の表面にSi
2 膜14を形成し、素子活性領域の表面にゲート酸化
膜としてのSiO2 膜15を形成する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS First and second embodiments of the present invention applied to a CMOS transistor having an LDD structure and a self-aligned contact structure will be described below with reference to FIGS. FIG. 1 shows the manufacturing method of the first embodiment in the order of steps. In the first embodiment, as shown in FIG.
First, the P well 12 and the N well 13 are formed on the substrate 11. Then, Si is formed on the surface of the element isolation region of the Si substrate 11.
An O 2 film 14 is formed, and a SiO 2 film 15 as a gate oxide film is formed on the surface of the element active region.

【0022】その後、CVD法でSiO2 膜14、15
上に多結晶Si膜を堆積させ、POCl3 の蒸気に曝し
てこの蒸気からリンを熱拡散させるプレデポジション法
等で、多結晶Si膜に不純物を添加する。そして、CV
D法で多結晶Si膜上にWSix 膜を堆積させ、これら
の多結晶Si膜とWSix 膜とでポリサイド膜16を形
成する。
After that, the SiO 2 films 14 and 15 are formed by the CVD method.
An impurity is added to the polycrystalline Si film by a pre-deposition method or the like in which a polycrystalline Si film is deposited and exposed to vapor of POCl 3 to thermally diffuse phosphorus from the vapor. And CV
A WSi x film is deposited on the polycrystalline Si film by the D method, and the polycide film 16 is formed by the polycrystalline Si film and the WSi x film.

【0023】その後、CVD法でオフセット用のSiO
2 膜17をポリサイド膜16上に堆積させ、このSiO
2 膜17上でレジスト(図示せず)をゲート電極のパタ
ーンに加工する。そして、このレジストをマスクにした
RIEで、SiO2 膜17とポリサイド膜16とをゲー
ト電極のパターンに連続的に加工する。ここまでは従来
公知の製造方法と同じであるが、本実施例では、その
後、Pウェル12のSiO2 膜14、17とポリサイド
膜16とをマスクにして、Pウェル12の素子活性領域
のみにヒ素21を低濃度にイオン注入する。
After that, SiO for offset is formed by the CVD method.
2 film 17 is deposited on polycide film 16 and
2 On the film 17, a resist (not shown) is processed into a gate electrode pattern. Then, the SiO 2 film 17 and the polycide film 16 are continuously processed into a pattern of the gate electrode by RIE using this resist as a mask. While up to this point is the same as conventionally known production method, in the present embodiment, then the SiO 2 film 14 and 17 and the polycide film 16 of the P-well 12 as a mask, only the device active region of the P-well 12 Arsenic 21 is ion-implanted at a low concentration.

【0024】次に、既述の高温CVDでSiO2 膜22
を全面に堆積させ、このSiO2 膜22の全面をエッチ
バックして、図1(b)に示す様に、ポリサイド膜16
及びSiO2 膜17の側面にSiO2 膜22から成る側
壁を形成する。そして、Nウェル13のSiO2 膜1
4、17、22とポリサイド膜16とをマスクにして、
Nウェル13の素子活性領域のみにボロン23を低濃度
にイオン注入する。
Next, the SiO 2 film 22 is formed by the above-mentioned high temperature CVD.
Is deposited on the entire surface, the entire surface of the SiO 2 film 22 is etched back, and as shown in FIG.
A side wall made of the SiO 2 film 22 is formed on the side surface of the SiO 2 film 17. Then, the SiO 2 film 1 of the N well 13
Using 4, 17, 22 and the polycide film 16 as a mask,
Boron 23 is ion-implanted at a low concentration only in the element active region of the N well 13.

【0025】次に、既述の低温CVDでSiO2 膜24
を全面に堆積させ、このSiO2 膜24の全面をエッチ
バックして、図1(c)に示す様に、SiO2 膜22の
外側面にSiO2 膜24から成る側壁を形成する。これ
によって、SiO2 膜14、24に囲まれているコンタ
クト孔25が、ポリサイド膜16に対して自己整合的に
開孔される。
Next, the SiO 2 film 24 is formed by the above-mentioned low temperature CVD.
Was deposited on the entire surface, the entire surface of the SiO 2 film 24 is etched back, as shown in FIG. 1 (c), to form the sidewall of SiO 2 film 24 on the outer surface of the SiO 2 film 22. As a result, the contact hole 25 surrounded by the SiO 2 films 14 and 24 is opened in a self-aligned manner with respect to the polycide film 16.

【0026】その後、Pウェル12のSiO2 膜14、
17、22、24とポリサイド膜16とをマスクにし
て、Pウェル12の素子活性領域にリン26を高濃度に
イオン注入し、Nウェル13のSiO2 膜14、17、
22、24とポリサイド膜16とをマスクにして、Nウ
ェル13の素子活性領域にボロン27を高濃度にイオン
注入する。
After that, the SiO 2 film 14 of the P well 12 is
Using the 22, 17 and 24 and the polycide film 16 as masks, phosphorus 26 is highly ion-implanted into the element active region of the P well 12, and the SiO 2 films 14, 17 of the N well 13 are formed.
By using 22 and 24 and the polycide film 16 as a mask, boron 27 is ion-implanted at a high concentration into the element active region of the N well 13.

【0027】次に、配線(図示せず)を形成した後、ア
ニールを行って、図1(d)に示す様に、Pウェル12
では、ヒ素21を含むN- 型の不純物層31をSiO2
膜22、24下に形成し、主にリン26を含むN+ 型の
不純物層32をSiO2 膜22、24の外側に形成す
る。また、Nウェル13では、ボロン23を含むP-
の不純物層33をSiO2 膜24下に形成し、主にボロ
ン27を含むP+ 型の不純物層34をSiO2 膜22、
24の外側に形成する。
Next, after forming wiring (not shown), annealing is performed to form the P well 12 as shown in FIG. 1 (d).
Then, the N -type impurity layer 31 containing the arsenic 21 is formed into SiO 2
Formed under the films 22 and 24, an N + type impurity layer 32 mainly containing phosphorus 26 is formed outside the SiO 2 films 22 and 24. In the N well 13, a P type impurity layer 33 containing boron 23 is formed under the SiO 2 film 24, and a P + type impurity layer 34 mainly containing boron 27 is formed in the SiO 2 film 22.
It is formed outside 24.

【0028】この結果、Pウェル12にはNチャネルト
ランジスタ35が形成され、Nウェル13にはPチャネ
ルトランジスタ36が形成される。その後、再び従来公
知の工程を実行して、この第1実施例を完成させる。こ
の第1実施例でも、P- 型の不純物層33もある程度は
横方向へも拡散しているが、少なくともポリサイド膜1
6からはオフセットしている。このため、Pチャネルト
ランジスタ36ではパンチスルーが生じにくく、また不
純物層33がポリサイド膜16からオフセットしていて
もPチャネルトランジスタ36では電流駆動能力には影
響がない。
As a result, an N channel transistor 35 is formed in the P well 12 and a P channel transistor 36 is formed in the N well 13. Then, the conventionally known process is executed again to complete the first embodiment. Also in the first embodiment, the P -type impurity layer 33 is also diffused laterally to some extent, but at least the polycide film 1 is formed.
It is offset from 6. Therefore, punch-through is unlikely to occur in the P-channel transistor 36, and even if the impurity layer 33 is offset from the polycide film 16, the P-channel transistor 36 does not affect the current drive capability.

【0029】図2が、第2実施例の製造方法を工程順に
示している。この第2実施例でも、図2(a)(b)に
示す様に、ポリサイド膜16及びSiO2 膜17の側面
にSiO2 膜22から成る側壁を形成するまでは、上述
の第1実施例と実質的に同様の工程を実行する。
FIG. 2 shows the manufacturing method of the second embodiment in the order of steps. Also in this second embodiment, as shown in FIGS. 2A and 2B, until the side wall of the SiO 2 film 22 is formed on the side surface of the polycide film 16 and the SiO 2 film 17, the above-described first embodiment is performed. Substantially the same steps are performed.

【0030】しかし、この第2実施例では、この状態か
ら、Nウェル13のSiO2 膜14、17、22とポリ
サイド膜16とをマスクにして、Nウェル13の素子活
性領域にボロン23を低濃度にイオン注入するだけでな
く、Pウェル12のSiO2膜14、17、22とポリ
サイド膜16とをマスクにして、Pウェル12の素子活
性領域にリン26を高濃度にイオン注入する。
However, in this second embodiment, from this state, the boron 23 is lowered in the element active region of the N well 13 by using the SiO 2 films 14, 17, 22 of the N well 13 and the polycide film 16 as a mask. Not only is the concentration of ions implanted, but phosphorus 26 is also implanted at a high concentration in the element active region of the P well 12 using the SiO 2 films 14, 17, 22 of the P well 12 and the polycide film 16 as a mask.

【0031】従って、図2(c)に示す様に、低温CV
DによるSiO2 膜24でSiO2膜22の外側面に側
壁を形成した状態で行うイオン注入は、Nウェル13の
SiO2 膜14、17、22、24とポリサイド膜16
とをマスクにして、Nウェル13の素子活性領域に対し
て行うボロン27の高濃度のイオン注入のみである。そ
の後、再び上述の第1実施例と実質的に同様の工程を実
行して、図2(d)に示す様に、この第2実施例を完成
させる。
Therefore, as shown in FIG. 2C, the low temperature CV
Ion implantation performed in the SiO 2 film 24 by D while forming a sidewall on the outer surface of the SiO 2 film 22, SiO 2 film 14,17,22,24 and polycide film 16 of the N-well 13
Using as a mask, only high-concentration ion implantation of boron 27 is performed on the element active region of the N well 13. Thereafter, the steps substantially similar to those of the first embodiment described above are executed again to complete the second embodiment as shown in FIG.

【0032】図1(d)と図2(d)との比較からも明
らかな様に、Nチャネルトランジスタ35の不純物層3
2が、上述の第1実施例ではSiO2 膜22、24の外
側に形成されているが、この第2実施例ではSiO2
22の外側に形成されている。従って、第2実施例のN
チャネルトランジスタ35の方が、不純物層31の幅が
狭く、電流駆動能力が高い。
As is apparent from the comparison between FIG. 1D and FIG. 2D, the impurity layer 3 of the N-channel transistor 35 is shown.
2, in the first embodiment described above are formed on the outside of the SiO 2 film 22, in this second embodiment are formed on the outside of the SiO 2 film 22. Therefore, N of the second embodiment
In the channel transistor 35, the width of the impurity layer 31 is narrower and the current driving capability is higher.

【0033】なお、以上の第1及び第2実施例の何れも
が本願の発明をLDD構造で且つ自己整合コンタクト構
造のCMOSトランジスタに適用したものであるが、自
己整合コンタクト構造ではないトランジスタに適用する
のであれば、ポリサイド膜16上のオフセット用のSi
2 膜17は不要である。
Although both the first and second embodiments described above apply the invention of the present application to a CMOS transistor having an LDD structure and a self-aligned contact structure, it is applied to a transistor not having a self-aligned contact structure. If so, the offset Si on the polycide film 16
The O 2 film 17 is unnecessary.

【0034】[0034]

【発明の効果】請求項1の半導体装置の製造方法では、
不純物の拡散が少ないので、微細な半導体装置を製造す
ることができる。また、導電膜に対する絶縁耐圧が高い
側壁を形成することができるので、信頼性の高い半導体
装置を製造することができる。
According to the method of manufacturing a semiconductor device of claim 1,
Since the diffusion of impurities is small, a fine semiconductor device can be manufactured. Moreover, since a sidewall having a high withstand voltage with respect to the conductive film can be formed, a highly reliable semiconductor device can be manufactured.

【0035】請求項2の半導体装置では、不純物の拡散
が少ないので、微細化が可能である。また、導電膜に対
する側壁の絶縁耐圧が高いので、信頼性が高い。
In the semiconductor device according to the second aspect, since the diffusion of impurities is small, miniaturization is possible. Further, since the side wall has a high withstand voltage against the conductive film, the reliability is high.

【0036】請求項3の半導体装置の製造方法では、第
1導電型不純物の拡散係数が第2導電型不純物の拡散係
数より大きくても、第1導電型不純物層同士がゲート電
極の両側から接近し過ぎるのを防止することができるの
で、第1導電型チャネルトランジスタでパンチスルーが
生じにくい相補型半導体装置を製造することができる。
また、ゲート電極に対する絶縁耐圧が高い側壁を形成す
ることができるので、信頼性の高い半導体装置を製造す
ることができる。
In the method of manufacturing a semiconductor device according to the third aspect, even if the diffusion coefficient of the first conductivity type impurity is larger than the diffusion coefficient of the second conductivity type impurity, the first conductivity type impurity layers are close to each other from both sides of the gate electrode. Since it is possible to prevent the excessive conduction, it is possible to manufacture a complementary semiconductor device in which punch-through hardly occurs in the first conductivity type channel transistor.
In addition, since a sidewall having a high withstand voltage with respect to the gate electrode can be formed, a highly reliable semiconductor device can be manufactured.

【0037】請求項4の半導体装置の製造方法では、第
1導電型不純物の拡散係数が第2導電型不純物の拡散係
数より大きくても、第1導電型不純物層同士がゲート電
極の両側から接近し過ぎるのを防止することができるの
で、第1導電型チャネルトランジスタでパンチスルーが
生じにくい相補型半導体装置を製造することができる。
また、相対的に低濃度の第2導電型不純物層の幅が狭い
ので、第2導電型チャネルトランジスタの電流駆動能力
が高い相補型半導体装置を製造することができる。更
に、ゲート電極に対する絶縁耐圧が高い側壁を形成する
ことができるので、信頼性の高い半導体装置を製造する
ことができる。
In the method of manufacturing a semiconductor device according to the fourth aspect, even if the diffusion coefficient of the first conductivity type impurity is larger than the diffusion coefficient of the second conductivity type impurity, the first conductivity type impurity layers are close to each other from both sides of the gate electrode. Since it is possible to prevent the excessive conduction, it is possible to manufacture a complementary semiconductor device in which punch-through hardly occurs in the first conductivity type channel transistor.
Further, since the width of the second conductivity type impurity layer having a relatively low concentration is narrow, it is possible to manufacture a complementary semiconductor device in which the current conductivity of the second conductivity type channel transistor is high. Further, since the side wall having high withstand voltage against the gate electrode can be formed, a highly reliable semiconductor device can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の発明の第1実施例を工程順に示す側断面
図である。
FIG. 1 is a side sectional view showing a first embodiment of the present invention in the order of steps.

【図2】本願の発明の第2実施例を工程順に示す側断面
図である。
FIG. 2 is a side sectional view showing a second embodiment of the invention of the present application in the order of steps.

【符号の説明】[Explanation of symbols]

11 Si基板 12 Pウェル 13 Nウェル 16 ポリサイド膜 21 ヒ素 22 SiO2 膜 23 ボロン 24 SiO2 膜 26 リン 27 ボロン11 Si substrate 12 P-well 13 N-well 16 Polycide film 21 Arsenic 22 SiO 2 film 23 Boron 24 SiO 2 film 26 Phosphorus 27 Boron

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01L 21/31 C 27/092 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Internal reference number FI Technical indication H01L 21/31 C 27/092

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 相対的に高い温度で生成した第1の絶縁
膜から成る第1の側壁を導電膜の側面に形成する工程
と、 相対的に低い温度で生成した第2の絶縁膜から成る第2
の側壁を前記第1の側壁の前記導電膜とは反対側の側面
に形成する工程とを具備する半導体装置の製造方法。
1. A step of forming a first side wall made of a first insulating film formed at a relatively high temperature on a side surface of a conductive film, and a step of forming a second insulating film formed at a relatively low temperature. Second
A side wall of the first side wall opposite to the conductive film of the first side wall.
【請求項2】 相対的に高い温度で生成された第1の絶
縁膜から成っており導電膜の側面に形成されている第1
の側壁と、 相対的に低い温度で生成された第2の絶縁膜から成って
おり前記第1の側壁の前記導電膜とは反対側の側面に形
成されている第2の側壁とを具備する半導体装置。
2. A first insulating film formed at a relatively high temperature, the first insulating film being formed on a side surface of the conductive film.
And a second sidewall formed of a second insulating film formed at a relatively low temperature and formed on a side surface of the first sidewall opposite to the conductive film. Semiconductor device.
【請求項3】 半導体基板の第1及び第2導電型領域に
ゲート電極を形成する工程と、 前記第1導電型領域の前記ゲート電極をマスクにして、
この第1導電型領域に第2導電型不純物を相対的に低濃
度に導入する工程と、 前記第2導電型不純物を導入した後に、前記第1及び第
2導電型領域の前記ゲート電極の側面に、相対的に高い
温度で生成した第1の絶縁膜から成る第1の側壁を形成
する工程と、 前記第2導電型領域の前記ゲート電極及び前記第1の側
壁をマスクにして、この第2導電型領域に第1導電型不
純物を相対的に低濃度に導入する工程と、 前記第1導電型不純物を導入した後に、前記第1及び第
2導電型領域の前記第1の側壁の前記ゲート電極とは反
対側の側面に、相対的に低い温度で生成した第2の絶縁
膜から成る第2の側壁を形成する工程と、 前記第1導電型領域の前記ゲート電極並びに前記第1及
び第2の側壁をマスクにして、この第1導電型領域に第
2導電型不純物を相対的に高濃度に導入する工程と、 前記第2導電型領域の前記ゲート電極並びに前記第1及
び第2の側壁をマスクにして、この第2導電型領域に第
1導電型不純物を相対的に高濃度に導入する工程とを具
備する半導体装置の製造方法。
3. A step of forming gate electrodes in first and second conductivity type regions of a semiconductor substrate; and using the gate electrodes of the first conductivity type regions as a mask,
Introducing a second conductivity type impurity into the first conductivity type region at a relatively low concentration; and, after introducing the second conductivity type impurity, a side surface of the gate electrode in the first and second conductivity type regions. And forming a first side wall made of a first insulating film formed at a relatively high temperature, and using the gate electrode and the first side wall of the second conductivity type region as a mask, Introducing a first conductivity type impurity into the second conductivity type region at a relatively low concentration; and introducing the first conductivity type impurity into the second conductivity type region, and then introducing the first conductivity type impurity into the first sidewall of the first and second conductivity type regions. Forming a second side wall made of a second insulating film formed at a relatively low temperature on a side surface opposite to the gate electrode; the gate electrode in the first conductivity type region; Using the second sidewall as a mask, the second conductivity type is applied to the first conductivity type region. Introducing a relatively high concentration of type impurities, and using the gate electrode and the first and second sidewalls of the second conductivity type region as a mask to form the first conductivity type impurity in the second conductivity type region. A method of manufacturing a semiconductor device, the method comprising:
【請求項4】 半導体基板の第1及び第2導電型領域に
ゲート電極を形成する工程と、 前記第1導電型領域の前記ゲート電極をマスクにして、
この第1導電型領域に第2導電型不純物を相対的に低濃
度に導入する工程と、 前記第2導電型不純物を導入した後に、前記第1及び第
2導電型領域の前記ゲート電極の側面に、相対的に高い
温度で生成した第1の絶縁膜から成る第1の側壁を形成
する工程と、 前記第1導電型領域の前記ゲート電極及び前記第1の側
壁をマスクにして、この第1導電型領域に第2導電型不
純物を相対的に高濃度に導入する工程と、 前記第2導電型領域の前記ゲート電極及び前記第1の側
壁をマスクにして、この第2導電型領域に第1導電型不
純物を相対的に低濃度に導入する工程と、 前記第2導電型不純物を相対的に高濃度に導入し且つ前
記第1導電型不純物を導入した後に、前記第1及び第2
導電型領域の前記第1の側壁の前記ゲート電極とは反対
側の側面に、相対的に低い温度で生成した第2の絶縁膜
から成る第2の側壁を形成する工程と、 前記第2導電型領域の前記ゲート電極並びに前記第1及
び第2の側壁をマスクにして、この第2導電型領域に第
1導電型不純物を相対的に高濃度に導入する工程とを具
備する半導体装置の製造方法。
4. A step of forming a gate electrode in first and second conductivity type regions of a semiconductor substrate, and using the gate electrode of the first conductivity type region as a mask,
Introducing a second conductivity type impurity into the first conductivity type region at a relatively low concentration; and, after introducing the second conductivity type impurity, a side surface of the gate electrode in the first and second conductivity type regions. A step of forming a first side wall made of a first insulating film formed at a relatively high temperature, and using the gate electrode and the first side wall of the first conductivity type region as a mask, Introducing a second conductivity type impurity into the first conductivity type region in a relatively high concentration, and using the gate electrode and the first sidewall of the second conductivity type region as a mask to form the second conductivity type region. Introducing a first conductivity type impurity in a relatively low concentration; and introducing the second conductivity type impurity in a relatively high concentration and introducing the first conductivity type impurity, and thereafter, the first and second impurities
Forming a second side wall of a second insulating film formed at a relatively low temperature on a side surface of the first side wall of the conductivity type region opposite to the gate electrode; A step of introducing a first conductivity type impurity into the second conductivity type region in a relatively high concentration using the gate electrode and the first and second sidewalls of the mold region as a mask. Method.
JP5021720A 1993-01-14 1993-01-14 Semiconductor device and manufacture thereof Pending JPH06216151A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5021720A JPH06216151A (en) 1993-01-14 1993-01-14 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5021720A JPH06216151A (en) 1993-01-14 1993-01-14 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPH06216151A true JPH06216151A (en) 1994-08-05

Family

ID=12062922

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5021720A Pending JPH06216151A (en) 1993-01-14 1993-01-14 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPH06216151A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321557A (en) * 1995-05-24 1996-12-03 Nec Corp Fabrication of cmos semiconductor device
WO2000001011A1 (en) * 1998-06-26 2000-01-06 Advanced Micro Devices, Inc. Isotropically etching sidewall spacers to be used for both an nmos source/drain implant and a pmos ldd implant
JP2001044405A (en) * 1999-06-28 2001-02-16 Hyundai Electronics Ind Co Ltd Image sensor and manufacture thereof
JP2003100902A (en) * 2001-09-21 2003-04-04 Mitsubishi Electric Corp Manufacturing method for semiconductor device
US7888198B1 (en) 1998-05-20 2011-02-15 Samsung Electronics Co., Ltd. Method of fabricating a MOS transistor with double sidewall spacers in a peripheral region and single sidewall spacers in a cell region
JP2011155284A (en) * 2011-03-18 2011-08-11 Renesas Electronics Corp Method of manufacturing semiconductor device

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08321557A (en) * 1995-05-24 1996-12-03 Nec Corp Fabrication of cmos semiconductor device
US7888198B1 (en) 1998-05-20 2011-02-15 Samsung Electronics Co., Ltd. Method of fabricating a MOS transistor with double sidewall spacers in a peripheral region and single sidewall spacers in a cell region
WO2000001011A1 (en) * 1998-06-26 2000-01-06 Advanced Micro Devices, Inc. Isotropically etching sidewall spacers to be used for both an nmos source/drain implant and a pmos ldd implant
JP2001044405A (en) * 1999-06-28 2001-02-16 Hyundai Electronics Ind Co Ltd Image sensor and manufacture thereof
US7998802B2 (en) 2001-09-21 2011-08-16 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
JP2003100902A (en) * 2001-09-21 2003-04-04 Mitsubishi Electric Corp Manufacturing method for semiconductor device
US8415213B2 (en) 2001-09-21 2013-04-09 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US8541272B2 (en) 2001-09-21 2013-09-24 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US8642418B2 (en) 2001-09-21 2014-02-04 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US8859360B2 (en) 2001-09-21 2014-10-14 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US8987081B2 (en) 2001-09-21 2015-03-24 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US9214464B2 (en) 2001-09-21 2015-12-15 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
US9349816B2 (en) 2001-09-21 2016-05-24 Renesas Electronics Corporation Method of manufacturing semiconductor device with offset sidewall structure
JP2011155284A (en) * 2011-03-18 2011-08-11 Renesas Electronics Corp Method of manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
US5372957A (en) Multiple tilted angle ion implantation MOSFET method
US6544873B1 (en) Methods of fabricating integrated circuit field effect transistors including multilayer gate electrodes having narrow and wide conductive layers
US6221709B1 (en) Method of fabricating a CMOS integrated circuit device with LDD N-channel transistor and non-LDD P-channel transistor
US5512502A (en) Manufacturing method for semiconductor integrated circuit device
EP0164449B1 (en) Process for producing a semiconductor integrated circuit device including a misfet
US5648673A (en) Semiconductor device having metal silicide film on impurity diffused layer or conductive layer
US6008097A (en) MOS transistor of semiconductor device and method of manufacturing the same
US5686324A (en) Process for forming LDD CMOS using large-tilt-angle ion implantation
US4966866A (en) Method for manufacturing semiconductor device having gate electrodes of different conductivity types
JPH06275788A (en) Manufacture of dual gate cmos semiconductor device
JPH06216151A (en) Semiconductor device and manufacture thereof
JPH0330470A (en) Semiconductor device
JP2796047B2 (en) Method for manufacturing CMOS transistor
KR100273496B1 (en) Method for fabricating semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JP2997123B2 (en) Method for manufacturing semiconductor device
US6013554A (en) Method for fabricating an LDD MOS transistor
KR100431324B1 (en) Manufacturing Method of Semiconductor Device
KR100365409B1 (en) Method for forming a gate electrode in semiconductor device
JPH0831949A (en) Dual gate structure cmos semiconductor device and its manufacture
KR100311177B1 (en) A method of fabricating semiconductor device
KR100333356B1 (en) A method of fabricating a semiconductor device
JP2508782B2 (en) Method for manufacturing CMOS semiconductor device
EP0878833B1 (en) Process for the selective formation of salicide on active areas of MOS devices
KR100260360B1 (en) Method for manufacturing semiconductor device