JPS6084859A - Complementary type semiconductor device and manufacture thereof - Google Patents

Complementary type semiconductor device and manufacture thereof

Info

Publication number
JPS6084859A
JPS6084859A JP58191924A JP19192483A JPS6084859A JP S6084859 A JPS6084859 A JP S6084859A JP 58191924 A JP58191924 A JP 58191924A JP 19192483 A JP19192483 A JP 19192483A JP S6084859 A JPS6084859 A JP S6084859A
Authority
JP
Japan
Prior art keywords
region
gate electrode
source
semiconductor device
channel transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP58191924A
Other languages
Japanese (ja)
Other versions
JPH0644604B2 (en
Inventor
Kazuhiko Hashimoto
一彦 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP58191924A priority Critical patent/JPH0644604B2/en
Publication of JPS6084859A publication Critical patent/JPS6084859A/en
Publication of JPH0644604B2 publication Critical patent/JPH0644604B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To prevent the variation in the threshold value and the like due to hot electrons by a method wherein the source and drain regions of an N-channel transistor are constructed of a region of low impurity concentration formed with its gate electrode as a mask and a region of high impurity concentration formed by superposition on the region alienated from the gate electrode. CONSTITUTION:An Si substrate 21 is provided with a P type well region 22, and this well region is provided with the source region 30 consisting of impurity regions 261 and 291 respectively of a low concentration and a high one and the drain region 31 consisting of impurity regions 262 and 292 respectively of a low concentration and a high one. Further, Ti silicide layers 34 are provided on the source and drain regions 29-32 and the gate electrodes 252 and 251 of N-channel and P-channel transistors. Thereby, an electric field generating in the neighborhood of the drain region 31 on application of a voltage to this region can be dispersed, and the presence of the metal silicide layer 34 enables the source and drain regions 30-33 and the gate electrodes 252 and 251 to be reduced in resistance.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、相補型半導体装置及びその製造方法の改良に
関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to improvements in complementary semiconductor devices and methods for manufacturing the same.

〔発明の技術的背景〕[Technical background of the invention]

従来、相補型半導体装置例えば相補型(C)MOSイン
バータとしては、第1図に示す如く、N型(100)シ
リコン基板1にP型ウェル領域2を設け、前記基板1の
P型ウェル領域2外にPチャネルトランジスタTpを、
かつP型ウェル領域2内にNチャネルトランジスタTN
を設けた桐造のものが知られている。以下に、このイン
バータの製造手順について説明する。
Conventionally, as shown in FIG. 1, a complementary semiconductor device, for example, a complementary (C) MOS inverter, has a P-type well region 2 provided on an N-type (100) silicon substrate 1. A P-channel transistor Tp externally,
and an N-channel transistor TN in the P-type well region 2.
One made of paulownia wood is known. The manufacturing procedure of this inverter will be explained below.

まず、前記基板1にウェル領域2を形成した後、基板1
に厚い素子分離領域3を形成する。
First, after forming the well region 2 on the substrate 1,
A thick element isolation region 3 is formed in the area.

つづいて、前記基板1、ウェル領域2上に夫々ゲート絶
縁膜41t’Rを介してポリシリコン等によるゲート電
極51+52を形成する。次いで、ウェル舶載2上にフ
ォトレジスト膜を選択的に塗布し、Pチャネルトランジ
スタT、側のゲート電極5.と上記フォトレジスト膜を
マスクとS嘴ηNつ二ばポロンをイオン注入し p+型
のシース、ドレイン領域6.2を形成する。
Subsequently, gate electrodes 51+52 made of polysilicon or the like are formed on the substrate 1 and the well region 2, respectively, via the gate insulating film 41t'R. Next, a photoresist film is selectively coated on the well mounting 2, and the gate electrode 5 on the side of the P-channel transistor T is coated. Then, using the above photoresist film as a mask, S-beak ηN ions are implanted to form a p+ type sheath and drain region 6.2.

同様に、PチャネルトランジスタTp側にフォトレジス
ト膜を塗布し、このフォトレジスト膜とゲート電極5.
をマスクとして砒素またはリンをイオン注入し、N 型
のソース、ドレイン領域8,9を形成する。その後、更
に層間絶縁膜10を被おし、コンタクトホール11・・
・を開口して配線層12…を被層する。これにより、基
板1にPチャネルトランジスタ(Tp)を有し、ウェル
領域2にNチャネルトランジスタ(TN )を有したC
MOSインバータ4製造される。なお、このCMOSイ
ンバータの各ソース、ドレイン領域6〜9は、10 ”
 〜10”crn−3(D略均−な不純物濃度を有して
いる。
Similarly, a photoresist film is applied to the P-channel transistor Tp side, and this photoresist film and gate electrode 5.
Arsenic or phosphorus is ion-implanted using the mask as a mask to form N-type source and drain regions 8 and 9. After that, the interlayer insulating film 10 is further covered, and the contact holes 11...
・Open the wiring layer 12 and cover it with the wiring layer 12. As a result, a transistor having a P-channel transistor (Tp) in the substrate 1 and an N-channel transistor (TN) in the well region
MOS inverter 4 is manufactured. Note that each source and drain region 6 to 9 of this CMOS inverter has a thickness of 10"
It has an approximately average impurity concentration of ~10'' crn-3 (D).

〔背景技術の問題点〕[Problems with background technology]

しかしながら、前述したCMOSインバータによれば、
次に示す欠点を有する。
However, according to the CMOS inverter mentioned above,
It has the following drawbacks.

■ 上記のような装置において、集積度を上げるために
ゲート長を短かくすると、前記ソース・ドレイン領域6
〜9の電界が強くなり、いわゆるインパクトアイオナイ
ゼイション(@突電離)を生じ、Nチャネルトランジス
タではホットエフトロン、Pチャネルトランジスタでは
ホットホールがそれぞれのゲート絶縁膜’I*’lに注
入され、それぞれのトランジスタの閾値変動を引き起こ
す。特にこのインパクトアイオナイゼイション化の効串
は、NチャネルトランジスタTNで著しく大きいため、
NチャネルトランジスタTNのゲート長の短縮化は困難
でしばしば間組となる。
■ In the above device, when the gate length is shortened to increase the degree of integration, the source/drain region 6
The electric field at ~9 becomes stronger, causing so-called impact ionization (@sudden ionization), and hot eftrons are injected into the N-channel transistor and hot holes are injected into the P-channel transistor into the respective gate insulating films 'I*'l. This causes threshold fluctuations of each transistor. In particular, the effect of this impact ionization is extremely large in the N-channel transistor TN, so
It is difficult to shorten the gate length of the N-channel transistor TN, which often results in a gap.

■ PチャネルトランジスタTpのソース、ドレイン領
域6,7に注入されたボロンは拡散係数が大きいため、
前記ソース、ドレイン領域6,9形成後の熱処理工程に
おいて、図における深さ方向ばかりでなく横方向にも拡
散し、ゲート絶縁膜4.下にソース、ドレイン領域6,
7が大きく伸びる。特に、ゲート絶縁膜4.下に伸びる
横方向拡散は0.7〜0.8μmもある場合があり、ゲ
ート電極5とソース、ドレイン領域6.7との寄生容量
の増大を招いて特性を悪化させる。
■ Since the boron implanted into the source and drain regions 6 and 7 of the P-channel transistor Tp has a large diffusion coefficient,
In the heat treatment step after forming the source and drain regions 6 and 9, the gate insulating film 4 is diffused not only in the depth direction but also in the lateral direction in the figure. Source and drain regions 6 below,
7 grows significantly. In particular, gate insulating film 4. The width of the lateral diffusion extending downward may be as much as 0.7 to 0.8 μm, leading to an increase in the parasitic capacitance between the gate electrode 5 and the source and drain regions 6.7, thereby degrading the characteristics.

■ 前述した如く、PチャネルトランジスタT、のソー
ス、ドレイン領域6,7に注入されたポロンは拡散係数
が大きく、トランジスタが微細化されるにつれ、前記ソ
ース、ドレイン領域6,7の接合深さを洩くする為には
不純物讃度を低くする必要があり、これはソース、ドレ
イン領域6.2の抵抗増加を招き、トランジスタ特性を
悪化させる。なお、一般にトランジスタのゲート電極は
配線としても用いられ、この抵抗も信号伝達特性を悪化
させるので好ましくない。
■ As mentioned above, the poron implanted into the source and drain regions 6 and 7 of the P-channel transistor T has a large diffusion coefficient, and as transistors are miniaturized, the junction depth of the source and drain regions 6 and 7 is reduced. In order to prevent leakage, it is necessary to lower the impurity concentration, which causes an increase in the resistance of the source and drain regions 6.2 and deteriorates the transistor characteristics. Note that the gate electrode of a transistor is generally also used as a wiring, and this resistance is also undesirable because it deteriorates signal transmission characteristics.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、Nチャネ
ルトランジスタにおけるホットエレクトロンによる閾値
の開動と、Pチャネルトランジスタにおけるゲート絶縁
膜を挾みゲート電極下に伸びるソース、ドレイン領域の
横方向拡散による特性の劣化とを防止するとともに、P
チャネルトランジスタのソース、ドレイン領域の抵抗、
ゲート電極の抵抗を下げることのできる相補型半導体装
置及びその製造方法を提供することを目的とするもので
ある。
The present invention has been made in view of the above-mentioned circumstances, and is based on the opening of the threshold by hot electrons in an N-channel transistor, and the lateral diffusion of the source and drain regions that sandwich the gate insulating film and extend below the gate electrode in a P-channel transistor. In addition to preventing deterioration of characteristics, P
resistance of the source and drain regions of the channel transistor,
It is an object of the present invention to provide a complementary semiconductor device that can reduce the resistance of a gate electrode and a method for manufacturing the same.

〔発明の概要〕[Summary of the invention]

本願第1の発明は、Nチャネルトランジスタのソース、
ドレイン領域が、そのゲート電極をマスクとして形成さ
れた低不純物領域と、同ゲート電極から離間して設けら
れた上記低不純物領域に重ねて形成された高不純物領域
とからなり、かつ上記2釉のトランジスタの少なくとも
Pチャネルトランジスタのソース、ドレイン領域及びゲ
ート電極上に低抵抗j曽を設けることによって、上記目
的を達成することを図ったことを骨子とするものである
The first invention of the present application provides a source of an N-channel transistor;
The drain region consists of a low impurity region formed using the gate electrode as a mask, and a high impurity region formed overlapping the low impurity region spaced apart from the gate electrode, and The gist of the present invention is to achieve the above object by providing a low resistance j so on at least the source, drain region and gate electrode of a P-channel transistor.

本願第2の発明は、半導体基板にウェル領域を形成した
後、前記基板、ウェル領域上にゲート絶縁膜を介してゲ
ート電極を夫々形成し、一方のゲート電極をマスクとし
て基板あるいはウェル領域に低濃度のN型の不純物をイ
オン注入して低不純物領域を形成し、前記ゲート電極の
側壁に夫々絶縁物を形成し、前記ゲート電極、絶縁物を
マスクとして基板、ウェル領域に夫々高濃度の異なる不
純物をイオン注入して高不純物領域を形成することによ
って、低不純物領域及び高不純物領域からなるN型のソ
ース、ドレイン領域を形成するとともに、高不純物領域
からなるP型のソース、ドレイン領域を形成し、少なく
ともPチャネルトランジスタのソース、ドレイン領域及
びゲート電極上に低抵抗層を形成することによって、本
朝第1の発明と同じ効果を得ることを図ったものである
In the second invention of the present application, after forming a well region on a semiconductor substrate, gate electrodes are respectively formed on the substrate and the well region through a gate insulating film, and one gate electrode is used as a mask to form a well region on the substrate or the well region. A low impurity region is formed by ion-implanting N-type impurities at a high concentration, an insulator is formed on each side wall of the gate electrode, and different high concentrations are formed on the substrate and well region using the gate electrode and the insulator as a mask. By ion-implanting impurities to form high impurity regions, N-type source and drain regions consisting of low impurity regions and high impurity regions are formed, and P-type source and drain regions consisting of high impurity regions are formed. However, by forming a low-resistance layer at least on the source, drain region, and gate electrode of the P-channel transistor, the present invention aims to obtain the same effect as the first invention of the present invention.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第2図(、)〜(、)を参照
して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to FIGS.

〔1〕まず、半導体基板としてのN型(100)シリコ
ン基板(ウニ八)21表面にP型ウェル領域22を形成
した後、基板21上に素子分離領域23を形成した。つ
づいて、前記基板21上に熱酸化膜及び例えばポリシリ
コン等の電極材とを積層被層した後、これらを同時に写
真蝕刻してゲート絶縁膜24. 、24゜とこのゲート
絶縁If! 2 ’+ + 24を上のゲート電極25
..25.とを夫々形成した(第2図(−)図示)。次
いで、Pチャネルトランジ、スタ形成予定部側に図示し
ないレジスト膜を塗布し、ゲート電極25.をマスクと
してNチャネルトランジスタ形成予定部側に例えばリン
をイオン注入し、10′7〜10 cm の低澁度の第
1の不純物領域(低不純物領域)26、.26.全形成
した。更に、上記レジスト膜を除去した後、ウェハ21
上ItIK厚き20ρo 〜5000AcDstO,[
2ylCV D (Chemica6Vapour D
eposition )法によって堆積した(第2図(
b)図示)。ここで、おいてはウニへ2ノ面の垂直方向
の膜厚が淳いものとなる。しかる後、前記SiO,l摸
27をRI E (Reactive Ion Etc
hing )法等の異方性エツチングによりエツチング
を行った。
[1] First, a P-type well region 22 was formed on the surface of an N-type (100) silicon substrate (Unihachi) 21 as a semiconductor substrate, and then an element isolation region 23 was formed on the substrate 21. Subsequently, a thermal oxide film and an electrode material such as polysilicon are laminated and coated on the substrate 21, and then these are simultaneously photo-etched to form a gate insulating film 24. , 24° and this gate insulation If! 2'+ + 24 to upper gate electrode 25
.. .. 25. and were formed respectively (as shown in FIG. 2 (-)). Next, a resist film (not shown) is applied to the side where the P channel transistor and star are to be formed, and the gate electrode 25. Using as a mask, ions of, for example, phosphorus are implanted into the portion where the N-channel transistor is to be formed, and the first impurity regions (low impurity regions) 26, . 26. Fully formed. Furthermore, after removing the resist film, the wafer 21
Upper ItIK thick 20ρo ~ 5000AcDstO, [
2ylCV D (Chemica6Vapour D
deposition) method (Fig. 2 (
b) As shown). Here, the film thickness in the vertical direction on the two sides of the sea urchin becomes thinner. After that, the SiO, l sample 27 was subjected to RIE (Reactive Ion Etc.
Etching was performed by anisotropic etching such as the hing method.

このとき、ゲート電極25. 、25.の端面の段差部
に被着ブるS I O,膜27が厚いため、ゲート電極
25..25.の側壁にS t O,膜27′が残°り
た。なお、図では素子分離領域23側に残った側壁Si
n、膜は特に示しでいない。この後、ウニへ2ノ上にレ
ジスト膜を被おし、Nチャネルトランジスタ形成手足部
側が銀山するように該レジスト膜を趙択的にエツチング
除去してレジストパターン28をして砒素をドーズi3
xlom でイオン注入し、高濃度の第2の不純物領域
(尚不純物領域) 29. 、29.を形成した。なお
、その結果、一方の第1、第2の不純物領域26、.2
9.からソース領域30が形成され、他方の第1、第2
の不純物領域26.。
At this time, the gate electrode 25. , 25. Since the SIO film 27 deposited on the stepped portion of the end face of the gate electrode 25. .. 25. A film 27' of S t O was left on the side wall. In addition, in the figure, the side wall Si remaining on the element isolation region 23 side
n, membrane is not particularly shown. After this, a resist film is placed on top of the sea urchin 2, and the resist film is selectively etched away so that the N-channel transistor forming limbs are covered with silver to form a resist pattern 28, and arsenic is dosed i3.
xlom ion implantation to form a highly concentrated second impurity region (additional impurity region) 29. , 29. was formed. Note that as a result, one of the first and second impurity regions 26, . 2
9. A source region 30 is formed from the other first and second
Impurity region 26. .

29、からドレイン領域3ノが形成された(第2図(c
)図示)。
29, the drain region 3 was formed (Fig. 2(c)
).

(II)次に、前記レジストパターン28を除去した後
1、P型ウェル22をフォトレジスト膜で覆いボayを
I X 10” 〜3 X 10”cra−”の濃度で
イオン注入した。ここで、このイオン注入は、Nチャネ
ルトランジスタの場合と同様に段差部に残存S i O
H膜22′が形成されているため、残存S10を膜27
’もマスクとして用いられる。そして、Pチャネルトラ
ンジスタのP 型のソース、ドレイン領域32゜33が
形成された。つづいて、700〜1000℃の熱処理に
よって、注入した不純物の活性化と拡散を行なった。こ
の結果、ソース、ドレイン領域32.3:lは、Pチャ
ネルトランジスタのゲー°ト電極251に対して自己整
合的となった。次いで、淳さ500〜1000 Aのチ
タン層を全面に蒸暑した後、700〜900℃で30分
間熱処理を施した。
(II) Next, after removing the resist pattern 28, the P-type well 22 was covered with a photoresist film, and ions were implanted into the void at a concentration of I x 10'' to 3 x 10''cra-''. , this ion implantation removes residual S i O in the stepped portion as in the case of N-channel transistors.
Since the H film 22' is formed, the remaining S10 is transferred to the film 27.
' is also used as a mask. Then, P type source and drain regions 32 and 33 of a P channel transistor were formed. Subsequently, the implanted impurities were activated and diffused by heat treatment at 700 to 1000°C. As a result, the source and drain regions 32.3:l became self-aligned with the gate electrode 251 of the P-channel transistor. Next, the entire surface of the titanium layer with a thickness of 500 to 1000 A was steamed, and then heat treated at 700 to 900°C for 30 minutes.

その結果、Nチャネル、Pチャネルトランジスタのソー
ス、ドレイン領域30〜33及びゲート電極25..2
51のシリコンは頗1i己チタンと反応し、低抵抗層と
してのチタンシリサイド層34・・・全形成した。この
1イ也の領域ではチタンシリサイド層を形成せずチタン
層のままである。、更に、過酸化水素:アンモニア:水
−5:1:1の混合液でチタン!−のみを越択的にエツ
チング除去した(第2図(d)図示)。しかる後、全1
1に層間絶縁層35を形成した後、Nチャネル、Pチャ
ネルトランジスタのソース、ドレイン領域30〜33及
びゲート電極25..2.5□の一部に対応する層間絶
縁yaeを選択的に開口してコンタクトホール36・・
・を形成し、良にAE配線37・・・を形成してCMO
Sインバータを製造した(第2図〈@)図示)。
As a result, source and drain regions 30 to 33 and gate electrodes 25 . .. 2
The silicon 51 reacted with the titanium, and a titanium silicide layer 34 as a low resistance layer was completely formed. In this region 1, no titanium silicide layer is formed and the titanium layer remains. , Furthermore, titanium with a mixture of hydrogen peroxide: ammonia: water - 5:1:1! - was selectively removed by etching (as shown in FIG. 2(d)). After that, all 1
After forming the interlayer insulating layer 35 on the N-channel and P-channel transistors, the source and drain regions 30 to 33 and the gate electrode 25.1 are formed. .. A contact hole 36 is formed by selectively opening the interlayer insulation yae corresponding to a part of 2.5□.
・ is formed, and the AE wiring 37 is formed properly to form the CMO.
An S inverter was manufactured (as shown in Fig. 2).

本発明に係るCMOSインバータは、第2図(6) K
示す如く、シリコン基板21にP型ウェル領域22を設
け、このウェル領域22に低濃度、高濃度の不純物領域
26□ 、22.からなるソース領域3゜Oをかつ低幽
度、高#i反の不純物領域26.’、29.からなるド
レイン領域sI7を設け、更にNチャネル、Pチャネル
トランジスタのソース、ドレイン領域29〜32及びゲ
ート電極25..25.上にチタンシリサイド層37.
?・・・を設けた構造になっている。
The CMOS inverter according to the present invention is shown in FIG. 2 (6) K
As shown, a P-type well region 22 is provided in a silicon substrate 21, and low-concentration and high-concentration impurity regions 26□, 22. A source region 3°O consisting of a low-integrity, high #i anti-impurity region 26. ', 29. A drain region sI7 is provided, and further includes source and drain regions 29 to 32 of N-channel and P-channel transistors, and gate electrodes 25. .. 25. Titanium silicide layer 37 on top.
? It has a structure with...

しかして、本発明に係るCMOSインバータによれば、
高濃度の第2の不純物領域’26.。
According to the CMOS inverter according to the present invention,
High concentration second impurity region '26. .

2、!、とゲート絶縁膜24.との開に低濃度の第1の
不純物領域26..2.f、か形成されているため、ド
レイン領域3ノに′重圧を印加したときにドレイン領域
3ノ近傍に発生する電界を分散させることができ、イン
パクトアイオナイゼイションを制御できる。また、Nチ
ャネル、Pチャネルのトランジスタのソース、ドレイン
領域30〜33及びゲー・計電極25.,25を上のメ
タルシリサイド#!jSa・・・の存在により、ソース
、ドレイン領域30〜33及びゲート電極25..25
.を低抵抗化でき、デバイス特性を向上できる。
2,! , and the gate insulating film 24. A low concentration first impurity region 26. .. 2. Since the drain region 3 is formed with a radial force of 1, it is possible to disperse the electric field generated in the vicinity of the drain region 3 when a heavy pressure is applied to the drain region 3, and impact ionization can be controlled. In addition, the source and drain regions 30 to 33 of N-channel and P-channel transistors and the gate electrode 25. , 25 on the metal silicide #! Due to the presence of jSa..., the source and drain regions 30 to 33 and the gate electrode 25. .. 25
.. It is possible to lower the resistance and improve device characteristics.

また、本発明によれば、Pチャネルトランジスタの製造
に際し、拡散係数の大きなポロンの横方向拡散を予め見
込んでゲート電極25mの側壁に残存StO,膜27′
を形成しておき、この残存SiO,II灸、’7’もマ
スクとしてボロンをイオン注入するため、ゲート絶縁膜
24.を挾んでゲート電極25.下に伸びるソース、ド
レイン領域31.32を容易K O,2μm以下に抑制
でき、寄生容量を低減できるう なお、上!dW施例では、チタンシリサイド層をNチャ
ネル、Pチャネルトランジスタの夫々のソース、ドレイ
ン領域及びゲート電極上に形成する場合について述べた
が、これに限らず、例えばPチャネルトランジスタの夫
々のソース、ドレイン領域及びゲート電極上のみに形成
する場合でも同様の効果が期待できる。以下、かかる場
合について第3図(a) t (b)を用いて説明する
Further, according to the present invention, when manufacturing a P-channel transistor, in advance the lateral diffusion of poron having a large diffusion coefficient is anticipated, and residual StO is deposited on the side wall of the gate electrode 25m.
is formed, and this remaining SiO, II moxibustion layer '7' is also used as a mask for boron ion implantation, so that the gate insulating film 24. sandwiching the gate electrode 25. The source and drain regions 31 and 32 extending downward can be easily suppressed to KO, 2 μm or less, and the parasitic capacitance can be reduced. In the dW embodiment, a titanium silicide layer is formed on the source and drain regions and gate electrodes of N-channel and P-channel transistors, but the invention is not limited thereto. A similar effect can be expected even when the film is formed only on the region and the gate electrode. Hereinafter, such a case will be explained using FIGS. 3(a) and 3(b).

即ち、上記実施例のようにP 型のソース、ドレイン領
域32.33を形成後、厚さ1000〜1500Aのチ
タンシリサイド層41全スパツタ法により全面に蒸着し
、写真蝕刻法によりPチャネルトランジスタのソース、
ドレイン領域31.32及びゲート電極25.上のみに
チタンシリサイド層41を残した(第3図(−)図示)
That is, after forming the P type source and drain regions 32 and 33 as in the above embodiment, a titanium silicide layer 41 with a thickness of 1000 to 1500 Å is deposited on the entire surface by sputtering, and the source of the P channel transistor is formed by photolithography. ,
Drain region 31.32 and gate electrode 25. The titanium silicide layer 41 was left only on the top (as shown in Figure 3 (-))
.

以下、実施例と同様にして層間絶縁膜34、コンタクト
ボール3,6・・・及びAe配紛3りを形成してCMO
Sインバータを製造する(第3図(b)図示)。
Thereafter, an interlayer insulating film 34, contact balls 3, 6... and Ae powder distribution 3 are formed in the same manner as in the example, and CMO
An S inverter is manufactured (as shown in FIG. 3(b)).

また、上記実施例で1寸、低抵抗層としてチタンシリサ
イド層を用いたが、これに限らず、モリブデンシリサイ
ド層、プラチナシリサイドj―、タンタルシリサイド層
、タングステンシリサイドJrJ等のメタルシリサイド
層、あるいは他の材料層でもよい。ただし、相料によっ
てはシリサイド形成温度が変わるので、熱処理温度を適
宜変更する必要があるう 〔発明の効果〕 以上詳述した如く本発明によれば、Nチャネルトランジ
スタのホットエレクトロンによる閾値の変動と、Pチャ
ネルトランジスタのゲート電極に伸びるソース、ドレイ
ン領域の横方向拡散による特性の劣化、ソース、ドレイ
ン領域及方法を提供できるものである。
Further, in the above embodiments, a titanium silicide layer was used as the low resistance layer, but the layer is not limited to this, and metal silicide layers such as a molybdenum silicide layer, a platinum silicide layer, a tantalum silicide layer, a tungsten silicide JrJ layer, or other layers may be used. A layer of material may be used. However, since the silicide formation temperature changes depending on the phase material, it is necessary to change the heat treatment temperature appropriately. [Effects of the Invention] As detailed above, according to the present invention, the fluctuation of the threshold value due to hot electrons of an N-channel transistor can be reduced. The present invention can provide a source and drain region and a method for reducing characteristics due to lateral diffusion of a source and drain region extending to a gate electrode of a P-channel transistor.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMOSインバータの断面図、第2図(
−)〜(、)は本発明の一実施例に係るCMOSインバ
ータの製造方法を工程順に示す断面図、第3図(a) 
e (b)は本発明の他の実施例に係るCMOSインバ
ータの製造方法を工程順に示す断面図である。 2−1・・・N型(100)シリコン基板(半導体基板
)、22・・・P型ウェル領域、23・・・素子分離領
域、24..24.・・・ゲート絶縁膜、25I。 25!・・・ゲート電極、26. 、2 ti、、 2
9.。 29、・・・不純物領域、27 、27’・・・510
2膜、30.32・・・ソース領域、31.33・・・
ドレイン領域、34.41・・・チタンシリサイド層(
低抵抗層)、35・・・層間絶縁膜、36・・・コンタ
クトホール、37・・・AJ配線。 出−人に程人 弁理士 鈴 圧式 彦
Figure 1 is a cross-sectional view of a conventional CMOS inverter, Figure 2 (
-) to (,) are cross-sectional views showing the manufacturing method of a CMOS inverter according to an embodiment of the present invention in the order of steps, FIG. 3(a)
e (b) is a sectional view showing a method for manufacturing a CMOS inverter according to another embodiment of the present invention in order of steps. 2-1... N type (100) silicon substrate (semiconductor substrate), 22... P type well region, 23... element isolation region, 24. .. 24. ...Gate insulating film, 25I. 25! ...gate electrode, 26. , 2 ti,, 2
9. . 29,... impurity region, 27, 27'...510
2 film, 30.32...source region, 31.33...
Drain region, 34.41...Titanium silicide layer (
low resistance layer), 35... interlayer insulating film, 36... contact hole, 37... AJ wiring. Patent attorney Suzu Ushiki Hiko

Claims (1)

【特許請求の範囲】 (1)表面にウェル領域を有する半導体基板上に形成さ
れたゲート電極とソース、ドレイン領域とを有するNチ
ャネルトランジスタおよびPチャネルトランジスタから
なる相補型半導体装置において、Nチャネルトランジス
タのソース、ドレイン領域が、そのゲート電極をマスク
として形成された低不純物領域と、同ゲート電極から離
間して設けられた上記低不純物領域に重ねて形成された
高不純物領域とからなり、かつ上記2mのトランジスタ
の少なくともPチャネルトランジスタのソース、ドレイ
ン領域及びゲート電極上に低抵抗層を設けたことを特徴
とする相補型半導体装置。 Q) 低抵抗層がメタルシリサイド層であることを特徴
とする特許請求の範囲第1項記載の相補型半導体装置。 (3) メタルシリサイド層が、チタンシリサイド層、
モリブデンシリサイド層、プラチナシリサイド層、タン
タルシリサイド層、タングステンシリサイド層のいずれ
かであることを特徴とする特許請求の範囲第2項記載の
相補型半導体装置。 (4)゛半導体基板の材質がシリコンで、かつゲート電
極の材質がポリシリコンであることを特徴とする特許請
求の範囲第1項記載の相補型半導体装置。 (5)表面にウェル領域を有する半導体基板上に形成さ
れたゲート電極とソース、ドレイン領域とを有するNチ
ャネルトランジスタおよびPチャネルトランジスタから
なる相補型半導体装置の製造方法において、半導体基板
にウェル領域を形成する工程と、前記基板、ウェル領域
上にゲート絶縁膜を介してゲート電極を夫々形成する工
程と、一方のゲート電極をマスクとして基板あるいはウ
ェル領域に低磯度のN型の不純物をイオン注入し、低不
純物領域を形成する工程と、前記ゲート電極の側壁に夫
々絶縁物を形成する工程と、前記ゲート電極、絶縁物を
マスクとして基板、ウェル領域に夫々高庚度の異なる不
純物をイオン注入して高不純物領域を形成し、低不純物
領域及び高不純物領域からなるN型のソース、ドレイン
領域を形成するとともに、高不純物領域からなるP型の
ソース、ドレイン領域を形成する工程と、上記2釉のト
ランジスタの少なくともPチャネルトランジスタのソー
ス、ドレイン領域及びゲート電極上に低抵抗層を形成す
る工程とを具備することを特徴とする相補型半導体装置
の製造方法。 (6)低抵抗層がメタルシリサイド層であることを特徴
とする特許請求の範囲第5項記載の相補型半導体装置の
製造方法。 Q)半導体基板の材質がシリコンで、ゲート電極の材質
が多結晶シリコンであることを特徴とする特許請求の範
囲第5項記載の相補型半導体装置の製造方法。 (8)N型、P型ソース、ドレイン領域を形成した後、
全面にメタルを蒸着し熱処理することにより、メタルを
ソース、ドレイン領域及びゲート電極中のシリコンと反
応させてメタルシリサイド層を形成することを特徴とす
る特許請求の範囲第5項又は第6項又は第7項記載の相
補型半導体装置の製造方法。
[Scope of Claims] (1) In a complementary semiconductor device consisting of an N-channel transistor and a P-channel transistor, each of which has a gate electrode and a source and drain region formed on a semiconductor substrate having a well region on its surface, the N-channel transistor The source and drain regions of the above are comprised of a low impurity region formed using the gate electrode as a mask, and a high impurity region formed overlapping the low impurity region spaced apart from the gate electrode, and A complementary semiconductor device characterized in that a low resistance layer is provided on the source, drain region and gate electrode of at least a P channel transistor of a 2 m long transistor. Q) The complementary semiconductor device according to claim 1, wherein the low resistance layer is a metal silicide layer. (3) The metal silicide layer is a titanium silicide layer,
3. The complementary semiconductor device according to claim 2, wherein the complementary semiconductor device is any one of a molybdenum silicide layer, a platinum silicide layer, a tantalum silicide layer, and a tungsten silicide layer. (4) The complementary semiconductor device according to claim 1, wherein the material of the semiconductor substrate is silicon, and the material of the gate electrode is polysilicon. (5) In a method for manufacturing a complementary semiconductor device comprising an N-channel transistor and a P-channel transistor having a gate electrode and source and drain regions formed on a semiconductor substrate having a well region on the surface, the well region is formed on the semiconductor substrate. a step of forming gate electrodes on the substrate and well region via a gate insulating film, and ion implantation of low-irregularity N-type impurities into the substrate or well region using one of the gate electrodes as a mask. Then, a step of forming a low impurity region, a step of forming an insulator on the sidewalls of the gate electrode, and ion implantation of impurities of different high intensity into the substrate and the well region using the gate electrode and the insulator as masks, respectively. forming a highly impurity region, forming an N-type source and drain region consisting of a low impurity region and a high impurity region, and forming a P-type source and drain region consisting of a high impurity region; A method for manufacturing a complementary semiconductor device, comprising the step of forming a low resistance layer on at least the source, drain region and gate electrode of a P-channel transistor of a glazed transistor. (6) The method for manufacturing a complementary semiconductor device according to claim 5, wherein the low resistance layer is a metal silicide layer. Q) The method for manufacturing a complementary semiconductor device according to claim 5, characterized in that the material of the semiconductor substrate is silicon and the material of the gate electrode is polycrystalline silicon. (8) After forming N-type and P-type source and drain regions,
Claim 5 or 6, characterized in that a metal is reacted with silicon in the source, drain region and gate electrode to form a metal silicide layer by vapor depositing metal on the entire surface and heat treating it. 8. A method for manufacturing a complementary semiconductor device according to item 7.
JP58191924A 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device Expired - Lifetime JPH0644604B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58191924A JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58191924A JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Publications (2)

Publication Number Publication Date
JPS6084859A true JPS6084859A (en) 1985-05-14
JPH0644604B2 JPH0644604B2 (en) 1994-06-08

Family

ID=16282702

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58191924A Expired - Lifetime JPH0644604B2 (en) 1983-10-14 1983-10-14 Manufacturing method of complementary semiconductor device

Country Status (1)

Country Link
JP (1) JPH0644604B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298642A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138169A (en) * 1981-02-20 1982-08-26 Hitachi Ltd Complementary type insulating gate field-effect semiconductor device
JPS57152161A (en) * 1981-03-16 1982-09-20 Seiko Epson Corp Manufacture of semiconductor device
JPS57192063A (en) * 1981-05-20 1982-11-26 Fujitsu Ltd Manufacture of semiconductor device
JPS57192079A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57138169A (en) * 1981-02-20 1982-08-26 Hitachi Ltd Complementary type insulating gate field-effect semiconductor device
JPS57152161A (en) * 1981-03-16 1982-09-20 Seiko Epson Corp Manufacture of semiconductor device
JPS57192063A (en) * 1981-05-20 1982-11-26 Fujitsu Ltd Manufacture of semiconductor device
JPS57192079A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Semiconductor device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6298642A (en) * 1985-10-25 1987-05-08 Hitachi Ltd Semiconductor integrated circuit device and manufacture thereof
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique

Also Published As

Publication number Publication date
JPH0644604B2 (en) 1994-06-08

Similar Documents

Publication Publication Date Title
US4597824A (en) Method of producing semiconductor device
JP4018405B2 (en) CMOS type semiconductor device having germanium-containing polysilicon gate and method for forming the same
JP3239202B2 (en) MOS transistor and method of manufacturing the same
JPH0669229A (en) Manufacture of semiconductor element provided with gold structure
KR100563398B1 (en) Method and device to reduce gate-induced drain leakageGIDL current in thin gate oxide MOSFETS
JPH05865B2 (en)
US5882962A (en) Method of fabricating MOS transistor having a P+ -polysilicon gate
JPH06275788A (en) Manufacture of dual gate cmos semiconductor device
JPS6360549B2 (en)
US6780700B2 (en) Method of fabricating deep sub-micron CMOS source/drain with MDD and selective CVD silicide
JPH098135A (en) Manufacture of semiconductor device
JPS6084859A (en) Complementary type semiconductor device and manufacture thereof
JP2948486B2 (en) Method for manufacturing semiconductor device
JPH0637309A (en) Semiconductor device and manufacture thereof
JPH1012748A (en) Manufacture of semiconductor device
JPH05226593A (en) Manufacture of semiconductor device
JPH0738095A (en) Semiconductor device and its manufacturing method
JPH07263690A (en) Semiconductor device having salicide structure and its manufacture
JP2886186B2 (en) Semiconductor device
KR20030033995A (en) Method of fabricating deep sub-micron cmos source/drain with mdd and selective cvd silicide
JPS6074663A (en) Manufacture of complementary type semiconductor device
JPH08167658A (en) Semiconductor device and its manufacture
JPH10270569A (en) Semiconductor device and manufacture thereof
JPH07221300A (en) Manufacture of semiconductor device
JP3507750B2 (en) Method for manufacturing semiconductor device