JPH05226593A - Manufacture of semiconductor device - Google Patents
Manufacture of semiconductor deviceInfo
- Publication number
- JPH05226593A JPH05226593A JP4024220A JP2422092A JPH05226593A JP H05226593 A JPH05226593 A JP H05226593A JP 4024220 A JP4024220 A JP 4024220A JP 2422092 A JP2422092 A JP 2422092A JP H05226593 A JPH05226593 A JP H05226593A
- Authority
- JP
- Japan
- Prior art keywords
- type
- gate electrode
- impurities
- channel element
- gate electrodes
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】この技術は半導体装置、特に微細
かつ高性能なCMOSの製造方法に関する。BACKGROUND OF THE INVENTION This technology relates to a method of manufacturing a semiconductor device, particularly a fine and high-performance CMOS.
【0002】[0002]
【従来の技術】近年、半導体技術の発展に伴って、素子
の微細化、高集積化が進められている。素子の微細化が
進められてくると、トランジスタの短チャネル化に伴う
しきい値電圧の低下が激しくなることは良く知られてい
る。特に、埋め込み導電型のMISトランジスタではチ
ャネルが半導体装置表面から少し内部に入ったところに
形成されるため、ゲートバイアスによるドレイン電流の
制御性が悪く、短チャネル効果が顕著となる。一方、表
面導電型ではチャネルがゲート絶縁膜と半導体の界面に
近接して形成されているため、ゲートバイアスによるド
レイン電流の制御性は埋め込み導電型よりも改善され
る。Nチャネル素子、およびPチャネル素子のCMOS
構造で、表面導電型のノーマリーオフのトランジスタを
得るためには、Nチャネル素子に対してはN型多結晶シ
リコンゲートを用い、Pチャネル素子に対してはP型多
結晶シリコンゲートを用いる方法が良く用いられてい
る。このような半導体装置におけるゲート電極の形成方
法の例を図7、図8に示す。まず例えばシリコン基板1
にP型およびN型ウエル領域2、3を形成した後に素子
分離用絶縁膜4を通常用いられている例えば選択酸化法
により形成して、トランジスタの形成予定領域を形成す
る。その後、ゲート絶縁膜5をP型およびN型ウエル領
域2、3上に形成する。そして、ゲート絶縁膜5上にト
ランジスタのゲート電極6a,6bを形成する(図
7)。次にチャネルと同タイプのイオン種をゲート電極
およびゲート電極の両側のP型またはN型ウエル領域上
に自己整合的にイオン注入して熱拡散させ、ソース領域
及びドレイン領域となる拡散層7a,7bおよび8a,
8bを形成する(図8)。この後は、通常用いられてい
るFETのプロセスを経て、CMOS構造のNチャネル
素子、およびPチャネル素子で表面導電型の半導体装置
が完成する。2. Description of the Related Art In recent years, with the development of semiconductor technology, miniaturization and high integration of elements have been promoted. It is well known that with the progress of miniaturization of elements, the threshold voltage is drastically lowered with the shortening of the channel of a transistor. Particularly, in the buried conductivity type MIS transistor, since the channel is formed slightly inside the surface of the semiconductor device, the controllability of the drain current by the gate bias is poor, and the short channel effect becomes remarkable. On the other hand, in the surface conductivity type, since the channel is formed close to the interface between the gate insulating film and the semiconductor, the controllability of the drain current by the gate bias is improved as compared with the buried conductivity type. CMOS of N-channel element and P-channel element
A method of using an N-type polycrystalline silicon gate for an N-channel element and a P-type polycrystalline silicon gate for a P-channel element in order to obtain a surface conduction type normally-off transistor having a structure Is often used. An example of a method of forming a gate electrode in such a semiconductor device is shown in FIGS. First, for example, silicon substrate 1
After forming the P-type and N-type well regions 2 and 3, the element isolation insulating film 4 is formed by a commonly used selective oxidation method, for example, to form regions where transistors are to be formed. Then, the gate insulating film 5 is formed on the P-type and N-type well regions 2 and 3. Then, the gate electrodes 6a and 6b of the transistor are formed on the gate insulating film 5 (FIG. 7). Next, ion species of the same type as the channel are ion-implanted into the gate electrode and the P-type or N-type well region on both sides of the gate electrode in a self-aligned manner to cause thermal diffusion to form diffusion layers 7a to be source and drain regions. 7b and 8a,
8b is formed (FIG. 8). After that, the surface-conduction type semiconductor device is completed by the N-channel element and the P-channel element of the CMOS structure through the process of the FET which is usually used.
【0003】[0003]
【発明が解決しようとする課題】通常、短チャネル効果
およびパンチスルー耐性の低下を防ぐため、拡散層の深
さは浅くする必要があるが、上述したような形成方法に
おいては、図8の工程において、Pチャネル素子のゲー
ト電極中にイオン注入したボロンは拡散係数が大きいた
め、半導体基板表面まで拡散して素子特性を大きく変動
させることになる。これを防ぐにはイオン注入後の拡散
を極力抑えることになるが、Nチャネル素子のゲート電
極中にイオン注入するヒ素あるいはリンはボロンに比べ
拡散係数が小さいため、充分に拡散されず、ゲート電極
中の抵抗が上昇し、N型素子の駆動力の劣化を招くこと
になる。Normally, in order to prevent the short channel effect and the reduction of punch-through resistance, it is necessary to make the depth of the diffusion layer shallow. However, in the above-mentioned forming method, the process of FIG. In the above, since boron ion-implanted into the gate electrode of the P-channel device has a large diffusion coefficient, it is diffused to the surface of the semiconductor substrate and the device characteristics are greatly changed. In order to prevent this, diffusion after ion implantation should be suppressed as much as possible. However, since arsenic or phosphorus that is ion-implanted into the gate electrode of the N-channel element has a smaller diffusion coefficient than boron, it is not sufficiently diffused and the gate electrode The internal resistance increases, which causes deterioration of the driving force of the N-type element.
【0004】本発明は上記事情に鑑みてなされたもの
で、その目的とするところは、各ゲート電極中に不純物
を充分に拡散し、トランジスタの駆動力を向上させるこ
とができる半導体装置の製造方法を提供することにあ
る。The present invention has been made in view of the above circumstances, and an object thereof is a method of manufacturing a semiconductor device capable of sufficiently diffusing impurities in each gate electrode and improving the driving force of a transistor. To provide.
【0005】[0005]
【課題を解決するための手段】上記課題を解決するため
に本発明では、N型の不純物を導入したゲート電極のア
ニール時間がP型の不純物を導入したゲート電極のアニ
ール時間より長くなるようにしたことを特徴とする。In order to solve the above-mentioned problems, according to the present invention, the annealing time of the gate electrode introduced with N-type impurities is made longer than the annealing time of the gate electrode introduced with P-type impurities. It is characterized by having done.
【0006】[0006]
【作用】上記のように、P型よりもN型のゲート電極の
アニールを長く行うことによって、N型,P型両イオン
の拡散係数の差を補い、ゲート電極中の不純物の導入を
N型、P型共に充分行うことができる。As described above, by annealing the N-type gate electrode longer than that of the P-type, the difference in diffusion coefficient between the N-type and P-type ions is compensated, and the introduction of impurities into the gate electrode is performed. , P type can be sufficiently performed.
【0007】[0007]
【実施例】(実施例1)以下、本発明の実施例を図面を
参照しながら説明する。図1〜図4はこの発明の実施例
に係わる半導体装置の製造方法を示す工程図である。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS (Embodiment 1) An embodiment of the present invention will be described below with reference to the drawings. 1 to 4 are process drawings showing a method of manufacturing a semiconductor device according to an embodiment of the present invention.
【0008】まず、シリコン基板11上にP型およびN
型ウエル領域12、13を形成した後、例えば選択酸化
法により、1000℃で、素子分離用絶縁膜14を70
0nmの厚さに形成する。その後、表面をHClとO2
の雰囲気中、およそ750℃で熱酸化して、ゲート絶縁
膜となるシリコン酸化膜15を10nmの厚さに形成し
た後、全面に例えば減圧CVD法により、SiH4 の雰
囲気で、ゲート電極となる多結晶シリコン膜17を20
0nmの厚さに堆積形成する。次にレジストを塗布し、
露光、現像を行って、N型MOSFETの形成予定領域
以外の領域にレジストパターン16を形成する(図
1)。次に、例えばN型の不純物となるヒ素を、レジス
トパターン16をマスクとしてN型MOSFET側の多
結晶シリコン膜17に、注入エネルギー30KeV、注
入量5×1015cm-2の条件下で、イオン注入した後、
例えばラピッドサーマルアニール技術を用いて、タング
ステンのフィラメントを用いたランプで短時間照射し、
1000℃で、20秒程度、アニールを行う。このとき
の温度1000℃は、短時間で不純物を活性化するのに
充分な温度であり、しかもアニール時間は20秒程度と
短いため、不純物の深さ方向への拡散を防ぐことができ
る。First, a P type and an N type are formed on the silicon substrate 11.
After forming the well regions 12 and 13, the element isolation insulating film 14 is formed at 70 ° C. by a selective oxidation method, for example.
It is formed to a thickness of 0 nm. After that, the surface is treated with HCl and O 2
After thermal oxidation at about 750 ° C. in the atmosphere described above to form a silicon oxide film 15 to be a gate insulating film to a thickness of 10 nm, a gate electrode is formed on the entire surface by, for example, a low pressure CVD method in a SiH 4 atmosphere. The polycrystalline silicon film 17 is replaced with 20
It is deposited to a thickness of 0 nm. Next, apply resist,
Exposure and development are performed to form a resist pattern 16 in a region other than the N-type MOSFET formation planned region (FIG. 1). Next, for example, arsenic, which is an N-type impurity, is ion-implanted into the polycrystalline silicon film 17 on the N-type MOSFET side under the conditions of an implantation energy of 30 KeV and an implantation dose of 5 × 10 15 cm −2 using the resist pattern 16 as a mask. After injection
For example, using rapid thermal annealing technology, irradiate for a short time with a lamp using a tungsten filament,
Annealing is performed at 1000 ° C. for about 20 seconds. The temperature of 1000 ° C. at this time is a temperature sufficient to activate the impurities in a short time, and the annealing time is as short as about 20 seconds, so that the diffusion of the impurities in the depth direction can be prevented.
【0009】また、このN型MOSFETの形成予定領
域へのN型の不純物の導入方法としては、リン拡散も考
えられる。この場合、図1におけるレジスト層16に替
えて、リン拡散の際の導入ガスであるPOCl3 耐性の
強い窒化膜を用いる。窒化膜はSiH2 Cl2 とNH3
の混合比が1:1の混合ガス中で、0.6Torr,7
00℃の条件下で、10nmの厚さに形成する。パター
ニングにより、窒化膜がP型MOSFET形成予定領域
にのみ残るように形成した後、POCl3 雰囲気中、8
50℃に加熱してリン拡散を行う。Phosphorus diffusion can be considered as a method of introducing N-type impurities into the region where the N-type MOSFET is to be formed. In this case, instead of the resist layer 16 in FIG. 1, a nitride film having a strong resistance to POCl 3 which is an introduction gas at the time of phosphorus diffusion is used. The nitride film is SiH 2 Cl 2 and NH 3
In a mixed gas with a mixing ratio of 1: 1 of 0.6 Torr, 7
It is formed to a thickness of 10 nm under the condition of 00 ° C. By patterning, after the nitride film is formed so as to leave only the P-type MOSFET formation region in POCl 3 atmosphere, 8
Phosphorus diffusion is performed by heating to 50 ° C.
【0010】これらの工程により、N型ゲート電極は、
そのゲート絶縁膜との界面付近の不純物濃度が2×10
20cm-3程度となるように形成される。次に、レジスト
膜または、窒化膜をCDE(ケミカルドライエッチン
グ)によって除去し、多結晶シリコン層17a,17b
をパターニングしてそれぞれのFETのゲート電極を形
成する(図2)。Through these steps, the N-type gate electrode is
The impurity concentration near the interface with the gate insulating film is 2 × 10
It is formed to have a thickness of about 20 cm -3 . Next, the resist film or the nitride film is removed by CDE (chemical dry etching) to remove the polycrystalline silicon layers 17a and 17b.
Is patterned to form the gate electrode of each FET (FIG. 2).
【0011】次に、MOSFETのチャネルと同タイプ
のイオン種をゲート電極及びゲート電極の両側のP型及
びN型ウエル層に、自己整合的にイオン注入して拡散さ
せ、ソース領域およびドレイン領域となるN型拡散層1
8a,18b、P型拡散層19a,19bを形成する
(図3)。イオン注入の条件はN型領域では例えばヒ素
を用い、注入エネルギー30KeV,注入量5×1015
cm-2、P型領域ではボロンを用い、注入エネルギー1
5KeV、注入量2×1015cm-2とした。Next, ion species of the same type as the channel of the MOSFET are ion-implanted and diffused into the gate electrode and the P-type and N-type well layers on both sides of the gate electrode in a self-aligned manner to form a source region and a drain region. N-type diffusion layer 1
8a, 18b and P type diffusion layers 19a, 19b are formed (FIG. 3). As the ion implantation conditions, for example, arsenic is used in the N-type region, the implantation energy is 30 KeV, and the implantation amount is 5 × 10 15.
cm −2 , boron is used in the P-type region, and the implantation energy is 1
The dose was 5 KeV and the implantation amount was 2 × 10 15 cm -2 .
【0012】この後、初めにN型MOSFET形成予定
領域に行った時と同様に、ラピッドサーマルアニール法
を用いて、1000℃、20秒で、ゲート電極17a,
17b,拡散層18a,18b,19a,19bをアニ
ールした。Thereafter, as in the case where the N-type MOSFET formation-scheduled region is initially formed, the rapid thermal annealing method is used, and the gate electrode 17a, 1000.degree.
17b and diffusion layers 18a, 18b, 19a and 19b were annealed.
【0013】ここで、図示はしていないが、図2と図3
の間で、P型MOSFET形成領域上にレジスト層を形
成し、N型MOSFET形成領域に、N型素子、例えば
ヒ素を注入し、次にP型MOSFET形成領域上のレジ
スト層をCDEにより除去した後、N型MOSFET形
成領域上にレジスト層を形成し、P型MOSFET形成
領域にP型素子、例えばボロンを注入した後、全領域に
不純物が注入された状態で、ラピッドサーマルアニール
法を用いて、1000℃、20秒で、アニールを行って
いる。Although not shown here, FIG. 2 and FIG.
In between, a resist layer is formed on the P-type MOSFET formation region, an N-type element such as arsenic is injected into the N-type MOSFET formation region, and then the resist layer on the P-type MOSFET formation region is removed by CDE. After that, a resist layer is formed on the N-type MOSFET formation region, a P-type element such as boron is injected into the P-type MOSFET formation region, and then impurities are injected into the entire region by using a rapid thermal annealing method. Annealing is performed at 1000 ° C. for 20 seconds.
【0014】以上の工程により、N型ゲート電極、P型
ゲート電極のゲート絶縁膜との界面付近の不純物濃度
は、それぞれ、2〜3×1020cm-3、1×1020cm
-3程度となる。さらに、ゲート絶縁膜下のチャネル層の
不純物濃度が1×1017cm-3より大きくなると、ゲー
ト電極に電圧をかけない状態でチャネル層に電流が流れ
てしまい、ドレイン電流の制御がしにくくなるが、この
方法を用いることにより、拡散係数の大きいボロンのゲ
ート電極下のゲート絶縁膜への拡散を防ぐ事ができ、P
型、N型共にチャネル層の不純物濃度を1×1017cm
-3以下に保つことができる。また、N型、P型各々の拡
散層の深さは0.1μm程度と充分浅く形成することが
でき、N型拡散層の不純物濃度は2×1020cm-3、P
型拡散層の不純物濃度は5×1020cm-3程度となる。Through the above steps, the impurity concentrations near the interface between the N-type gate electrode and the P-type gate electrode and the gate insulating film are 2-3 × 10 20 cm −3 and 1 × 10 20 cm, respectively.
It will be about -3 . Further, if the impurity concentration of the channel layer under the gate insulating film is higher than 1 × 10 17 cm −3 , a current flows through the channel layer without applying a voltage to the gate electrode, which makes it difficult to control the drain current. However, by using this method, diffusion of boron having a large diffusion coefficient into the gate insulating film under the gate electrode can be prevented, and P
-Type and N-type have a channel layer impurity concentration of 1 × 10 17 cm
-Can be kept below -3 . The depth of each of the N-type and P-type diffusion layers can be formed to be as shallow as about 0.1 μm, and the impurity concentration of the N-type diffusion layer is 2 × 10 20 cm −3 , P
The impurity concentration of the mold diffusion layer is about 5 × 10 20 cm −3 .
【0015】この後、全面にシリコン酸化膜などの層間
絶縁膜20をCVD法により堆積形成し、この層間絶縁
膜に拡散層及びゲート電極に達するコンタクトホールを
開け電極配線21を形成する(図4)。これによって、
N型、P型共に、ゲート電極中への不純物拡散が充分に
行われたFETが完成する。After that, an interlayer insulating film 20 such as a silicon oxide film is deposited and formed on the entire surface by a CVD method, contact holes reaching the diffusion layer and the gate electrode are opened in this interlayer insulating film, and an electrode wiring 21 is formed (FIG. 4). ). by this,
For both N-type and P-type, FETs in which impurities are sufficiently diffused into the gate electrode are completed.
【0016】以上、述べてきたように、CMOS構造に
おいて、P型よりもN型のゲート電極への不純物拡散を
長く行う事により、N型、P型両イオンの拡散係数の差
を補い、双方の不純物の導入を充分に行うことが可能と
なり、素子性能の劣化を避けることができる。 (実施例2)実施例1と同様に、N型領域のゲート電極
に余分に不純物拡散を行う他の実施例を以下に説明す
る。As described above, in the CMOS structure, the impurity diffusion to the N-type gate electrode is performed longer than that to the P-type to compensate for the difference in the diffusion coefficient of both N-type and P-type ions. It is possible to sufficiently introduce the impurities described above, and it is possible to avoid deterioration of device performance. (Embodiment 2) Similar to Embodiment 1, another embodiment will be described below in which extra impurity diffusion is performed on the gate electrode in the N-type region.
【0017】この方法では、最初にN型領域以外の領域
にレジスト層を形成する必要は無く図1の工程でレジス
トパターン16の形成は省かれる。即ち、実施例1と同
様にシリコン基板上にP型及びN型ウエル層12、13
を形成した後、素子分離用絶縁膜14、酸化膜15、多
結晶シリコン膜17を形成し、パターニングによりP
型、N型ゲート電極17a,17bを形成する(図
2)。In this method, it is not necessary to first form a resist layer in a region other than the N-type region, and the formation of the resist pattern 16 is omitted in the step of FIG. That is, as in the first embodiment, the P-type and N-type well layers 12 and 13 are formed on the silicon substrate.
After forming the element isolation insulating film 14, the oxide film 15 and the polycrystalline silicon film 17 are formed, P is formed by patterning.
Type and N type gate electrodes 17a and 17b are formed (FIG. 2).
【0018】ここで、実施例2では、P型MOSFET
形成領域上にレジスト層51が形成された状態で(図
5)、レジストパターン51をマスクとして、N型MO
SFET形成領域のゲート電極にN型不純物、ヒ素を注
入エネルギー30KeV、注入量5×1015cm-2程度
で注入した後、ラピッドサーマルアニール法を用いて、
11000℃、20秒で、N型MOSFET形成領域の
ゲート電極のアニールを行う。次に、再度、N型MOS
FET形成領域に、ヒ素を注入エネルギー30KeV、
注入量5×1015cm-2で注入し、P型MOSFET形
成領域上のレジスト層51をCDEにより除去した後、
N型MOSFET形成領域上にレジスト層61を形成
し、これをマスクとして、P型MOSFET形成領域の
ゲート電極、ソース、ドレインにP型不純物、例えばボ
ロンを注入エネルギー15KeV、注入量2×1015c
m-2程度に注入する(図6)。この後、N型MOSFE
T形成領域上のレジスト層61をCDEにより除去し、
ラピッドサーマルアニール法を用いて、1000℃、2
0秒で、アニールを行い、不純物拡散を行い、先述図3
の構造を得る。Here, in the second embodiment, a P-type MOSFET is used.
With the resist layer 51 formed on the formation region (FIG. 5), the N-type MO film is formed using the resist pattern 51 as a mask.
After implanting N-type impurities and arsenic into the gate electrode of the SFET formation region with an implantation energy of 30 KeV and an implantation amount of about 5 × 10 15 cm −2 , a rapid thermal annealing method is used.
The gate electrode in the N-type MOSFET formation region is annealed at 11000 ° C. for 20 seconds. Then, again, the N-type MOS
Arsenic is implanted in the FET formation region at an energy of 30 KeV,
After implanting with a dose of 5 × 10 15 cm −2 and removing the resist layer 51 on the P-type MOSFET formation region by CDE,
A resist layer 61 is formed on the N-type MOSFET formation region, and using this as a mask, a P-type impurity such as boron is implanted into the gate electrode, source and drain of the P-type MOSFET formation region with an implantation energy of 15 KeV and an implantation amount of 2 × 10 15 c.
Inject to about m -2 (Fig. 6). After this, N-type MOSFE
The resist layer 61 on the T formation region is removed by CDE,
1000 ° C, 2 using rapid thermal annealing
Annealing is performed for 0 seconds to diffuse impurities, and
Get the structure of.
【0019】この方法では実施例1に比べ、図1のレジ
ストパターン16の形成工程が省かれる為、全体の工程
数は少なくなるが、N型のゲート電極パターンが形成さ
れた状態で、1回目の不純物拡散が行われるため、P型
ウエル層にも不純物が拡散され、その結果、2回目の不
純物拡散を行った後には、ボロン程顕著ではないがN型
拡散層がやや深くなる場合がある。しかし、所望により
注入する1回目のN型不純物の濃度を少なくしたり、ア
ニール時間を短くすれば、N型ゲート電極中に充分不純
物が拡散された状態で、N型拡散層の深さも充分浅くす
ることができる。この後の工程(図4)は実施例1と同
様に行う。In this method, the step of forming the resist pattern 16 shown in FIG. 1 is omitted as compared with the first embodiment, so the number of steps is reduced, but the first time in the state where the N-type gate electrode pattern is formed. Since the impurities are diffused into the P-type well layer, the impurities are diffused into the P-type well layer. As a result, the N-type diffusion layer may be slightly deeper after the second impurity diffusion although it is not so remarkable as boron. .. However, if the concentration of the first N-type impurity to be implanted is reduced or the annealing time is shortened if desired, the depth of the N-type diffusion layer is sufficiently shallow while the impurities are sufficiently diffused in the N-type gate electrode. can do. The subsequent steps (FIG. 4) are performed in the same manner as in Example 1.
【0020】[0020]
【発明の効果】以上説明したように、本発明によればN
型ゲート電極のアニールをP型ゲート電極のアニールよ
り長く行う事により、Pチャネル素子とNチャネル素子
の拡散係数の差を補い、ゲート電極中の不純物の導入を
N型、P型共に十分に行うことができるため、ゲート電
極中の抵抗が下げられ、素子の性能劣化を抑制できるよ
うになる。As described above, according to the present invention, N
By annealing the p-type gate electrode longer than that of the p-type gate electrode, the difference in diffusion coefficient between the p-channel element and the n-channel element is compensated, and impurities in the gate electrode are sufficiently introduced for both n-type and p-type. Therefore, the resistance in the gate electrode can be reduced, and the performance deterioration of the device can be suppressed.
【図1】 本発明の第1の実施例を説明する断面図FIG. 1 is a sectional view for explaining a first embodiment of the present invention.
【図2】 本発明の第1の実施例を説明する断面図FIG. 2 is a sectional view illustrating a first embodiment of the present invention.
【図3】 本発明の第1の実施例を説明する断面図FIG. 3 is a sectional view illustrating a first embodiment of the present invention.
【図4】 本発明の第1の実施例を説明する断面図FIG. 4 is a sectional view illustrating a first embodiment of the present invention.
【図5】 本発明の第2の実施例を説明する断面図FIG. 5 is a sectional view illustrating a second embodiment of the present invention.
【図6】 本発明の第2の実施例を説明する断面図FIG. 6 is a sectional view illustrating a second embodiment of the present invention.
【図7】 従来例を説明する断面図FIG. 7 is a sectional view illustrating a conventional example.
【図8】 従来例を説明する断面図FIG. 8 is a sectional view illustrating a conventional example.
1、11…シリコン基板、 2、12…P型ウエル領域、 3、13…N型ウエル領域、 4、14…素子分離用絶縁膜、 5、15…ゲート絶縁膜、 16、51、61…レジストパターン、 6a,6b,17a、17b…ゲート電極、 7a,7b,18a、18b、 8a,8b,19a,19b…拡散層、 9、20…層間絶縁膜、 10、21…電極配線。 1, 11 ... Silicon substrate, 2, 12 ... P-type well region, 3, 13 ... N-type well region, 4, 14 ... Element isolation insulating film, 5, 15 ... Gate insulating film, 16, 51, 61 ... Resist Pattern, 6a, 6b, 17a, 17b ... Gate electrode, 7a, 7b, 18a, 18b, 8a, 8b, 19a, 19b ... Diffusion layer, 9, 20 ... Interlayer insulating film, 10, 21 ... Electrode wiring.
Claims (5)
S素子のゲート電極を設け、このCMOS素子を構成す
るPチャネル素子、Nチャネル素子のゲート電極中に夫
々P型、N型の不純物を導入するようにした半導体装置
の製造方法に於いて、N型不純物導入以後のNチャネル
素子のゲート電極の熱処理時間がP型不純物導入以後の
Pチャネル素子のゲート電極の熱処理時間より長くなる
ようにしたことを特徴とする半導体装置の製造方法。1. A CMO on a semiconductor substrate via an insulating film.
In a method of manufacturing a semiconductor device in which a gate electrode of an S element is provided and P-type and N-type impurities are introduced into the gate electrodes of the P-channel element and the N-channel element, respectively, which form the CMOS element, A method of manufacturing a semiconductor device, wherein the heat treatment time of the gate electrode of the N-channel element after the introduction of the type impurities is longer than the heat treatment time of the gate electrode of the P-channel element after the introduction of the P-type impurities.
物を導入して第1の熱処理を行い、その後、Pチャネル
素子のゲート電極にも不純物を導入して、第2の熱処理
を行うことを特徴とする請求項1記載の半導体装置の製
造方法。2. The impurity is introduced only into the gate electrode of the N-channel element to carry out the first heat treatment, and then the impurity is introduced into the gate electrode of the P-channel element to carry out the second heat treatment. The method for manufacturing a semiconductor device according to claim 1.
ト電極への不純物導入をイオン注入により行うことを特
徴とする請求項2記載の半導体装置の製造方法。3. The method for manufacturing a semiconductor device according to claim 2, wherein the impurity is introduced into the gate electrodes of the N-channel element and the P-channel element by ion implantation.
導入及び第1の熱処理をN型不純物の熱拡散により行う
ことを特徴とする請求項2記載の半導体装置の製造方
法。4. The method of manufacturing a semiconductor device according to claim 2, wherein the impurity introduction into the gate electrode of the N-channel element and the first heat treatment are performed by thermal diffusion of N-type impurities.
して、Nチャネル素子領域のみに不純物を導入し、ラピ
ッドサーマルアニールを行った後、Pチャネル素子領域
にも不純物を導入し、Nチャネル素子領域、Pチャネル
素子領域両方のラピッドサーマルアニールを行うことを
特徴とする請求項1または2記載の半導体装置の製造方
法。5. A mask layer is formed on the P-channel element region, impurities are introduced only into the N-channel element region, rapid thermal annealing is performed, and then impurities are introduced into the P-channel element region as well to form an N-channel. 3. The method for manufacturing a semiconductor device according to claim 1, wherein rapid thermal annealing is performed on both the element region and the P channel element region.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4024220A JPH05226593A (en) | 1992-02-12 | 1992-02-12 | Manufacture of semiconductor device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4024220A JPH05226593A (en) | 1992-02-12 | 1992-02-12 | Manufacture of semiconductor device |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05226593A true JPH05226593A (en) | 1993-09-03 |
Family
ID=12132206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4024220A Pending JPH05226593A (en) | 1992-02-12 | 1992-02-12 | Manufacture of semiconductor device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05226593A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6436747B1 (en) | 1999-04-21 | 2002-08-20 | Matsushita Electtric Industrial Co., Ltd. | Method of fabricating semiconductor device |
US6524904B1 (en) | 1999-04-20 | 2003-02-25 | Matsushita Electric Industrial Co., Ltd. | Method of fabricating semiconductor device |
US6693324B2 (en) | 1996-04-26 | 2004-02-17 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device having a thin film transistor and manufacturing method thereof |
US6987041B2 (en) | 1998-10-02 | 2006-01-17 | Fujitsu Limited | Semiconductor device having both memory and logic circuit and its manufacture |
KR100759255B1 (en) * | 2001-06-30 | 2007-09-17 | 매그나칩 반도체 유한회사 | Method of Manufacturing MML Semiconductor Device |
USRE43229E1 (en) | 2003-04-03 | 2012-03-06 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor device, including multiple heat treatment |
-
1992
- 1992-02-12 JP JP4024220A patent/JPH05226593A/en active Pending
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6693324B2 (en) | 1996-04-26 | 2004-02-17 | Mitsubishi Denki Kabushiki Kaisha | Semiconductor device having a thin film transistor and manufacturing method thereof |
US6987041B2 (en) | 1998-10-02 | 2006-01-17 | Fujitsu Limited | Semiconductor device having both memory and logic circuit and its manufacture |
US7429507B2 (en) | 1998-10-02 | 2008-09-30 | Fujitsu Limited | Semiconductor device having both memory and logic circuit and its manufacture |
US6524904B1 (en) | 1999-04-20 | 2003-02-25 | Matsushita Electric Industrial Co., Ltd. | Method of fabricating semiconductor device |
US6436747B1 (en) | 1999-04-21 | 2002-08-20 | Matsushita Electtric Industrial Co., Ltd. | Method of fabricating semiconductor device |
KR100759255B1 (en) * | 2001-06-30 | 2007-09-17 | 매그나칩 반도체 유한회사 | Method of Manufacturing MML Semiconductor Device |
USRE43229E1 (en) | 2003-04-03 | 2012-03-06 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor device, including multiple heat treatment |
USRE43521E1 (en) | 2003-04-03 | 2012-07-17 | Kabushiki Kaisha Toshiba | Method for manufacturing semiconductor device, including multiple heat treatment |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3095564B2 (en) | Semiconductor device and method of manufacturing semiconductor device | |
KR0137625B1 (en) | Structure and manufacture of semiconductor | |
JPH11297852A (en) | Semiconductor device and manufacture thereof | |
KR19980047199A (en) | CMOS MOSFET Manufacturing Method | |
EP0459398B1 (en) | Manufacturing method of a channel in MOS semiconductor devices | |
KR100396709B1 (en) | method for manufacturing of semiconductor device | |
JP2000232075A (en) | Manufacture of semiconductor device | |
KR100305681B1 (en) | semiconductor device and method for manufacturing the same | |
JPH05226593A (en) | Manufacture of semiconductor device | |
JP2834775B2 (en) | Method for manufacturing CMOS semiconductor device | |
JPH04218925A (en) | Semiconductor device and manufacture thereof | |
JPH10256549A (en) | Semiconductor device and manufacture thereof | |
JP3161413B2 (en) | Method for manufacturing semiconductor device | |
JPH06310666A (en) | Manufacture of cmos semiconductor device of dual gate structure | |
JPH09306862A (en) | Manufacturing semiconductor device | |
JP2997123B2 (en) | Method for manufacturing semiconductor device | |
KR100431324B1 (en) | Manufacturing Method of Semiconductor Device | |
JP3423081B2 (en) | Method for manufacturing semiconductor device | |
JPH07263690A (en) | Semiconductor device having salicide structure and its manufacture | |
JPS6074663A (en) | Manufacture of complementary type semiconductor device | |
JPH05315617A (en) | Manufacture of insulated type field effect transistor | |
JPH07273212A (en) | Semiconductor device and its manufacture | |
JP2900686B2 (en) | Semiconductor device and manufacturing method thereof | |
JPH02189965A (en) | Manufacture of semiconductor device | |
JPH06204456A (en) | Semiconductor device |