JPS6362108B2 - - Google Patents

Info

Publication number
JPS6362108B2
JPS6362108B2 JP54136661A JP13666179A JPS6362108B2 JP S6362108 B2 JPS6362108 B2 JP S6362108B2 JP 54136661 A JP54136661 A JP 54136661A JP 13666179 A JP13666179 A JP 13666179A JP S6362108 B2 JPS6362108 B2 JP S6362108B2
Authority
JP
Japan
Prior art keywords
type
polycrystalline silicon
source
silicon film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP54136661A
Other languages
Japanese (ja)
Other versions
JPS5660063A (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13666179A priority Critical patent/JPS5660063A/en
Publication of JPS5660063A publication Critical patent/JPS5660063A/en
Publication of JPS6362108B2 publication Critical patent/JPS6362108B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Description

【発明の詳細な説明】 本発明は相補形MOSトランジスタを同一基体
上に備えた半導体装置の製造方法に関する。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device including complementary MOS transistors on the same substrate.

周知の如く、相補形MOSトランジスタ(以下
CMOSと称す)は通常n型シリコン基板に選択
的にp型ウエルを形成して半導体基体を作製し、
n領域にpチヤンネルMOSトランジスタを、p
領域にnチヤンネルMOSトランジスタを夫々形
成して得られる。かかるCMOSは過渡時にしか
電力を消費しない、基板効果の影響を受けにく
い、雑音余裕度が大きい、広い電源電圧の範囲で
動作する等の特長を有する。
As is well known, complementary MOS transistors (hereinafter referred to as
CMOS) usually creates a semiconductor substrate by selectively forming a p-type well on an n-type silicon substrate.
A p channel MOS transistor in the n region, p
This is obtained by forming n-channel MOS transistors in each region. Such CMOS has features such as consuming power only during transient times, being less susceptible to substrate effects, having a large noise margin, and operating over a wide power supply voltage range.

ところで、従来、CMOSの製造方法としては
次のような方法が知られている。まず、p型及び
n型導電性の領域を有する半導体基体上に絶縁膜
を設け、各領域のソース、ドレイン形成予定部と
なる絶縁膜を除去して開口部を形成する。つづい
て、絶縁膜の全面に多結晶シリコン膜を堆積した
後、パターニングして多結晶シリコンからなるゲ
ート電極及び前記開口部の一部を介して半導体基
体の各領域と接触したソース、ドレイン電極パタ
ーンを形成する。次いで、p型導電性の領域にn
型不純物としてのリンを選択的にイオン注入し、
n型導電性の領域にp型不純物としてのボロンを
選択的にイオン注入する。この時、各領域の絶縁
膜の開口部及びこの開口部の一部に延在した多結
晶シリコンからなるソース、ドレイン電極パター
ンを通して不純物が注入されp型領域にはn型の
不純物拡散層、n型領域にはp型の不純物拡散層
が形成される。その後、熱処理を施して前記各拡
散層を活性化してp型領域にn+型のソース、ド
レインを、n型領域にp+型のソース、ドレイン
を形成した後、全面にCVD−SiO2膜等を堆積し
てCMOSを造る。
By the way, the following methods are conventionally known as methods for manufacturing CMOS. First, an insulating film is provided on a semiconductor substrate having p-type and n-type conductive regions, and openings are formed by removing the insulating film in each region where the source and drain are to be formed. Subsequently, a polycrystalline silicon film is deposited on the entire surface of the insulating film, and then patterned to form a gate electrode made of polycrystalline silicon and a source/drain electrode pattern in contact with each region of the semiconductor substrate through a portion of the opening. form. Then, in the p-type conductive region, n
By selectively ion-implanting phosphorus as a type impurity,
Boron ions as a p-type impurity are selectively implanted into the n-type conductive region. At this time, impurities are injected through the openings of the insulating film in each region and the source and drain electrode patterns made of polycrystalline silicon extending over a part of these openings, and the p-type regions are filled with n-type impurity diffusion layers and n-type impurity diffusion layers. A p-type impurity diffusion layer is formed in the type region. After that, heat treatment is performed to activate each diffusion layer to form an n + type source and drain in the p type region and a p + type source and drain in the n type region, and then a CVD-SiO 2 film is formed on the entire surface. etc. to create CMOS.

上述した従来法にあつては、多結晶シリコンに
よりゲート電極のみならずソース、ドレイン電極
パターンをも形成するため、コンタクトホールを
介してAl等のソース、ドレイン電極を形成する
場合に比して段差を緩和でき、良好な多層配線を
実現できる利点を有する。しかしながら、かかる
方法では、各領域へのp+型又はn+型の拡散層の
形成に際し、絶縁膜の開口部及びこの開口部の一
部に延在した多結晶シリコンからなるソース、ド
レイン電極パターンを通して各領域に不純物をイ
オン注入するため、ソース、ドレイン電極パター
ン下の拡散層の深さが開口部を通して形成された
拡散層の深さより浅くなる。このため、ソース、
ドレイン電極と拡散層とを十分良好な低抵抗接触
で接続できなくなる。これを改善すべく多結晶シ
リコンのソース、ドレイン電極と拡散層とのオー
ム性接触を良好ならしめるためにイオン注入量を
多くして深い拡散層を形成することが考えられる
が、拡散層を深くすると、横方向への拡散が進行
し、かつ活性化のための熱処理に際しても横方向
への再拡散が大きくなり、シヨートチヤンネル効
果を招く欠点が生じる。
In the conventional method described above, not only the gate electrode but also the source and drain electrode patterns are formed using polycrystalline silicon, so there are fewer steps than when forming source and drain electrodes of Al etc. through contact holes. It has the advantage of being able to alleviate the problem and realize good multilayer wiring. However, in this method, when forming a p + type or n + type diffusion layer in each region, source and drain electrode patterns made of polycrystalline silicon are formed in an opening in the insulating film and in a part of this opening. Since impurity ions are implanted into each region through the opening, the depth of the diffusion layer under the source and drain electrode patterns is shallower than the depth of the diffusion layer formed through the opening. For this reason, the source
It becomes impossible to connect the drain electrode and the diffusion layer with a sufficiently good low resistance contact. In order to improve this problem, it is possible to form a deep diffusion layer by increasing the amount of ion implantation in order to make good ohmic contact between the polycrystalline silicon source and drain electrodes and the diffusion layer. Then, diffusion in the lateral direction progresses, and even during heat treatment for activation, re-diffusion in the lateral direction increases, resulting in a disadvantage of short channel effect.

このようなことから、本発明者は上記欠点を充
服すべく種々検討し、p型及びn型の領域を有す
る半導体基体上の絶縁膜にソース、ドレインの拡
散孔等として利用される開口部を設け、全面に多
結晶シリコン膜を堆積した後、p型領域上の多結
晶シリコン膜部分にn型の不純物を、n型領域上
の多結晶シリコン膜部分にp型の不純物を、ドー
ピングし、さらに前記多結晶シリコン膜をパター
ニングしてゲート電極及び一部が前記開口部を介
して各領域と接触したソース、ドレイン電極パタ
ーンを形成し、ひきつづきp型領域に例えばイオ
ン注入法でn型の不純物を、n型領域に同イオン
注入法でp型の不純物を、導入すると共に不純物
ドープ多結晶シリコンのソース、ドレイン電極パ
ターンからも不純物を拡散した。その結果、ソー
ス、ドレイン電極下の不純物拡散深さが深く、開
口部から直接導入された不純物拡散深さが浅いソ
ース、ドレインを形成でき、シヨートチヤンネル
効果が抑制されると共にソース、ドレインに対し
良好な低抵抗で接続したソース、ドレイン電極パ
ターンを有する相補形MOSトランジスタを備え
た半導体装置を得ることができた。しかしながら
かかる方法では、p型領域上の多結晶シリコン膜
部分にはn型の不純物がドーピングされ、nチヤ
ンネルトランジスタ側のゲート電極、ソース、ド
レイン電極パターンはn型となり、一方型領域上
の多結晶シリコン膜部分にはp型の不純物がドー
ピングされ、pチヤンネルトランジスタ側のゲー
ト電極、ソース、ドレイン電極パターンはp型と
なる。このため、CMOSの例えば各ゲート電極
を同一の多結晶シリコン膜で共通した場合には、
必ず多結晶シリコン膜のどこかでpn接合が形成
され、正常な動作に支障をきたす。したがつて、
pチヤンネル側のゲート電極とnチヤンネル側の
ゲート電極との間を共通接続するために改めて
Al電極等を利用しなければならない。その結果、
Al電極で各ゲート電極を共通接続するには、不
可避的にコンタクトホールの孔明け加工が必要と
なり、製造工数が増大化するばかりか、CMOS
を備えた半導体装置の小型化、高密度化の障害と
なり、かつ歩留りの低下を招く不都合さがあつ
た。また、ゲート電極材料としての多結晶シリコ
ンはリンやボロン等をドープすると、アンドープ
多結晶シリコンに比べて比抵抗は下がるものの、
約1×10-3Ωcmと高く、高密度化、高速動作化が
要求されるCMOSのゲート電極として用いると、
時定数が大きくなり信号の伝播速度が遅くなる。
For these reasons, the present inventor has made various studies to overcome the above-mentioned drawbacks, and has created an opening to be used as a source, drain diffusion hole, etc. in an insulating film on a semiconductor substrate having p-type and n-type regions. After depositing a polycrystalline silicon film on the entire surface, the polycrystalline silicon film portion above the p-type region is doped with an n-type impurity, and the polycrystalline silicon film portion above the n-type region is doped with a p-type impurity. Further, the polycrystalline silicon film is patterned to form a gate electrode and a source/drain electrode pattern that is partially in contact with each region through the opening, and then an n-type electrode is injected into the p-type region by, for example, ion implantation. P-type impurities were introduced into the n-type region by the same ion implantation method, and the impurities were also diffused from the source and drain electrode patterns of the impurity-doped polycrystalline silicon. As a result, the impurity diffusion depth under the source and drain electrodes is deep, and the impurity diffusion depth introduced directly from the opening is shallow, making it possible to form sources and drains, suppressing the short channel effect, and suppressing the short channel effect. A semiconductor device including complementary MOS transistors having source and drain electrode patterns connected with good low resistance could be obtained. However, in such a method, the polycrystalline silicon film portion on the p-type region is doped with n-type impurities, the gate electrode, source, and drain electrode patterns on the n-channel transistor side become n-type, and the polycrystalline silicon film on the one-type region is doped with n-type impurities. The silicon film portion is doped with p-type impurities, and the gate electrode, source, and drain electrode patterns on the p-channel transistor side become p-type. For this reason, for example, if each gate electrode of CMOS is made of the same polycrystalline silicon film,
A pn junction is always formed somewhere in the polycrystalline silicon film, interfering with normal operation. Therefore,
In order to make a common connection between the gate electrode on the p channel side and the gate electrode on the n channel side,
Al electrodes etc. must be used. the result,
In order to commonly connect each gate electrode with an Al electrode, it is unavoidable to drill a contact hole, which not only increases manufacturing man-hours but also
This poses an inconvenience that hinders the miniaturization and increase in density of semiconductor devices equipped with this technology, and also causes a decrease in yield. In addition, when polycrystalline silicon used as a gate electrode material is doped with phosphorus, boron, etc., its resistivity decreases compared to undoped polycrystalline silicon, but
It has a high resistance of approximately 1×10 -3 Ωcm, and when used as a gate electrode for CMOS, which requires high density and high speed operation,
The time constant becomes larger and the signal propagation speed becomes slower.

そこで、本発明者は上記知見に基づき更に鋭意
研究を重ねた結果、半導体基体上の多結晶シリコ
ン膜に各領域と対応して不純物をドーピングした
後、高融点金属硅化物膜を堆積し、さらに前述し
たのと同様、これら二重構造被膜をパターニン
グ、拡散層形成のための不純物の導入を行なつ
た。その結果、(1)各チヤンネルのシヨートチヤン
ネル効果が抑制されると共にソース、ドレインに
対して良好な低抵抗で接続したソース、ドレイン
電極パターンを有すること、(2)ゲート、ソース、
ドレインの各電極パターンを不純物ドープ多結晶
シリコン膜と高融点金属硅化物膜との二重構造被
膜で形成することにより、pチヤンネル側とnチ
ヤンネル側のゲート電極を共通接続した場合、多
結晶シリコン内部に発生するpn接合による異常
動作を解消して正常な動作で駆動できること、(3)
高融点金属硅化物の小さな比抵抗によりゲート電
極の信号伝播速度を速くできること、等の種々の
優れた特性を有して高集積化、高速動作化が達成
された相補形MOSトランジスタを備えた半導体
装置を製造し得る方法を見い出した。
Therefore, as a result of further intensive research based on the above knowledge, the present inventor doped impurities corresponding to each region in the polycrystalline silicon film on the semiconductor substrate, then deposited a high melting point metal silicide film, and As described above, these double-structured films were patterned and impurities were introduced to form a diffusion layer. As a result, (1) the short channel effect of each channel is suppressed and the source and drain electrode patterns are connected to the source and drain with good low resistance; (2) the gate, source,
By forming each drain electrode pattern with a double structure film of an impurity-doped polycrystalline silicon film and a high melting point metal silicide film, when the gate electrodes on the p-channel side and the n-channel side are commonly connected, the polycrystalline silicon (3) Abnormal operation caused by internal p-n junctions can be resolved and the device can be driven in normal operation.
A semiconductor equipped with a complementary MOS transistor that achieves high integration and high-speed operation due to various excellent characteristics such as the ability to increase the signal propagation speed of the gate electrode due to the low resistivity of high-melting point metal silicide. We have found a way to manufacture the device.

すなわち、本発明は相補形MOSトランジスタ
を同一基板上に含む半導体装置の製造にあたり、
p型及びn型導電性の領域を備えた半導体基体の
各領域上に絶縁膜を被覆する工程と、前記絶縁膜
の一部を選択的に除去して開口部を形成し、前記
基体の各領域の一部を露出せしめた後、全面に多
結晶シリコン膜を被覆する工程と、p型導電性の
領域上の多結晶シリコン膜部分にn型の不純物を
選択的にドーピングし、かつn型導電性の領域上
の多結晶シリコン膜部分にp型の不純物を選択的
にドーピングする工程と、ドーピング後の多結晶
シリコン膜上に高融点金属硅化物膜を被覆する工
程と、前記高融点金属硅化物膜及び多結晶シリコ
ン膜を選択エツチングして前記開口部を一部露出
せしめ、ゲート電極及び各領域の一部と接触した
ソース、ドレインの電極パターンを形成する工程
と、前記開口部を拡散孔として利用し前記p型及
びn型の領域にその領域と逆導電型の不純物を導
入すると共に、前記ソース、ドレイン電極パター
ンの多結晶シリコン膜中にドーピングされた不純
物を前記開口部を介して各領域中に拡散してソー
ス及びドレインの不純物拡散層を形成する工程と
を具備したことを特徴とするものである。
That is, the present invention provides a method for manufacturing a semiconductor device including complementary MOS transistors on the same substrate.
coating each region of the semiconductor substrate having p-type and n-type conductivity regions with an insulating film; selectively removing a portion of the insulating film to form an opening; After exposing a part of the region, the entire surface is covered with a polycrystalline silicon film, and the polycrystalline silicon film portion on the p-type conductive region is selectively doped with an n-type impurity, and the n-type a step of selectively doping a portion of the polycrystalline silicon film on the conductive region with a p-type impurity; a step of covering the doped polycrystalline silicon film with a high melting point metal silicide film; A step of selectively etching the silicide film and the polycrystalline silicon film to expose a portion of the opening, forming a source and drain electrode pattern in contact with the gate electrode and a portion of each region, and diffusing the opening. Impurities having conductivity types opposite to those of the p-type and n-type regions are introduced into the p-type and n-type regions using the holes, and impurities doped into the polycrystalline silicon film of the source and drain electrode patterns are introduced through the openings. The method is characterized by comprising a step of forming source and drain impurity diffusion layers by diffusing into each region.

本発明に用いる半導体基体としては、例えばn
型又はp型のシリコン基板に該基板と逆導電型の
ウエルを選択的に形成したもの等を挙げることが
できる。
As the semiconductor substrate used in the present invention, for example, n
For example, a type or p-type silicon substrate in which a well of a conductivity type opposite to that of the substrate is selectively formed is included.

本発明における多結晶シリコン膜にドープする
不純物としては、リン、砒素などのn型不純物、
ボロンなどのp型不純物が挙げられる。かかる不
純物のドーピング手段としては、例えばイオン注
入法、或いはリン添加ガラス膜(PSG膜)、砒素
添加ガラス膜(AsSG膜)やボロン添加ガラス膜
(BSG膜)の不純物添加ガラス膜を拡散源として
多結晶シリコン膜の所定箇所に被覆し、熱処理し
て上記拡散源から不純物を多結晶シリコン膜にド
ーピングする方法等を挙げることができる。但
し、イオン注入法は不純物のドーピング量を簡便
かつ精度よく制御できるため有益である。
In the present invention, impurities doped into the polycrystalline silicon film include n-type impurities such as phosphorus and arsenic;
Examples include p-type impurities such as boron. Such impurity doping methods include, for example, ion implantation, or various methods using impurity-doped glass films such as phosphorus-doped glass films (PSG films), arsenic-doped glass films (AsSG films), and boron-doped glass films (BSG films) as a diffusion source. Examples include a method of doping a polycrystalline silicon film with an impurity from the above diffusion source by coating a crystalline silicon film at a predetermined location and subjecting it to heat treatment. However, the ion implantation method is useful because the amount of impurity doped can be easily and precisely controlled.

本発明に用いる高融点金属硅化物としては、例
えばモリブデン、タングステン、タンタル、ニオ
ブなどの硅化物を挙げることができ、これら高融
点金属硅化物膜はスパツタ法、蒸着法、CVD法
により形成できる。
Examples of the high melting point metal silicide used in the present invention include silicides such as molybdenum, tungsten, tantalum, and niobium, and these high melting point metal silicide films can be formed by sputtering, vapor deposition, and CVD.

本発明における半導体基体の各領域への不純物
導入手段としては、例えばイオン注入法、不純物
添加ガラス膜を拡散源として導入する方法等を挙
げることができる。特に、後者の不純物導入手段
を採用する場合は多結晶シリコン膜への不純物ド
ーピング量より少ない不純物を添加したガラス膜
を拡散源として用いることが必要である。なお、
不純物導入にあたつては、ソース、ドレイン電極
パターンと接する以外の拡散層の深さを浅くする
観点から不純物の導入量を精度よく行なえるイオ
ン注入法が有利である。
Examples of means for introducing impurities into each region of the semiconductor substrate in the present invention include an ion implantation method and a method of introducing an impurity-doped glass film as a diffusion source. In particular, when the latter method of introducing impurities is adopted, it is necessary to use a glass film doped with a smaller amount of impurity than the amount of impurity doped into the polycrystalline silicon film as a diffusion source. In addition,
When introducing impurities, an ion implantation method is advantageous because it can accurately introduce the amount of impurities from the viewpoint of reducing the depth of the diffusion layer other than those in contact with the source and drain electrode patterns.

次に、本発明の実施例を図面を参照して説明す
る。
Next, embodiments of the present invention will be described with reference to the drawings.

実施例 〔〕 まず、第1図aに示すようにn型シリコン
基板1に、ボロンを選択的にイオン注入してp
型ウエル2を形成した半導体基体3とした後、
選択酸化法によりpチヤンネル、nチヤンネル
のトランジスタ形成領域を分離するためのフイ
ールド酸化膜4を形成し、さらに各トランジス
タ形成領域に熱酸化によりシリコン酸化膜5を
形成し、ひきつづき酸化膜5を選択エツチング
して4つの開口部6…6を設けて各領域を露出
させた。その後、SiH4を用いた気相成長法に
より厚さ約1000Åの多結晶シリコン膜7を全面
に被着した(第1図b図示)。
Example [1] First, as shown in FIG. 1a, boron is selectively ion-implanted into an n-type silicon substrate 1.
After forming the semiconductor substrate 3 with the mold well 2 formed,
A field oxide film 4 is formed by selective oxidation to separate the p-channel and n-channel transistor formation regions, and a silicon oxide film 5 is formed in each transistor formation region by thermal oxidation, followed by selective etching of the oxide film 5. Then, four openings 6...6 were provided to expose each area. Thereafter, a polycrystalline silicon film 7 having a thickness of about 1000 Å was deposited on the entire surface by a vapor phase growth method using SiH 4 (as shown in FIG. 1b).

〔〕 次いで、p型ウエル2上の多結晶シリコン
膜7部分にリンを加速電圧30keVの条件で選択
的に1021cm-3イオン注入し、一方シリコン基板
1上の多結晶シリコン膜7部分にボロンを加速
電圧20keVの条件で選択的に1021cm-3イオン注
入した(第1図c図示)。不純物ドーピング後
の多結晶シリコン膜7上の全面にスパツタ法に
よりAr雰囲気中でMoSi2を蒸着して厚さ約
2000ÅのMoSi2膜8を被着した(第1図d図
示)。
[]Next, 10 21 cm -3 ions of phosphorus were selectively implanted into the polycrystalline silicon film 7 portion on the p-type well 2 under the condition of an acceleration voltage of 30 keV, while the polycrystalline silicon film 7 portion on the silicon substrate 1 was implanted with 10 21 cm -3 ions. Boron ions were selectively implanted at 10 21 cm -3 at an acceleration voltage of 20 keV (as shown in Figure 1c). After doping with impurities, MoSi 2 is deposited on the entire surface of the polycrystalline silicon film 7 by sputtering in an Ar atmosphere to a thickness of approximately
A 2000 Å MoSi 2 film 8 was deposited (as shown in FIG. 1d).

〔〕 次いで、MoSi2膜8上に光蝕刻法によりレ
ジストパターン(図示せず)を設け、このレジ
ストパターンをマスクとしてプラズマエツチン
グ法によりMoSi2膜8、不純物ドープ多結晶シ
リコン膜7を順次選択エツチング除去した。こ
の時、第1図eに示すようにp型ウエル2及び
n型シリコン基板1の各領域にMoSi2及び不純
物ドープ多結晶シリコンからなる二重構造のゲ
ート電極71,81及び72,82、開口部6…6
を介して各領域の一部と接触したソース電極パ
ターン73,83及び74,84、共通ドレイン電
極パターン75,85が形成された。ひきつづ
き、ゲート電極71,81及び72,82をマスク
としてシリコン酸化膜5をエツチングしてゲー
ト酸化膜9を形成した(同第1図e図示)。な
お、ゲート電極71,81及び72,82は第2図
に示すようにトランジスタ形成領域の外で共通
接続されるようにパターニングし、かつソース
電極パターン73,83及び74,84、共通ドレ
イン電極パターン75,85は同第2図の如く素
子領域外に延在するようにパターニングした。
[] Next, a resist pattern (not shown) is provided on the MoSi 2 film 8 by photoetching, and using this resist pattern as a mask, the MoSi 2 film 8 and the impurity-doped polycrystalline silicon film 7 are sequentially selectively etched by a plasma etching method. Removed. At this time, as shown in FIG. 1e, gate electrodes 7 1 , 8 1 and 7 2 having a double structure made of MoSi 2 and impurity-doped polycrystalline silicon are formed in each region of the p-type well 2 and the n-type silicon substrate 1 . 8 2 , opening 6...6
Source electrode patterns 7 3 , 8 3 and 7 4 , 8 4 and common drain electrode patterns 7 5 , 8 5 were formed, which were in contact with a part of each region via. Subsequently, the silicon oxide film 5 was etched using the gate electrodes 7 1 , 8 1 and 7 2 , 8 2 as masks to form a gate oxide film 9 (as shown in FIG. 1e). Note that the gate electrodes 7 1 , 8 1 and 7 2 , 8 2 are patterned so as to be commonly connected outside the transistor formation region, as shown in FIG. 2, and the source electrode patterns 7 3 , 8 3 and 7 4 , 8 4 and the common drain electrode patterns 7 5 , 8 5 were patterned to extend outside the device region as shown in FIG.

〔〕 次いで、n型シリコン基板1上をレジスト
膜でマスクし、p型ウエル2側にn型不純物と
しての砒素を加速電圧50keV、ドーズ量3×
1015cm-2の条件でイオン注入した後、前記レジ
スト膜を除去し再度p型ウエル2上をレジスト
膜でマスクし、n型シリコン基板1側にp型不
純物としてのボロンを加速電圧30keV、ドーズ
量1.5×1015cm-2の条件でイオン注入した。この
時、開口部6,6から露出するp型シリコン基
板2部分には0.3μmの浅いn+型拡散層が形成さ
れ、一方開口部6,6から露出するn型シリコ
ン基板1部分には0.3μmの浅いp+型拡散層が形
成された。その後、1000℃のN2雰囲気中で20
分間熱処理した。この時、p型ウエル2側の開
口部6,6を介してp型ウエル2の一部と接し
たソース、ドレイン電極パターンの一構成材で
あるリンドープ多結晶シリコン膜73,75から
リンがウエル2中に拡散され、一方n型シリコ
ン基板1側の開口部6,6を介してシリコン基
板1の一部と接してソース、ドレイン電極パタ
ーンの一構成材であるボロンドープ多結晶シリ
コン膜74,75からボロンがシリコン基板1中
に拡散され、更に前記イオン注入により形成さ
れた浅いn+型拡散層、p+型拡散層が活性化さ
れた。その結果、第1図fに示すようにp型ウ
エル2に開口部6,6から露出する部分の深さ
が0.3μm、ソース電極パターン73,83、共通
ドレイン電極パターン75,85と接する深さが
0.7mmで、ゲート電極71,81に対してセルフ
アラインとなつたn+型のソース10、ドレイ
ン11が形成されてnチヤンネルトランジスタ
が作製された。また、同第1図fに示すように
n型シリコン基板1に開口部6,6から露出す
る部分の深さが0.3μm、ソース電極パターン7
,85、共通ドレイン電極パターン75,85
接する深さが0.7μmで、ゲート電極72,82
対してセルフアラインとなつたp+型のソース
12、ドレイン13が形成されてpチヤンネル
トランジスタが作製された。
[] Next, the n-type silicon substrate 1 is masked with a resist film, and arsenic as an n-type impurity is applied to the p-type well 2 side at an acceleration voltage of 50 keV and a dose of 3×.
After ion implantation under the conditions of 10 15 cm -2 , the resist film was removed, the p-type well 2 was masked again with a resist film, and boron as a p-type impurity was implanted on the n-type silicon substrate 1 side at an accelerating voltage of 30 keV. Ion implantation was performed at a dose of 1.5×10 15 cm −2 . At this time, a shallow n + -type diffusion layer of 0.3 μm is formed in the p-type silicon substrate 2 portion exposed from the openings 6 , 6 , while a 0.3 μm shallow n + type diffusion layer is formed in the n-type silicon substrate 1 portion exposed from the openings 6 , 6 . A shallow p + type diffusion layer of μm was formed. Then 20 min in N2 atmosphere at 1000 °C
Heat treated for minutes. At this time, phosphorus is removed from the phosphorus-doped polycrystalline silicon films 7 3 and 7 5 , which are part of the source and drain electrode pattern, which are in contact with a part of the p-type well 2 through the openings 6 and 6 on the p-type well 2 side. is diffused into the well 2, while a boron-doped polycrystalline silicon film 7, which is a component of the source and drain electrode patterns, is in contact with a part of the silicon substrate 1 through the openings 6, 6 on the n-type silicon substrate 1 side. 4 and 75 , boron was diffused into the silicon substrate 1, and the shallow n + type diffusion layer and p + type diffusion layer formed by the ion implantation were activated. As a result, as shown in FIG. 1f, the depth of the portion exposed from the openings 6, 6 in the p-type well 2 is 0.3 μm, the source electrode patterns 7 3 , 8 3 and the common drain electrode patterns 7 5 , 8 5 The depth of contact with
An n + -type source 10 and drain 11 were formed with a thickness of 0.7 mm and were self-aligned with respect to the gate electrodes 7 1 and 8 1 to fabricate an n-channel transistor. Further, as shown in FIG. 1f, the depth of the portion exposed from the openings 6, 6 in the n-type silicon substrate 1 is 0.3 μm, and the source electrode pattern 7 is
4 , 8 5 , p + type source 12 and drain 13 are formed with a depth of 0.7 μm in contact with the common drain electrode patterns 7 5 , 8 5 and self-aligned with the gate electrodes 7 2 , 8 2 . A p-channel transistor was fabricated.

〔〕 次いで全面にCVD−SiO2膜14を被着し
てCMOSを同一体上に備えた半導体装置を製
造した(第1図g図示)。
[] Next, a CVD-SiO 2 film 14 was deposited on the entire surface to manufacture a semiconductor device having a CMOS on the same body (as shown in FIG. 1g).

得られた半導体装置のCMOSはチヤンネル、
pチヤンネルのトランジスタ側のソース10,
12、ドレイン11,13が共にゲート電極7
,81及び72,82に対してセルフアラインで
形成され、シヨートチヤンネル効果を抑制で
き、しかもソース電極パターン73,83及び7
,84、共通ドレイン電極パターン75,85
接する部分が0.7μmと十分深いため、ソース、
ドレインに対して各電極を低抵抗で接続でき
た。また、ゲート電極71,81及び72,82
ソース電極パターン73,83及び74,84、ド
レイン電極パターン75,85は不純物ドープ多
結晶シリコン膜とMoSi2膜の二重構造被膜から
なり、各チヤンネルのゲート電極71,81及び
2,82を共通接続しても多結晶シリコン膜に
対して良好にオーム性接触したMoSi2膜により
異なる不純物がドープされた多結晶シリコン膜
内部で生成したpn接合に伴なう異常動作を解
消して正常な動作で駆動できる。更にMoSi2
は酸化に対して強く低抵抗化できるため、高速
動作化が達成された。
The CMOS of the obtained semiconductor device is a channel,
Source 10 on the transistor side of the p-channel,
12, drains 11 and 13 are both gate electrodes 7
The source electrode patterns 7 3 , 8 3 and 7 are formed in self-alignment with respect to the source electrode patterns 7 3 , 8 1 and 7 2 , 8 2 and can suppress the short channel effect.
4 , 8 4 and the common drain electrode patterns 7 5 , 8 5 are sufficiently deep at 0.7 μm, so that the source,
Each electrode could be connected to the drain with low resistance. Further, gate electrodes 7 1 , 8 1 and 7 2 , 8 2 ,
The source electrode patterns 7 3 , 8 3 and 7 4 , 8 4 and the drain electrode patterns 7 5 , 8 5 are made of a double structure film of an impurity-doped polycrystalline silicon film and a MoSi 2 film. Even if 8 1, 7 2 , and 8 2 are connected in common, the MoSi 2 film has good ohmic contact with the polycrystalline silicon film, resulting in a pn junction generated inside the polycrystalline silicon film doped with different impurities. This eliminates abnormal operation and enables normal operation. Furthermore, the MoSi 2 film is highly resistant to oxidation and can be lowered in resistance, making it possible to achieve high-speed operation.

以上詳述した如く、本発明によれば各チヤンネ
ルのシヨートチヤンネル効果が抑制されると共に
ソース、ドレインに対して良好な低抵抗で接続し
たソース、ドレイン電極パターンを有すること、
各チヤンネル側のゲート電極間を共通接続した場
合、ゲート電極として異なる不純物をドープした
多結晶シリコン膜を用いたことによるpn接合の
生成に伴なう異常動作を、高融点金属硅化物によ
る二重構造によつて解消し、アルミニウム電極等
を改めてゲート電極間を共通接続するという製造
工数の増大化、歩留りの低下を改善できること、
ゲート電極、ソース、ドレイン電極パターンの比
抵抗を低くして信号伝播速度を速できること、等
の種々の優れた特性を有し、高信頼性、高集積
化、高速動作化が達成された相補形MOSトラン
ジスタを備えた半導体装置の製造方法を提供でき
るものである。
As detailed above, according to the present invention, the short channel effect of each channel is suppressed, and the source and drain electrode patterns are connected to the source and drain with good low resistance.
When the gate electrodes on each channel side are commonly connected, the abnormal operation caused by the formation of a pn junction due to the use of a polycrystalline silicon film doped with different impurities as the gate electrode can be prevented by using a high melting point metal silicide. It is possible to solve this problem by changing the structure and improve the increase in manufacturing man-hours and decrease in yield due to common connection between gate electrodes using aluminum electrodes, etc.
A complementary type that has various excellent characteristics such as the ability to increase signal propagation speed by lowering the specific resistance of the gate electrode, source, and drain electrode patterns, and achieving high reliability, high integration, and high-speed operation. A method for manufacturing a semiconductor device including a MOS transistor can be provided.

【図面の簡単な説明】[Brief explanation of drawings]

第1図a〜gは本発明の実施例における
CMOSを備えた半導体装置の製造工程を示す断
面図、第2図は第1図gの平面図である。 1……n型シリコン基板、2……p型ウエル、
3……半導体基体、4……フイールド酸化膜、6
……開口部、7……多結晶シリコン膜、8……
MoSi2膜、71,81及び72,82……ゲート電極、
3,83及び74,84……ソース電極パターン、
5,85……共通ドレイン電極パターン、9……
ゲート酸化膜、10,12……ソース、11,1
3……ドレイン、14……CVD−SiO2膜。
FIGS. 1a to 1g show embodiments of the present invention.
FIG. 2 is a cross-sectional view showing the manufacturing process of a semiconductor device equipped with CMOS, and FIG. 2 is a plan view of FIG. 1g. 1...n-type silicon substrate, 2...p-type well,
3... Semiconductor substrate, 4... Field oxide film, 6
...Opening, 7...Polycrystalline silicon film, 8...
MoSi 2 film, 7 1 , 8 1 and 7 2 , 8 2 ... gate electrode,
7 3 , 8 3 and 7 4 , 8 4 ... source electrode pattern,
7 5 , 8 5 ... common drain electrode pattern, 9 ...
Gate oxide film, 10, 12... Source, 11, 1
3...Drain, 14...CVD-SiO 2 film.

Claims (1)

【特許請求の範囲】[Claims] 1 相補形MOSトランジスタを同一基体上に含
む半導体装置を製造するにあたり、p型及びn型
導電性の領域を備えた半導体基体の各領域上に絶
縁膜を被覆する工程と、前記絶縁膜の一部を選択
的に除去して開口部を形成し、前記基体の各領域
の一部を露出せしめた後、全面に多結晶シリコン
膜を被覆する工程と、p型導電性の領域上の多結
晶シリコン膜部分にn型の不純物を選択的にドー
ピングし、かつn型導電性の領域上の多結晶シリ
コン膜部分にp型の不純物を選択的にドーピング
する工程と、ドーピング後の多結晶シリコン膜上
に高融点金属硅化物膜を被覆する工程と、前記高
融点金属硅化物膜及び多結晶シリコン膜を選択エ
ツチングして前記開口部の一部を露出せしめ、ゲ
ート電極及び前記各領域の一部と接触したソー
ス、ドレイン電極パターンを形成する工程と、前
記開口部を拡散孔として利用し前記p型及びn型
領域にその領域と逆導電型の不純物を導入すると
共に、前記ソース、ドレイン電極パターンの多結
晶シリコン膜中にドーピングされた不純物を前記
開口部を介して各領域中に拡散してソース及びド
レインの不純物拡散層を形成する工程とを具備し
たことを特徴とする半導体装置の製造方法。
1. In manufacturing a semiconductor device including complementary MOS transistors on the same substrate, there is a step of coating an insulating film on each region of a semiconductor substrate having p-type and n-type conductive regions, and a step of coating one of the insulating films. a step of selectively removing a portion of the substrate to form an opening and exposing a portion of each region of the substrate, and then covering the entire surface with a polycrystalline silicon film; A step of selectively doping a silicon film portion with an n-type impurity and selectively doping a polycrystalline silicon film portion on an n-type conductive region with a p-type impurity, and a step of doping the polycrystalline silicon film after doping. A step of coating a high melting point metal silicide film thereon, selectively etching the high melting point metal silicide film and the polycrystalline silicon film to expose a part of the opening, and forming a gate electrode and a part of each of the regions. forming source and drain electrode patterns in contact with the source and drain electrode patterns, and introducing impurities of opposite conductivity type into the p-type and n-type regions by using the openings as diffusion holes; a step of diffusing impurities doped into the polycrystalline silicon film into each region through the opening to form source and drain impurity diffusion layers. .
JP13666179A 1979-10-23 1979-10-23 Manufacture of semiconductor device Granted JPS5660063A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13666179A JPS5660063A (en) 1979-10-23 1979-10-23 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13666179A JPS5660063A (en) 1979-10-23 1979-10-23 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS5660063A JPS5660063A (en) 1981-05-23
JPS6362108B2 true JPS6362108B2 (en) 1988-12-01

Family

ID=15180536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13666179A Granted JPS5660063A (en) 1979-10-23 1979-10-23 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5660063A (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59115554A (en) * 1982-12-22 1984-07-04 Toshiba Corp Semiconductor device and manufacture thereof
DE3304588A1 (en) * 1983-02-10 1984-08-16 Siemens AG, 1000 Berlin und 8000 München METHOD FOR PRODUCING MOS TRANSISTORS WITH FLAT SOURCE / DRAIN AREAS, SHORT CHANNEL LENGTHS AND A SELF-ADJUSTED CONTACT LEVEL CONSTRUCTING FROM A METAL SILICIDE
JPS59208772A (en) * 1983-05-12 1984-11-27 Nec Corp Manufacture of semiconductor device
JPS59208773A (en) * 1983-05-12 1984-11-27 Nec Corp Manufacture of semiconductor device
JPS6165470A (en) * 1984-09-07 1986-04-04 Hitachi Ltd Semiconductor ic device
JPS61139058A (en) * 1984-12-11 1986-06-26 Seiko Epson Corp Production apparatus for semiconductor
US4648175A (en) * 1985-06-12 1987-03-10 Ncr Corporation Use of selectively deposited tungsten for contact formation and shunting metallization
JP2807226B2 (en) * 1987-09-12 1998-10-08 ソニー株式会社 Method for manufacturing semiconductor device
JPH0226021A (en) * 1988-07-14 1990-01-29 Matsushita Electron Corp Formation of multilayer interconnection
JPH0758701B2 (en) * 1989-06-08 1995-06-21 株式会社東芝 Method for manufacturing semiconductor device

Also Published As

Publication number Publication date
JPS5660063A (en) 1981-05-23

Similar Documents

Publication Publication Date Title
US4927776A (en) Method of producing semiconductor integrated circuit device including bipolar transistor and insulated gate field effect transistor
US4575920A (en) Method of manufacturing an insulated-gate field-effect transistor
JP2605008B2 (en) Method for manufacturing semiconductor device
US4663825A (en) Method of manufacturing semiconductor device
KR0133540B1 (en) Bicmos process for forming shallow npn emitters and mosfet
US5340751A (en) Method of manufacturing a BiMOS device
US5061646A (en) Method for forming a self-aligned bipolar transistor
JPH04225529A (en) Improved method for manufacture of integrated-circuit structure body provided with lightly doped drain (ldd)
US4420870A (en) Method of controlling channel length by implanting through polycrystalline and single crystalline regions followed by diffusion anneal
US4822754A (en) Fabrication of FETs with source and drain contacts aligned with the gate electrode
US4929570A (en) Selective epitaxy BiCMOS process
US5091322A (en) Semiconductor device and method of manufacturing the same
KR950010287B1 (en) Bicmos process with low base recombination current bipolar transistors
JPH058587B2 (en)
KR0178551B1 (en) Method of manufacturing semiconductor integrated circuit
JPS6362108B2 (en)
US5116770A (en) Method for fabricating bipolar semiconductor devices
JPH0324069B2 (en)
US5236851A (en) Method for fabricating semiconductor devices
JP2504567B2 (en) Method for manufacturing semiconductor device
JPS6360549B2 (en)
JPH098135A (en) Manufacture of semiconductor device
JP2575876B2 (en) Semiconductor device
JPH065696B2 (en) Method for manufacturing semiconductor device
JP2654011B2 (en) Method for manufacturing semiconductor device