JPS59208773A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS59208773A
JPS59208773A JP58083087A JP8308783A JPS59208773A JP S59208773 A JPS59208773 A JP S59208773A JP 58083087 A JP58083087 A JP 58083087A JP 8308783 A JP8308783 A JP 8308783A JP S59208773 A JPS59208773 A JP S59208773A
Authority
JP
Japan
Prior art keywords
region
polysilicon
film
impurities
silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP58083087A
Other languages
Japanese (ja)
Inventor
Mitsutaka Morimoto
光孝 森本
Eiji Nagasawa
長澤 英二
Hidekazu Okabayashi
岡林 秀和
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp, Nippon Electric Co Ltd filed Critical NEC Corp
Priority to JP58083087A priority Critical patent/JPS59208773A/en
Publication of JPS59208773A publication Critical patent/JPS59208773A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To enable to obtain a low resistance wiring layer by a method wherein a high melting point metal silicide layer is covered on a shallow impurity diffusion layer and a thin poly Si layer. CONSTITUTION:An N-well region 404 and a field oxide film 405 are formed on a P type single crystal Si substrate 401. Then, a gate insulating film 406 is formed on the surface of the substrate 401 of an active region. Subsequently, an aperture is provided on the film 406 located on the region where a direct contact will be formed, and after an Si face has been exposed, poly Si is coated, and a gate electrode 407g and an output wiring 407c are formed by doping N type and P type impurities respectively. Then, the film 406 is removed using a poly Si pattern as a mask. Then, after an Mo film 410 has been coated on the whole surface, an N type doped layer 408 is formed by implanting N type impurities, and a P type doped layer 409 is formed by implanting P type impurities and Si. The interface where Mo comes in contact with Si is mixed by the above-mentioned implantation. Then, a smooth and uniform Mo silicide 411 is formed by performing a heat treatment at 400-600 deg.C in hydrogen gas. Subsequently, non-reacted Mo is removed, and a heat treatment is performed at 800 deg.C or above in nitrogen gas.

Description

【発明の詳細な説明】 本発明は相補型Mis(以下MISを含めてCMO8と
略称する)FET  を用いた半導体集積回路の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor integrated circuit using a complementary Mis (hereinafter abbreviated as CMO8 including MIS) FET.

CMOSインバータを基本回路とする半導体集積回路は
低消費電力、低電圧動作、大きな雑音余裕という特長を
生かして大容量メモリや大規模論理る。例えば第1図に
部分断面略図を示す如き従来のCMOSインバータにお
いては、p型シリコン基板101の表面に作られたNチ
ャネルMO8FETのドレインとなるn型不純物ドープ
層102とnウェル103中に作られたPチャネルMO
8FETのノースと々るp型不純物ドーグ層10.4と
を相互接続するAノ配線105cが必要である。この配
線は通常次段のインバータへの出力−線も兼ねておシ、
次段のゲートポリシリコンとのコンタクト部まで伸びて
いる。この配線はまた、GND 線(グラウンド線)1
05aX電源線105bと共通のAJ層を用いるのでマ
スクパターンの設計上制約が多かった。
Semiconductor integrated circuits, whose basic circuit is a CMOS inverter, take advantage of their features of low power consumption, low voltage operation, and large noise margin to create large-capacity memories and large-scale logic. For example, in a conventional CMOS inverter as shown in a schematic partial cross-sectional view in FIG. P channel MO
An A wiring 105c is required to interconnect the north end of the 8FET with the p-type impurity dope layer 10.4. This wiring usually also serves as the output line to the next stage inverter.
It extends to the contact area with the next stage gate polysilicon. This wiring is also GND line (ground line) 1
Since the AJ layer common to the 05aX power supply line 105b is used, there are many restrictions in designing the mask pattern.

その上、これらのA!配線は比較的厚い層間絶縁膜10
6に開口したコンタクト穴を介して、nff1ド一プ層
、p型ドーグ層さらに次段のインバータのゲートポリシ
リコンに接触を取ることになシ、上記3つのシリコン層
の一パターンとコンタクト穴の重ね合わせマージン、更
にコンタクト穴とAI配線との重ね合わせマージンが十
分に必要で6.6、更にコンタクト穴自体もAA’が十
分埋め込まれる程度に大きくする必要があり、この従来
構造では集積度の向上は困難であった。
Besides, these A! The wiring is a relatively thick interlayer insulating film 10
It is necessary to contact the NFF1 doped layer, the p-type dope layer, and the gate polysilicon of the next stage inverter through the contact hole opened in 6. A sufficient overlap margin is required between the contact hole and the AI wiring (6.6), and the contact hole itself also needs to be large enough to embed AA', which limits the integration density. Improvement was difficult.

第1図の構造の欠点の一部を解決するために提案された
のが第2図の構造である。すなわちNチャネルMO8l
i’BT のドレインとなるn型ドープ層201とPチ
ャネルMO8FET のソースとなるp型ドープ層20
2とをゲート203gと同じ層のポリシリコン203c
で相互接続しようとするものである。
The structure shown in FIG. 2 was proposed to solve some of the drawbacks of the structure shown in FIG. That is, N channel MO8l
An n-type doped layer 201 that becomes the drain of i'BT and a p-type doped layer 20 that becomes the source of the P-channel MO8FET.
2 and the polysilicon layer 203c in the same layer as the gate 203g.
It is an attempt to interconnect with each other.

この利点は、次段のゲートまでポリシリコンのまま伸ば
せるのでlは基本的には電源系配線専用に使え、マスク
設計の自由度が増し高集積化が可能なことである。また
ポリシリコン203CとシリコンドープJ@ 201’
、 202’ との直接接触(以下ダイレクトコンタク
トと称する)の占有面積は第1図のA!出力配線105
Cとpまたはn型ドープ層1(14,102の間のコン
タクトの占有面積に比較して十分小さいことも利点であ
る。これは第1図の場合、コンタクト穴が深いため穴あ
けの際の眉間絶縁膜]06のサイドエッチのマージンが
必要なこと、またAIとドープ層のコンタクト穴はAA
’のγロイスパイクによる接合の短絡事故を防ぐための
ドープ層の領域の内側に十分な重ね合わせマージンを取
ってパターン設計する必要があるからである。これに対
し、ダイレクトコンタクトの場合は、ゲートポリシリコ
ン203gと出力配線ポリシリコン203 cとは同じ
層なのでそれらの間の重ね合わせマージンは不要なこと
、またダイレクトコ/タクト部分直下のドープ層2 (
J 1202  形成からポリシリコン203cからの
不純物拡散によシ自己整合的に行なわれるのでやはり別
ね合わせマージンが要らないからである。更にポリシリ
コンで次段に配線する場合は次段のゲートポリシリコン
とAlとのコンタクト穴が少なくとも1つは減ることに
なりこの点も集積度の向上に有利である。しかしながら
第2図の構造にも欠点がある。通常CMO8のゲートポ
リシリコンけNチャネルMO8釦はn型不純物をドープ
したもの203g、nPチャネルInO3にはpm不純
物をドープしたもの203g、J)が用いられる。した
がって配線用のポリシリコン203cにもダイレクトコ
ンタクトを介してNチャネルMO8のドレインに接続す
るn屋のもの2o3c、n  とPチャネルMO8のソ
ースに接続すゐp型のもの203 c 、 p  の2
つの領域ができ、その視外にはpn徽甘せができてしま
う。この様に出力配線に電位の異なる2つの領域ができ
るためこれを短絡する必要が生じ接合上にAlの架橋2
04cがやはり必要となる。この人7!は小さい占有面
積で済むもののやはシAJパターン設計上の制約となる
ことに変わpない。
The advantage of this is that the polysilicon can be extended to the next gate as it is, so that l can basically be used exclusively for power supply wiring, increasing the degree of freedom in mask design and allowing higher integration. Also, polysilicon 203C and silicon doped J@201'
, 202' (hereinafter referred to as direct contact) occupies an area of A! in FIG. Output wiring 105
Another advantage is that it is sufficiently small compared to the area occupied by the contact between C and p- or n-type doped layer 1 (14, 102). Insulating film] 06 side etch margin is required, and the contact hole between AI and doped layer is AA.
This is because it is necessary to design a pattern with a sufficient overlap margin inside the doped layer region to prevent junction short-circuit accidents caused by the γ-loy spikes. On the other hand, in the case of direct contact, since the gate polysilicon 203g and the output wiring polysilicon 203c are in the same layer, there is no need for an overlap margin between them, and the doped layer 2 (
This is because the formation of J 1202 and the diffusion of impurities from the polysilicon 203c are carried out in a self-aligned manner, so no separate alignment margin is required. Furthermore, when wiring is made of polysilicon in the next stage, at least one contact hole between the gate polysilicon in the next stage and Al is reduced, which is also advantageous for improving the degree of integration. However, the structure of FIG. 2 also has drawbacks. Normally, the gate polysilicon of the CMO8 and the N-channel MO8 button are doped with n-type impurities (203g), and the nP-channel InO3 is doped with pm impurities (203g, J). Therefore, the wiring polysilicon 203c is also connected to the drain of the N-channel MO8 through a direct contact, 2o3c, n, and the p-type 203c, p is connected to the source of the P-channel MO8.
Two areas are created, and a pn image is created outside the field of view. In this way, two regions with different potentials are created in the output wiring, so it is necessary to short-circuit them, and the Al bridge 2
04c is still required. This person is 7! Although this occupies a small area, it still becomes a constraint on the AJ pattern design.

この他に、最近の一般情勢であるMOS  集積回路の
高柔様化のだめの素子寸法の微細化、特例ポリシリコン
層の厚さやソース・ドレインとなるp型並びにngトド
一層の接合深さ等、深さ方向の微細化に伴なうンート抵
抗の上昇はそれら各層を素子間の配線として用いる際に
時定数の増大を招き集積回路としての高速動作を防げ、
更に各部での電圧降下の増大は動作マージンの減少を招
くなど大きな障害となっている。
In addition, recent general trends include the miniaturization of element dimensions in order to increase the flexibility of MOS integrated circuits, the thickness of special polysilicon layers, and the junction depth of p-type and ng-todo single layers that serve as sources and drains. The increase in net resistance due to the miniaturization in the depth direction increases the time constant when these layers are used as wiring between elements, which prevents high-speed operation as an integrated circuit.
Furthermore, the increase in voltage drop at various parts causes a reduction in the operating margin, which poses a major problem.

例えば、現在、接合深さが0.3μm程度の比較的浅い
nMドーグ層は砒素イオン注入で形成できるがそのシー
ト抵抗は30〜50Ω4とかなり大きい。
For example, at present, a relatively shallow nM dope layer with a junction depth of about 0.3 .mu.m can be formed by arsenic ion implantation, but its sheet resistance is quite large at 30 to 50 .OMEGA.4.

近い将来要求される01〜02μmの接合深さのドープ
層をイオン注入で作ろうとすると100Ω/、あるいは
それ以上となシもはや配線としては使用不可能である。
If a doped layer with a junction depth of 01 to 02 .mu.m, which will be required in the near future, is created by ion implantation, the layer will have a junction depth of 100 .OMEGA./or more and cannot be used as a wiring.

更に、o、i〜0.2μm 程度の浅い接合領域へOk
l系の金属のオーミックコンタクトではいわ映るアロイ
スパイクと呼ばれる局部的拡散、合金化反応が生じ浅い
接合を突き抜けて基板と電気的短絡が起こシ易い。
Furthermore, it is OK for shallow junction regions of about o, i ~ 0.2 μm.
In ohmic contacts made of l-based metals, local diffusion and alloying reactions called alloy spikes occur, which can easily penetrate shallow junctions and cause electrical shorts with the substrate.

この様に従来のイオン注入のみで浅い接合の形成や、ポ
リシリコンへの不純物ドーピングを行なうと電気抵抗や
オーミックコンタクトの点で好ましくなく、第2図の構
造を微細化する際にも免かれ得ない欠点である。
In this way, forming shallow junctions using only conventional ion implantation or doping polysilicon with impurities is unfavorable in terms of electrical resistance and ohmic contact, and cannot be avoided when miniaturizing the structure shown in Figure 2. There are no drawbacks.

これらの問題、即ち、出力ポリシリコン配線内にできる
pn接合の短絡の必要性と、薄いポリシリコン並びに浅
い不純物ドープ層のシート抵抗の増大とアルミ糸配線と
のコンタクト部でのアロイスパイクの問題を一挙に解決
するために金属硅化物をポリシリコン表面並びに浅い不
純物ドープ層表面に形成することが考えられる。しかし
、白金、パラジウム等の貴金属の硅化物を形成した場合
には、これらの貴金属の硅化物の熱安定性が充分でない
ため850C程度の熱処理によって抵抗値が著しく増大
したシ、オーミックコンタクト部でアルミニウム系金属
と反応したジするという問題がちシ実用に供し難い。一
方、モリブデン、タングステン、タンタル、チタン等の
いわゆる高融点食sの硅化物の場合にはそれらの材料自
身の耐熱性という点においては問題はない。そこで従来
の技術を用いてこれらの高融点金属の硅化物をソース・
ドレイン領域上に形成して低抵抗化を図るという目的の
ために応用しようとすると次の2つの方法が従来考えら
れていた。
These problems include the necessity of shorting the pn junction in the output polysilicon wiring, the increase in sheet resistance of thin polysilicon and shallow impurity doped layers, and the problem of alloy spikes at the contact with the aluminum thread wiring. In order to solve the problem all at once, it is conceivable to form metal silicide on the surface of the polysilicon and the surface of the shallow impurity doped layer. However, when silicides of noble metals such as platinum and palladium are formed, the resistance value increases significantly due to heat treatment at about 850C because the thermal stability of these noble metal silicides is insufficient. It is difficult to put it into practical use because it tends to have the problem of reaction with metals. On the other hand, in the case of so-called high melting point silicides such as molybdenum, tungsten, tantalum, and titanium, there is no problem in terms of the heat resistance of these materials themselves. Therefore, using conventional technology, we used silicides of these high melting point metals as sources.
Conventionally, the following two methods have been considered for application to the purpose of forming on the drain region to reduce resistance.

第1の方法は所望の組成比の高融点金属の硅化物膜その
ものをスパッタリングやX窒蒸着等の方法を用いて堆積
する方法である。しかシ2、この方法においては800
°C程度以上の高温熱処理によって高融府金属の硅化物
膜とその下の予め尚濃度に不純物をドープしたソース・
ドレイン領域との接触面でのオーミック性が劣化し、そ
の結果ノースドレイン領域の実効的な直列抵抗の増加を
引起す。
The first method is to deposit a high melting point metal silicide film itself with a desired composition ratio using a method such as sputtering or X-nitrogen deposition. However, in this method, 800
By high-temperature heat treatment at temperatures above about °C, the silicide film of the refractory metal is bonded to the source layer, which is doped with impurities at a high concentration.
The ohmic properties at the interface with the drain region deteriorate, resulting in an increase in the effective series resistance of the north drain region.

更に、この方法では、予め金属硅化物組成を持った膜を
堆積するため、ソース・ドレイン領域等の所望の領域に
のみ自己整合的に形成することは容易ではないという欠
点をも含んでいる。
Furthermore, this method has the disadvantage that since a film having a metal silicide composition is deposited in advance, it is not easy to form the film in a self-aligned manner only in desired regions such as source/drain regions.

第2の方法では、高融点金属の硅化物そのものを堆積す
るのではなく、高融点金属膜を堆積した後、熱処理によ
って高融点金属とシリコンとを反応させて硅化物層を形
成する方法である。この方法では、ノース・ドレイン領
域等の所望の領域のシリコン表面を露出せしめてから高
融点金属膜の堆!!Rを行うことにより、所望部のみに
自己整合的に篩融点金属層を形成することができる。し
かし、この方法を莢除に試みると高融点金属と高濃度例
不純物をドープしたシリコンとの反応の再現性や一様性
が著し、く悪し^ことが判った。即ち、高融点金属J:
シリコンとの硅化物反応が殆ど生じない場合や、匪しい
反応が生じる場合が、試料間あるいは試料内においても
生じた。こオ1.. ld多分高融点金属とシリコ/と
の界面や高融点金属あるいはシリコンの状態によって硅
化物形成反応が敏感に影響されfc結果と考えられる。
In the second method, instead of depositing the high melting point metal silicide itself, after depositing a high melting point metal film, the high melting point metal and silicon are reacted by heat treatment to form a silicide layer. . In this method, a high melting point metal film is deposited after exposing the silicon surface in desired areas such as the north drain region. ! By performing R, a sieve melting point metal layer can be formed in a self-aligned manner only in desired portions. However, when this method was attempted to remove the pods, it was found that the reproducibility and uniformity of the reaction between the high melting point metal and silicon doped with high concentration impurities was extremely poor. That is, high melting point metal J:
In some cases, almost no silicide reaction with silicon occurred, and in some cases, a weak reaction occurred between samples or within the sample. Ko 1. .. It is thought that the silicide formation reaction is sensitively influenced by the interface between the high melting point metal and silico/and the state of the high melting point metal or silicon, resulting in fc.

更に、この様な方法においては、尚融点釡属とシリコン
との硅化物形成反応力;生じた場合に分いても、硅化物
形成反応は、シリフン露出部の端部から未露出部(高融
点金属膜が絶縁e+ −1: +Cある領域)ヘハミ出
して生じるだめ、自己整合的に高融点金属の硅化物を所
望領域にのみ形成するという点においても問題があるこ
とが判明した。
Furthermore, in such a method, the silicide-forming reaction force between the melting point pottery and silicon; It has also been found that there is a problem in that the metal film protrudes into the insulating e+ -1: +C region, and the silicide of the high melting point metal is formed only in the desired region in a self-aligned manner.

その上、上記2つの方法いずれによって形成した高融点
金属の硅化物においても、850”C程度以上の高温熱
処理によって結晶粒径がxoou Xオーダの多結晶に
なり、また表面の平滑性や均質性も余9よくない。この
様に表面の平滑性や均質性もよくなくかつ多結晶の高融
点金属の硅化物層を高濃度に不純物をドープしたシリコ
ン結晶表面に形成した後高温の熱処理を行うと、シリコ
ン結晶にドープしておいた不純物が硅化物層の結晶粒界
中に拡散しシリコン結晶中から抜けるという現象が生じ
たり、6るいは、オーミックコンタクト用のアルミニウ
ム系金属を堆積した場合には、アルミニウムやシリコン
が結晶粒界を容易処相互拡散しいわゆるスパイクを生じ
るということが判った。
Furthermore, in the case of high-melting point metal silicides formed by either of the above two methods, the crystal grain size becomes polycrystalline on the order of In this way, the surface smoothness and homogeneity are not good, and a high-temperature heat treatment is performed after forming a polycrystalline high-melting-point metal silicide layer on the highly doped silicon crystal surface. In this case, a phenomenon occurs in which impurities doped into the silicon crystal diffuse into the grain boundaries of the silicide layer and escape from the silicon crystal, or when an aluminum-based metal for ohmic contact is deposited. It was found that aluminum and silicon easily interdiffused through grain boundaries, resulting in so-called spikes.

以上の如く、従来の方法、あるいは従来の方法によって
形成される高融点金属の硅化物層は、ソース・ドレイン
領域の低抵抗化という目的への応用には不適当であるこ
とが判明した。
As described above, it has been found that the conventional method or the refractory metal silicide layer formed by the conventional method is unsuitable for application to the purpose of lowering the resistance of the source/drain regions.

本発明者は以上述べた従来構造の欠点を除去するため第
3図に概略断面を示したような構造の半導体装置を提案
している。
In order to eliminate the drawbacks of the conventional structure described above, the present inventor has proposed a semiconductor device having a structure as shown schematically in cross section in FIG.

p ML単結晶シリコン基板301上に形成されたnウ
ェル302中にPチャネルMO8F’ETがp型シリコ
ン基板にNチャネルMO8FETがそれぞれ形成されて
いる。303はゲート絶縁膜、304gはポリシリコン
よシなるゲート電極、305cはNチャイ、#MO8F
’ET のドレインとなるnfiドープ層306とPチ
ャネルMO8FETのソースとなるp壓ドープ層307
とを相互接続し更に次段のインバータのゲートに伸びる
ポリシリコンの出力配線であす、n型ドープとpmドー
プの領域がちυ境界部分はpn接合Jとなっている。
A P-channel MO8F'ET is formed in an n-well 302 formed on a p-ML single-crystal silicon substrate 301, and an N-channel MO8FET is formed on a p-type silicon substrate. 303 is a gate insulating film, 304g is a gate electrode made of polysilicon, 305c is N-chai, #MO8F
nfi-doped layer 306 which becomes the drain of 'ET' and p-doped layer 307 which becomes the source of P-channel MO8FET.
This is a polysilicon output wiring that interconnects the two and further extends to the gate of the next stage inverter.The n-doped and pm-doped regions have a υ boundary, which forms a pn junction J.

Nチャイ・ルトランジスタのノース・ドレインとなる浅
いn型ドープ層306、Pチャネルトランジスに出力配
線の°ポリシリコン305 cの表面全体に平滑かつ均
質なモリブデン硅化物膜308が形成されている。
A smooth and homogeneous molybdenum silicide film 308 is formed on the entire surface of a shallow n-type doped layer 306 which becomes the north drain of the N-channel transistor, and polysilicon 305c of the output wiring of the P-channel transistor.

この様にモリブデン硅化物で浅い不純物拡散層や薄いポ
リシリコンを覆うことにょυ、それら浅い拡散層や薄い
ポリシリコンのシート抵抗は非常に低くできる13例え
ば厚さ01μmのモリブデン硅化物で被覆した0−18
μmの接合深さのn型ドープJrJ (n型部分の厚さ
は008μm)では13〜14Ω金の値が実現している
。この様な低抵抗の配線を使えば動作速度が向上する。
By covering shallow impurity diffusion layers and thin polysilicon with molybdenum silicide in this way, the sheet resistance of these shallow diffusion layers and thin polysilicon can be made very low. -18
For n-type doped JrJ with a junction depth of μm (the thickness of the n-type part is 0.08 μm), a value of 13 to 14 Ω gold is achieved. Using such low-resistance wiring improves operating speed.

また配線での゛電圧降下が小さくな逆動作マージンが広
くなる。またp型とn d42つの領域があシルn接合
ができてしまう111力ポリシリコン表面もモリブデン
硅化物で低抵抗化されると共に同電位にすることができ
る。まだAl系配綜とのオーミックコンタクトが不要な
のでAIi系配線パターンの設計自由度が向上し、高集
積化が1jj能となる。
In addition, the voltage drop in the wiring is small and the reverse operation margin is widened. Furthermore, the resistance of the 111-force polysilicon surface where an sil-n junction is formed between the p-type and nd4 regions can be lowered by using molybdenum silicide, and the potential can be made the same. Since there is no need for ohmic contact with the Al-based interconnection, the degree of freedom in designing the AIi-based wiring pattern is improved, and high integration becomes possible.

本発明の目的はこのような半導体装置の製造方法を提供
することである。
An object of the present invention is to provide a method for manufacturing such a semiconductor device.

本発明によれば第1導ituの単結晶シリコン基板表面
に、島状の第2導電型ウエル領域とシリコン基板領域並
びにそれらを分離する厚い絶縁膜のフィールド領域を形
成したのち、フィールド領域以外のンリコノ表面にゲー
ト絶縁膜を被着し後にポリシリコンとシリコン基板との
間のダイレクトコンタクトを形成する領域であるウェル
領域の一部とシリコン基板領域の一部のゲート絶縁膜に
開口を設けたのち、ポリシリコン膜を被着し、後に洲チ
ャネルMISFET を形成すべき領域上の当該ポリシ
リコン膜には、n型不純物をドープし、後にPチャネル
MISFET を形成すべき領域上の当該ポリシリコン
膜にはp型不純物をドープし、ゲート電極、素子間配線
として成形し、次いで尚該ポリシリコンパターンをマス
クとして該ポリシリコンで被われた以外のシリコン表面
上に残るゲート絶縁膜を除去し、次いで高融点金属薄膜
をスパッタ法等で被着したのち、後にNチャネルMIS
FET  を形成する領域にはn型不純物を、あるいは
シリコン結晶内で電気的に不活性々イオンとn盤不純物
とを重ねて注入し、またPチャネルMISFET  を
形成する領域にはp型不純物をあるいはシリコン結晶内
で電気的に不活性なイオンとp型不純物とを重ねて注入
して、前記高融点金属膜それに接する単結晶あるいは多
結晶シリコンとの界面を混合するに足る条件でイオン注
入し、次いで非酸化性ガス中で400〜600°Cの熱
処理を行ない、前記混合層を平滑、均質な高融点金属硅
化層となし、次いで未反応のまま残留した金属を除去し
その後非遣元性ガス中で800℃以上の熱処理を加える
ことを特徴とする半導体装置の製造方法が得られる。
According to the present invention, after forming an island-like second conductivity type well region, a silicon substrate region, and a field region of a thick insulating film separating them on the surface of a single-crystal silicon substrate of a first conductivity, After depositing a gate insulating film on the silicon surface and making an opening in the gate insulating film in a part of the well region and a part of the silicon substrate region, which are the regions where direct contact between the polysilicon and the silicon substrate will be formed later. , a polysilicon film is deposited, and the polysilicon film on the region where the S-channel MISFET is to be formed later is doped with an n-type impurity, and the polysilicon film on the region where the P-channel MISFET is to be later formed is doped. is doped with p-type impurities and formed into gate electrodes and inter-element interconnections, and then using the polysilicon pattern as a mask, the gate insulating film remaining on the silicon surface other than that covered with the polysilicon is removed, and then a high After depositing a melting point metal thin film by sputtering method etc., N-channel MIS
In the region where the FET is to be formed, n-type impurities are implanted, or electrically inactive ions and n-disc impurities are superimposed in the silicon crystal, and in the region where the P-channel MISFET is to be formed, p-type impurities or Injecting electrically inert ions and p-type impurities in a silicon crystal in a layered manner under conditions sufficient to mix the interface between the high-melting point metal film and the single-crystalline or polycrystalline silicon in contact with it, Next, a heat treatment is performed at 400 to 600°C in a non-oxidizing gas to turn the mixed layer into a smooth and homogeneous high melting point metal silicide layer.Then, the remaining unreacted metal is removed, and then a non-oxidizing gas is applied. A method for manufacturing a semiconductor device is obtained, which is characterized by applying heat treatment at 800° C. or higher.

次に本発明をその一実施例を用いて説明する。Next, the present invention will be explained using one embodiment thereof.

該実施例は第3図に示したCMOSインパークを製造す
るための方法である。。
This embodiment is a method for manufacturing the CMOS Impark shown in FIG. .

第4図(aj、 (b)、(C1、(C1)、(el、
(QはこのCMOSインパークを製造する際の主要工程
でのインバータの模式的断面図を順次示したものである
Figure 4 (aj, (b), (C1, (C1), (el,
(Q is a series of schematic cross-sectional views of the inverter at the main steps in manufacturing this CMOS impaque.

まず比抵抗数Ω・硼、のpffi単結晶シリコン基板4
01を用意し、通常の熱酸化法によって膜厚6000X
の酸化膜402を形成する。通常のホトエツチング法に
よシいわゆるNウェル領域を形成すべき部分の酸化膜に
開口し、次に開口部表面に厚さ1000Xの酸化膜40
3を被着したのち、リンイオンを加速電圧150 Ke
vl  ドーズ量7 X 10 ” tx=  だけ注
入し、窒素ガス中で1200°C19時間の熱処理を行
ない深さ7μm程度のNウェル領域404を形成する。
First, a PFFI single crystal silicon substrate 4 with a specific resistance of Ω・硼
01 is prepared, and the film thickness is 6000X by normal thermal oxidation method.
An oxide film 402 is formed. An opening is made in the oxide film in the area where the so-called N-well region is to be formed using a normal photoetching method, and then an oxide film 40 with a thickness of 1000× is formed on the surface of the opening.
3, the phosphorus ions were accelerated at a voltage of 150 Ke.
Vl is implanted at a dose of 7 x 10'' tx=, and heat treatment is performed at 1200° C. for 19 hours in nitrogen gas to form an N well region 404 with a depth of about 7 μm.

((a)図) 次にすべての酸化膜を除去したのち、通常の選択酸化法
によってトランジスタが形成される活性領域以外の領域
(フィールド領域)にフィー・ノシド酸化膜405を形
成する。次に活性領域のシ11コン基板表曲にi痺30
0Xのゲート絶縁膜406を形成する。((b)図) 次にダイレクトコンタクトを形成する領域のゲート絶縁
膜406を開孔してシリコン面を露出さぜたのち厚さ3
000 Aのポリシリコンを被着する。
(Figure (a)) Next, after removing all the oxide films, a fee-noside oxide film 405 is formed in a region (field region) other than the active region where a transistor is formed by a normal selective oxidation method. Next, I numb 30 on the silicon board surface of the active area.
A gate insulating film 406 of 0x is formed. (Figure (b)) Next, a hole is opened in the gate insulating film 406 in the region where the direct contact is to be formed, and the silicon surface is exposed, and then the thickness is 3.
000 A polysilicon is deposited.

ポリシリコン被着後Nチャネルへ108FI)T を形
成する領域上のポリシリコンにはn型の不純物、Pチャ
ネルMO8FET を形成する領域上のポリシリコンに
はp型の不純物をドーピングする。
After the polysilicon is deposited, the polysilicon on the region where the N-channel 108FI)T is to be formed is doped with an n-type impurity, and the polysilicon on the region where the P-channel MO8FET is to be formed is doped with a p-type impurity.

次にこのポリシリコン膜をゲート電極407 g 。Next, this polysilicon film is used as a gate electrode 407g.

出力配信407cとして成形する。ここでNチャネルあ
るいはPチャネルMO8FET を形成する領域と表現
したが、出力配線407cも含む。クーまシゲード醒極
407gだけでなく出力配、勢407cにもn・p型不
純物をドープしであるとめう意味である。
It is formed as an output distribution 407c. Here, it is expressed as a region where an N-channel or P-channel MO8FET is formed, but it also includes the output wiring 407c. This means that not only the Kuuma Shigade Senpoku 407g but also the output terminal and 407c are doped with n/p type impurities.

次にゲートポリシリコン407gn、 407g p 
をマ実に本発明の方法で得られる硅化物は浅い接合と同
時に任意のパターンの単結晶あるbは多結晶シリコン表
面に自己整合してできるので果槓度向上の点でも卓効が
ある。
Next, gate polysilicon 407gn, 407g p
Since the silicide obtained by the method of the present invention can form shallow junctions and at the same time self-align with the polycrystalline silicon surface any pattern of single crystals, it is extremely effective in improving yield.

なお、本発明の方決′では、イオン注入を行った後に4
00〜600°Cという比較的低温の熱処理を非酸化性
雰囲気中で行い、この後、未反応な毘融点金属を除去し
た後に800°C以上の熱処理を行う2段熱処理法が行
われているが、この2段熱処理は均一、かつ、平滑な高
融点金属硅化物を開口部に対して自己整合的に形成する
上で、極めて重要である。すなわち、イオン注入後の最
初のアニールを、例えば800°C程度以上や高温で行
った場合には、開口部からはみだして硅化物が形成され
てしまう。従って、最初低温でアニールを行った後1、
未反応な高融点金属を除去することによって開口部に自
己整合して硅化物が形成される。このアニールを酸化性
雰囲気中で行なうと表面の高融点金属膜が酸化され昇華
するような場合もありうる。
In addition, in the method of the present invention, after performing ion implantation, 4
A two-stage heat treatment method is used in which heat treatment is performed at a relatively low temperature of 00 to 600 °C in a non-oxidizing atmosphere, and then heat treatment is performed at a temperature of 800 °C or higher after removing unreacted metals with a melting point. However, this two-stage heat treatment is extremely important in forming a uniform and smooth high melting point metal silicide in a self-aligned manner with respect to the opening. That is, if the first annealing after ion implantation is performed at a high temperature of, for example, about 800° C. or higher, silicide will be formed protruding from the opening. Therefore, after first annealing at low temperature, 1.
By removing unreacted high melting point metal, silicide is formed in self-alignment with the opening. If this annealing is performed in an oxidizing atmosphere, the high melting point metal film on the surface may be oxidized and sublimated.

この後、該硅化物層の抵抗率の減少友−び注入されたイ
オンの電気的活性化を目的とした800″C程度以上の
熱処理が実施される。この熱処理をH2ガスを含んだ還
元性ガス雰囲気で行った場合には、前記低温熱処理によ
って形成された硅化物の均一性や平滑性が失われてしま
い、これに伴ってピンホール等の欠陥が多数形成される
ため集積回路への使用にi−j:第1さない。従って、
非還元性ガス雰囲気例えば、璧素不活性ガス、酸素、水
蒸気あるいはこれらの組合せたガス雰囲気または真壁中
で80000以上の熱処理を行うことが硅化物の均一か
つ平滑な性質を維持する上で重要である。
After this, heat treatment at about 800"C or higher is carried out for the purpose of reducing the resistivity of the silicide layer and electrically activating the implanted ions. This heat treatment is performed using a reducing heat treatment containing H2 gas. If the process is carried out in a gas atmosphere, the uniformity and smoothness of the silicide formed by the low-temperature heat treatment will be lost, resulting in the formation of many defects such as pinholes, making it difficult to use it in integrated circuits. i-j: first not. Therefore,
It is important to perform heat treatment at 80,000 or more in a non-reducing gas atmosphere, such as an inert gas, oxygen, water vapor, or a combination of these gases, or in a pure wall to maintain the uniform and smooth properties of the silicide. be.

なお、本実施例においてF′i高融点金機としてM。In this example, M is used as the F'i high melting point metal machine.

を用いた場合について述べだが、W 3 Ta ) T
 I吟他の高融点金属についても同様の効果が確認でき
た。
As for the case using W 3 Ta ) T
Similar effects were confirmed for other high melting point metals.

実にNチャ坏ルMO8FET のソース・ドレインとな
る11型ド一プ層f′iA s イオン注入のみで行っ
たが、非常に浅い接合を形成するためにはドーピングの
ための5P量のAs<オンの注入と金属とシリコンの竹
面尻合のだめの81 イオンの注入とを組み合わせても
良い。またこの場合、イオン注入の順序はどちらが先で
も良い。BイオンとSi イオンの組み合わせの場合も
また同様である。また界面混合用のイオンはSi に限
らすAr なとの不活性元素でもよい。
In fact, the 11-type doped layer f'iA s which becomes the source and drain of the N-channel MO8FET was ion-implanted only, but in order to form a very shallow junction, the amount of 5P for doping was As<on. It is also possible to combine the implantation of metal and silicon with the implantation of ions. In this case, the order of ion implantation may be either first. The same applies to the combination of B ions and Si ions. Further, the ions for interfacial mixing are not limited to Si, but may be inert elements such as Ar.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来のCMOSインバータを示す模式的断面図
、第2図はその問題点の1部を解決するために提案され
ているCMOSインバータの模式的断面図、第3因は本
発明によるCMOSインバータの実施例を示す模式断面
図、第4図は本発明による製造方法の実施例を示すため
の主要工程での模式的断面図である。 101.301,401・・・p型シリコン基板、10
3,302゜404・・・nウェル、102,201,
306,408,201,408”’nnトド−1層1
042o2307,409,202,409ツノ ・・−p型ドープ層、105,204・・・AAI、 
 106,412・・・層間絶縁膜、203,304,
305,407・・・ポリシリコン、308411・・
・高融点金属硅化物、303406・・・ゲート絶縁膜
、410・・・高融点金属膜、405・・・フィールド
酸化膜、402・・・厚いシリコン酸化膜、403・・
・薄いシリコン酸化膜、C・・・出力配線を示す添字、
g・・・ゲート電極を示す添字、n・・・n型不純物ド
ープを示す添字、p・・・pm不純物ドープを不す添字
。 第1図 第 2 図 第3図 第 4 図 第4図 406    4D’1 手続補正書 59.8.  i 昭和  年  月  日 特許庁長官 殿 1、事件の表示  昭和58年 特許 願第08308
7号2、発明の名称  半導体装置の装造方法3、補正
をする者 事件との関係       出 願 人東京都港区芝五
丁目33番1号 (423)   日本電気株式会社 代表者 関本忠弘 4、代理人 5、補正の対象 図面 6、補正の内容 本願添付図面の第4図の(c)およびfdlを別紙図面
のように補正する。 享 4  図
FIG. 1 is a schematic cross-sectional view showing a conventional CMOS inverter, FIG. 2 is a schematic cross-sectional view of a CMOS inverter proposed to solve part of the problem, and the third factor is a CMOS inverter according to the present invention. FIG. 4 is a schematic sectional view showing an embodiment of an inverter, and FIG. 4 is a schematic sectional view showing main steps of an embodiment of the manufacturing method according to the present invention. 101.301,401...p-type silicon substrate, 10
3,302゜404...n well, 102,201,
306,408,201,408'''nnTodo-1 layer 1
042o2307,409,202,409 horn...-p-type doped layer, 105,204...AAI,
106, 412... interlayer insulating film, 203, 304,
305,407...Polysilicon, 308411...
- High melting point metal silicide, 303406... Gate insulating film, 410... High melting point metal film, 405... Field oxide film, 402... Thick silicon oxide film, 403...
・Thin silicon oxide film, C... Subscript indicating output wiring,
g... A subscript indicating gate electrode, n... A subscript indicating n-type impurity doping, p... A subscript indicating no pm impurity doping. Figure 1 Figure 2 Figure 3 Figure 4 Figure 4 406 4D'1 Procedural Amendment 59.8. i Director General of the Patent Office 1, 1981, Indication of Case 1982 Patent Application No. 08308
No. 7, No. 2, Title of the invention: Method for assembling semiconductor devices 3, Relationship to the amended case Applicant: 5-33-1 Shiba, Minato-ku, Tokyo (423) NEC Corporation Representative: Tadahiro Sekimoto 4; Agent 5, Drawing 6 to be amended, Contents of amendment: (c) and fdl in Figure 4 of the drawings attached to this application will be amended as shown in the attached drawings. Illustration 4

Claims (1)

【特許請求の範囲】[Claims] 第1導iI型の単結晶/リコン基板表面に、島状の第2
碑寛型ウエル領域と/リコン基板領域並びにそれらを分
離する厚い絶縁膜のフィールド領域を形成したのち、フ
ィールド領域以外のンリコン表面にゲート絶縁膜を被着
し俊にポリシリコンとシリコン基板どの間のダイレクト
コンタクトを形成する領域であるウェル領域の一部とシ
リコン基板領域の一部のゲート絶縁膜に開口を設けたの
ち、ポリシリコン膜を被着し、檄にnチャ?・ルM I
 SI”ET  を形成すべき領域上の当該ポリシリコ
ン膜にはn壓不縄物をドープし、後にpチャオルム(工
SF ET k、 j’e成すべき領域上の尚該ポリシ
リコン膜にはp型不純物をドープし、ゲート電極、衆子
間配線として成形し、次いで当該ポリシリコンパターン
をマスクとして該ポリシリコンで被われた以外のシリコ
ン表面上に残るゲート絶縁膜を除去し、次いで高融点金
属薄膜を被着したのち、後にNチャネルMISFET 
を形成する領域にはnu不純物をあるいはシリコン結晶
内で電気的に不活性なイオンとnji不純物とを重ねて
注入し、またPチャネルM18FF、T を形成する領
域にはpm不純物をあるいはシリコン結晶内で電気的に
不活性なイオンとp型不純物とを重ねて注入して、前記
高融点金属膜とそれに接する単結晶あるいは多結晶シリ
コンとの界面を混合し、次いで非酸化性ガス中で400
〜600°Cの熱処理を行ない、前記混合層を平滑、均
質な高融点金属硅化物層となし、次いで未反応のまま残
留した金属を除去しその後非還元性ガス中で800℃以
上の熱処理を加えることを井番&トーなふ春特徴とする
半導体装置の製造方法。
An island-shaped second
After forming a well region and a silicon substrate region as well as a field region of a thick insulating film to separate them, a gate insulating film is deposited on the silicon surface other than the field region, and a gate insulating film is quickly formed between the polysilicon and the silicon substrate. After openings are made in the gate insulating film in a part of the well region and a part of the silicon substrate region, which are the regions where direct contacts are to be formed, a polysilicon film is deposited, and then an n-cha?・Le MI
The polysilicon film on the region where SI"ET is to be formed is doped with n-containing material, and later, p The polysilicon pattern is then doped with mold impurities and formed into gate electrodes and interlayer wiring, and the gate insulating film remaining on the silicon surface other than that covered with the polysilicon is removed using the polysilicon pattern as a mask. After depositing the N-channel MISFET
Nu impurities or electrically inactive ions and nji impurities are implanted in the silicon crystal in the region where the transistors are to be formed, and pm impurities or pm impurities in the silicon crystal are implanted in the regions where the P channel M18FF and T are to be formed. Electrically inactive ions and p-type impurities are implanted in layers to mix the interface between the high-melting point metal film and the single crystal or polycrystalline silicon in contact with it, and then heated for 400 min in a non-oxidizing gas.
A heat treatment is performed at ~600°C to make the mixed layer a smooth, homogeneous high melting point metal silicide layer, and then residual unreacted metal is removed, followed by a heat treatment at 800°C or higher in a non-reducing gas. A method for manufacturing a semiconductor device characterized by the addition of Iban and Tonafuharu.
JP58083087A 1983-05-12 1983-05-12 Manufacture of semiconductor device Pending JPS59208773A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP58083087A JPS59208773A (en) 1983-05-12 1983-05-12 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP58083087A JPS59208773A (en) 1983-05-12 1983-05-12 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS59208773A true JPS59208773A (en) 1984-11-27

Family

ID=13792396

Family Applications (1)

Application Number Title Priority Date Filing Date
JP58083087A Pending JPS59208773A (en) 1983-05-12 1983-05-12 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS59208773A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197162A (en) * 1983-04-22 1984-11-08 Nec Corp Semiconductor device
JPS6421950A (en) * 1987-06-22 1989-01-25 American Telephone & Telegraph Integrated circuit with improved tab tie
JPH04162563A (en) * 1990-10-25 1992-06-08 Nec Corp Manufacture of semiconductor device
KR100480577B1 (en) * 1997-12-19 2005-09-30 삼성전자주식회사 Semiconductor device having butted contact and manufacturing method therefor
CN103762215A (en) * 2013-12-30 2014-04-30 北京宇翔电子有限公司 Aluminum gate CMOS phase inverter and CMOS semiconductor device strengthened through radiation resistance

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660063A (en) * 1979-10-23 1981-05-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5780721A (en) * 1980-09-15 1982-05-20 Gen Electric Method of forming low resistance contact in semiconductor device
JPS57192079A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Semiconductor device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660063A (en) * 1979-10-23 1981-05-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS5780721A (en) * 1980-09-15 1982-05-20 Gen Electric Method of forming low resistance contact in semiconductor device
JPS57192079A (en) * 1981-05-22 1982-11-26 Hitachi Ltd Semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59197162A (en) * 1983-04-22 1984-11-08 Nec Corp Semiconductor device
JPS6421950A (en) * 1987-06-22 1989-01-25 American Telephone & Telegraph Integrated circuit with improved tab tie
JPH04162563A (en) * 1990-10-25 1992-06-08 Nec Corp Manufacture of semiconductor device
KR100480577B1 (en) * 1997-12-19 2005-09-30 삼성전자주식회사 Semiconductor device having butted contact and manufacturing method therefor
CN103762215A (en) * 2013-12-30 2014-04-30 北京宇翔电子有限公司 Aluminum gate CMOS phase inverter and CMOS semiconductor device strengthened through radiation resistance

Similar Documents

Publication Publication Date Title
JPS6072272A (en) Manufacture of semiconductor device
JPH05198739A (en) Laminated semiconductor device and its manufacture
JPH0758701B2 (en) Method for manufacturing semiconductor device
JPS61144872A (en) Semiconductor device
JPS59208773A (en) Manufacture of semiconductor device
JPS59197162A (en) Semiconductor device
JPH0329189B2 (en)
JPS59208772A (en) Manufacture of semiconductor device
JP2817518B2 (en) Semiconductor device and manufacturing method thereof
JPS61224435A (en) Semiconductor device
JPS6165470A (en) Semiconductor ic device
JPS59177926A (en) Manufacture of semiconductor device
JPS6180862A (en) Manufacture of semiconductor device
JPS59123228A (en) Manufacture of semiconductor device
JPH0154853B2 (en)
JPH0235774A (en) Semiconductor device
JPH02194653A (en) Mis transistor
JPS63265448A (en) Manufacture of mos type semiconductor device
JPH02151064A (en) Manufacture of semiconductor device
JPS5898968A (en) Semiconductor device
JP2567832B2 (en) Method for manufacturing semiconductor device
JPH03201558A (en) Bi-cmos semiconductor device
JPH0434820B2 (en)
JPH02231767A (en) Manufacture of semiconductor device
JPH03220772A (en) Semiconductor device