JPH0154853B2 - - Google Patents

Info

Publication number
JPH0154853B2
JPH0154853B2 JP57017362A JP1736282A JPH0154853B2 JP H0154853 B2 JPH0154853 B2 JP H0154853B2 JP 57017362 A JP57017362 A JP 57017362A JP 1736282 A JP1736282 A JP 1736282A JP H0154853 B2 JPH0154853 B2 JP H0154853B2
Authority
JP
Japan
Prior art keywords
melting point
silicon
high melting
film
point metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP57017362A
Other languages
Japanese (ja)
Other versions
JPS58134427A (en
Inventor
Hidekazu Okabayashi
Eiji Nagasawa
Mitsutaka Morimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP1736282A priority Critical patent/JPS58134427A/en
Publication of JPS58134427A publication Critical patent/JPS58134427A/en
Publication of JPH0154853B2 publication Critical patent/JPH0154853B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/22Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities
    • H01L21/225Diffusion of impurity materials, e.g. doping materials, electrode materials, into or out of a semiconductor body, or between semiconductor regions; Interactions between two or more impurities; Redistribution of impurities using diffusion into or out of a solid from or into a solid phase, e.g. a doped oxide layer

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Formation Of Insulating Films (AREA)

Description

【発明の詳細な説明】 本発明は高融点金属シリサイドを電極や配線に
使用して半導体装置の製造方法に関するものであ
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method of manufacturing a semiconductor device using refractory metal silicide for electrodes and wiring.

集積回路装置における集積度、動作速度、消費
電力等の向上のため配線等の寸法が益々微細化さ
れつつある。その様な微細化された集積回路装置
における配線や電極形成用材料として、モリブデ
ン、タングステン、タンタル等のいわゆる高融点
金属のシリサイドが有望と見なされている。その
理由は、これら高融点金属シリサイドは、従来の
MOS型集積回路のゲート電極等に用いられてき
た多結晶シリコンに比し、比抵抗が約1/10と低
く、かつ耐熱性が高いことや熱酸化により表面に
安定な酸化膜を形成できるからである。
BACKGROUND OF THE INVENTION In order to improve the degree of integration, operating speed, power consumption, etc. of integrated circuit devices, the dimensions of wiring, etc. are becoming increasingly finer. Silicides of so-called high melting point metals such as molybdenum, tungsten, and tantalum are considered to be promising materials for forming wiring and electrodes in such miniaturized integrated circuit devices. The reason is that these high melting point metal silicides are
Compared to polycrystalline silicon, which has been used for gate electrodes in MOS integrated circuits, it has a low resistivity of approximately 1/10, has high heat resistance, and can form a stable oxide film on the surface through thermal oxidation. It is.

従来高融点金属シリサイドを形成する方法の1
つとして、高融点金属膜をシリコンの基板上また
は薄膜上に堆積した後、熱処理により高融点金属
とシリコンとを反応させてシリサイド膜を形成す
る方法が知られている。この様な方法で形成した
高融点金属シリサイドを酸素等の酸化性雰囲気中
で高温熱処理すると、高融点金属シリサイドの表
面に酸化シリコン膜を形成できることが知られて
いる。しかし、この様な従来の方法で形成した高
融点金属シリサイドの酸化膜の絶縁耐圧は、シリ
コンそのものを熱酸化して形成した酸化シリコン
膜より相当に低く、従つて集積回路装置における
誘電体膜や層間絶縁膜としての応用に対して必ず
しも充分満足できるものではなかつた。
1 of conventional methods for forming high melting point metal silicide
One known method is to deposit a high melting point metal film on a silicon substrate or thin film, and then react the high melting point metal with silicon through heat treatment to form a silicide film. It is known that when a high melting point metal silicide formed by such a method is subjected to high temperature heat treatment in an oxidizing atmosphere such as oxygen, a silicon oxide film can be formed on the surface of the high melting point metal silicide. However, the dielectric strength of the high melting point metal silicide oxide film formed by such conventional methods is considerably lower than that of the silicon oxide film formed by thermally oxidizing silicon itself, and therefore it is difficult to use as a dielectric film in integrated circuit devices. It was not always completely satisfactory for application as an interlayer insulating film.

本発明は、上記従来の方法における問題点を大
幅に改良した新規な半導体装置の製造方法を提供
するものである。本発明による半導体装置の製造
方法は、シリコン上に高融点金属膜を堆積し、該
高融点金属膜の上からイオン注入を行なうことに
より該高融点金属膜と前記シリコンとの界面を混
合し、次いで非酸化性雰囲気中で加熱して前記高
融点金属と前記シリコンを反応せしめて高融点金
属シリサイド膜を形成した後、未反応の高融点金
属を除去し、次いで酸化性雰囲気中で熱酸化する
ことにより該高融点金属シリサイド表面に酸化膜
を形成することを特徴とするものである。
The present invention provides a novel method for manufacturing a semiconductor device that significantly improves the problems of the conventional methods described above. A method for manufacturing a semiconductor device according to the present invention includes depositing a high melting point metal film on silicon, mixing the interface between the high melting point metal film and the silicon by performing ion implantation from above the high melting point metal film, Next, after heating in a non-oxidizing atmosphere to cause the high melting point metal and the silicon to react to form a high melting point metal silicide film, unreacted high melting point metal is removed, and then thermal oxidation is performed in an oxidizing atmosphere. Accordingly, an oxide film is formed on the surface of the high melting point metal silicide.

本発明による方法によつて形成した高融点金属
シリサイドの酸化膜では従来の方法によつて形成
したものより大幅な絶縁耐圧の向上が得られる
が、これは、本発明による方法によつて形成され
た高融点金属シリサイドの表面が極めて平滑であ
るということと、さらにその様な平滑な高融点金
属シリサイドを酸化性雰囲気中で熱処理した場合
に形成される酸化膜の厚さも極めて均一でさらに
酸化膜と高融点金属シリサイドとの界面も平坦で
あるという発明者らが見出した事実によるものと
考えられる。
The refractory metal silicide oxide film formed by the method of the present invention has a much higher dielectric strength than that formed by the conventional method; The surface of the high melting point metal silicide is extremely smooth, and the thickness of the oxide film that is formed when such a smooth high melting point metal silicide is heat treated in an oxidizing atmosphere is also extremely uniform. This is thought to be due to the fact discovered by the inventors that the interface between the metal silicide and the high melting point metal silicide is also flat.

以下、本発明による方法の実施例を図を用いて
詳細に説明する。第1図a〜fの各図は本発明に
よる方法を半導体装置中に組込まれる薄膜蓄電器
の製作へ応用した場合の第1の実施例における主
要製造工程での薄膜蓄電器部の断面の模式図を示
したもののである。p型シリコン基板11の表面
に熱酸化によつて酸化シリコン膜12を形成した
後、周知のホトエツチング技術を用いて開口13
を設ける(a図)。次にスパツタ法を用いてモリ
ブデン膜14を350Åの厚さに堆積した後、加速
電圧160keVの砒素イオン15を5×1015cm-2
けイオン注入する(b図)。その際開口13以外
の領域では、モリブデン膜14を貫通した砒素イ
オンは厚い酸化膜12によりマスクされるのでシ
リコン基板11中にまで達することはない。開口
部13においては、大部分の砒素イオンはモリブ
ン膜14を貫通してシリコン基板11中に注入さ
れるとともに、モリブデン膜14とシリコン基板
11との界面はイオン衝撃によつて混合される。
次に600℃の水素雰囲気中でアニールすると開口
部13のモリブデンは完全にモリブデンシリサイ
ドMoSi216に変換される(c図)。なお、上述の
イオン注入の際にイオン注入電流が大きくイオン
注入速度が充分大きい場合には、イオン注入によ
つて生じる基板の温度上昇が400℃程度以上にも
なり、その際イオン注入による界面の混合効果と
前記温度上昇が相乗的に作用してイオン注入時に
シリサイド形成が自動的に行われてしまう。この
様な場合には上記600℃でのシリサイド形成のた
めの熱処理を省略してもさしつかえない。次に過
酸化水素水中に試料を浸漬することにより未反応
のモリブデン、即ち、酸化シリコン膜12上のモ
リブデン膜を選択的にエツチング除去できる。更
に、硅素注入層17を電気的に活性化させるため
1000℃の窒素ガス中で熱処理することによりモリ
ブデンシリサイドMoSi2層16の下に高濃度に砒
素をドープしたn+層17が形成される(d図)。
次に950℃の酸素ガス中で熱処理することにより
モリブデンシリサイド層16の上に酸化シリコン
膜18を300Åの厚さに形成した(e図)。次に周
知の真空蒸着法及びホトエツチング法を用いてア
ルミニウムからなる対向電極19を形成すること
により薄膜蓄電器を作製した(f図)。この様に
して作製した薄膜蓄電器の電極16と19との間
の絶縁耐圧の平均値は12Vでかつその標準偏差は
1.5Vであつた。一方従来のの方法、すなわち、
モリブデン薄膜を被着する前に予め開口部に硅素
をイオン注入しておいてからモリブデン薄膜を被
着した後にシリサイド化した場合には、それらの
値はそれぞれ4.5V及び3Vであり、本発明による
方法で作製したものに比して著しく劣つていた。
Hereinafter, embodiments of the method according to the present invention will be explained in detail using the drawings. Each of the figures in FIGS. 1a to 1f is a schematic cross-sectional view of a thin film capacitor part in the main manufacturing process in the first embodiment when the method according to the present invention is applied to the production of a thin film capacitor to be incorporated into a semiconductor device. This is what is shown. After forming a silicon oxide film 12 on the surface of a p-type silicon substrate 11 by thermal oxidation, an opening 13 is formed using a well-known photoetching technique.
(Figure a). Next, a molybdenum film 14 is deposited to a thickness of 350 Å using a sputtering method, and then arsenic ions 15 of 5×10 15 cm -2 are implanted at an acceleration voltage of 160 keV (Figure b). At this time, in areas other than the opening 13, the arsenic ions that have penetrated the molybdenum film 14 are masked by the thick oxide film 12, so that they do not reach into the silicon substrate 11. In the opening 13, most of the arsenic ions penetrate the molybdenum film 14 and are implanted into the silicon substrate 11, and the interface between the molybdenum film 14 and the silicon substrate 11 is mixed by ion bombardment.
Next, by annealing in a hydrogen atmosphere at 600° C., the molybdenum in the opening 13 is completely converted to molybdenum silicide MoSi 2 16 (Figure c). Note that during the above-mentioned ion implantation, if the ion implantation current is large and the ion implantation speed is sufficiently high, the temperature rise of the substrate caused by the ion implantation will be about 400°C or more, and the The mixing effect and the temperature increase act synergistically to automatically form silicide during ion implantation. In such a case, the heat treatment for forming silicide at 600° C. may be omitted. Next, by immersing the sample in hydrogen peroxide water, unreacted molybdenum, that is, the molybdenum film on the silicon oxide film 12 can be selectively etched away. Furthermore, in order to electrically activate the silicon implanted layer 17,
By heat treatment in nitrogen gas at 1000° C., an n + layer 17 doped with arsenic at a high concentration is formed under the molybdenum silicide MoSi 2 layer 16 (Figure d).
Next, a silicon oxide film 18 with a thickness of 300 Å was formed on the molybdenum silicide layer 16 by heat treatment in oxygen gas at 950° C. (Fig. e). Next, a thin film capacitor was manufactured by forming a counter electrode 19 made of aluminum using the well-known vacuum evaporation method and photoetching method (Figure f). The average value of the dielectric strength between electrodes 16 and 19 of the thin film capacitor produced in this way was 12V, and its standard deviation was
It was 1.5V. On the other hand, the conventional method, i.e.
If silicon is ion-implanted into the opening before depositing the molybdenum thin film and then silicided after depositing the molybdenum thin film, these values are 4.5V and 3V, respectively, and according to the present invention, the values are 4.5V and 3V, respectively. It was significantly inferior to that produced by the method.

次に第2の実施例について説明する。この実施
例においては高融点金属と反応させてシリサイド
を形成するためのシリコンとして絶縁膜上に形成
した単結晶シリコン薄膜を用いた。第2図a〜f
は本発明の第2の実施例を説明するための図で、
第1の実施例と同様に薄膜蓄電器を組込んだ半導
体装置の主要製造工程における該薄膜蓄電器部の
断面の模式図である。シリコン単結晶基板21上
に形成された酸化シリコン膜22に開口23を設
けた(a図)後、多結晶シリコン膜24を化学蒸
着法によつて堆積する。(b図)。次に周知のレー
ザアニール法、すなわち連続発振レーザ光の走査
により該多結晶シリコン膜24を単結晶化する。
この際開口部23の単結晶シリコン基板を種にし
て、単結晶を開口部23から横方向に成長させる
いわゆるlateral seeding法を用いた。次に周知
の選択酸化技術を用いて酸化シリコン膜25で囲
まれたシリコン単結晶薄膜からなる島状の領域2
4′を形成する(c図)。これ以後は、第1の実施
例の場合と同様の工程により第2図dに示した様
なn+層27上に形成されたモリブデンシリサイ
ド層26を酸化して形成した薄い酸化膜28を絶
縁層とし、アルニウムを上部電極29とした薄膜
蓄電器を作製した。
Next, a second embodiment will be described. In this example, a single crystal silicon thin film formed on an insulating film was used as the silicon for reacting with a high melting point metal to form silicide. Figure 2 a-f
is a diagram for explaining the second embodiment of the present invention,
FIG. 3 is a schematic cross-sectional view of a thin film capacitor section in the main manufacturing process of a semiconductor device incorporating a thin film capacitor, similar to the first embodiment. After an opening 23 is provided in a silicon oxide film 22 formed on a silicon single crystal substrate 21 (FIG. 1A), a polycrystalline silicon film 24 is deposited by chemical vapor deposition. (Figure b). Next, the polycrystalline silicon film 24 is made into a single crystal by a well-known laser annealing method, that is, by scanning with a continuous wave laser beam.
At this time, a so-called lateral seeding method was used in which the single crystal silicon substrate in the opening 23 was used as a seed and the single crystal was grown laterally from the opening 23. Next, an island-like region 2 made of a silicon single crystal thin film surrounded by a silicon oxide film 25 is formed using a well-known selective oxidation technique.
4' (Figure c). After this, a thin oxide film 28 formed by oxidizing the molybdenum silicide layer 26 formed on the n + layer 27 as shown in FIG. A thin film capacitor was fabricated using aluminum as a layer and an upper electrode 29 made of aluminum.

この様に本発明による方法を用いて作製した薄
膜蓄電器においては、従来の方法、すなわち、予
めシリコン単結晶領域に砒素のドーピングを行つ
ておいてからモリブデン薄膜を堆積した後、モリ
ブデンとn+層との反応によつてモリブデンシリ
サイドを形成し、該モリブデンシリサイド膜を熱
酸化するという工程で作製した場合に比して、第
1の実施例の場合とほぼ同程度の耐圧の向上が得
られた。
As described above, in the thin film capacitor manufactured using the method according to the present invention, the conventional method is used, that is, a silicon single crystal region is doped with arsenic in advance, a molybdenum thin film is deposited, and then a molybdenum and n + layer is deposited. Compared to the case where molybdenum silicide is formed by a reaction with the molybdenum silicide film and the molybdenum silicide film is thermally oxidized, an improvement in breakdown voltage to the same extent as in the case of the first example was obtained. .

第3の実施例は、シリコン薄膜として多結晶シ
リコンを用いた場合である。第2の実施例におい
て多結晶膜(第2図bにおける24)の単結晶化
工程を省略した場合、すなわち、第2図cにおけ
る島状領域24′が多結晶シリコン膜である場合
にも本発明による方法を用いて形成した薄膜蓄電
器は従来の方法によつて形成したものに比して著
しい耐圧の向上が得られた。
The third embodiment is a case where polycrystalline silicon is used as the silicon thin film. The present invention also applies when the single crystallization step of the polycrystalline film (24 in FIG. 2b) is omitted in the second embodiment, that is, when the island region 24' in FIG. 2c is a polycrystalline silicon film. Thin film capacitors formed using the method of the invention have significantly improved breakdown voltage compared to those formed using conventional methods.

上述の実施例においては、高融点金属を堆積す
るシリコンとしてはいずれも比抵抗が数Ω・cmの
基板、または、ドーピングを行つていないシリコ
ン薄膜を用いたが、高濃度にドーピングしたシリ
コン基板またはシリコン薄膜に対しても本発明に
よる方法は有効に適用できた。また、イオン注入
におけるイオンの種類も族や族のドーパント
イオンの他、目的によりシリコン、アルゴンある
いは金属イオン等種々のイオンを用いることがで
きる。更に、モリブデン以外の高融点金属(タン
グステン、タンタル、チタン、ニオブ、ハフニウ
ム)に対しても本発明による方法が有効に適用で
きた。
In the above embodiments, a substrate with a resistivity of several Ω·cm or an undoped silicon thin film was used as the silicon on which the high melting point metal was deposited, but a highly doped silicon substrate was used. The method according to the present invention was also effectively applied to silicon thin films. Furthermore, in addition to group and group dopant ions, various ions such as silicon, argon, or metal ions can be used for ion implantation depending on the purpose. Furthermore, the method according to the present invention could be effectively applied to high melting point metals (tungsten, tantalum, titanium, niobium, hafnium) other than molybdenum.

また上述の実施例ではイオン注入後にモリブデ
ンを完全にモリブデンシリサイドMoSi2に変換す
るための工程として、水素雰囲気中のアニールを
用いたが、何もこれに限る必要はなく、窒素雰囲
気中、不活性雰囲気中、真空中のアニール等を用
いてもよい。
Furthermore, in the above embodiment, annealing in a hydrogen atmosphere was used as a process to completely convert molybdenum into molybdenum silicide MoSi 2 after ion implantation, but there is no need to limit it to this. Annealing in an atmosphere or in a vacuum may be used.

上述の如く本発明による方法を用いて形成した
高融点金属シリサイドの酸化膜は優れた絶縁耐圧
を有し、集積回路装置の配線間の絶縁層、ダイナ
ミツク型ランダムアクセスメモリ装置を構成する
蓄電器の誘電体、更には本発明の方法によつて形
成した酸化膜上に単結晶シリコン膜を形成してな
る高融点金属シリサイドをゲート電極とし、該シ
リサイドの酸化膜をゲート絶縁膜としたMOS型
トランジスタ、等の作製に有効に応用することが
できる。
As described above, the high melting point metal silicide oxide film formed using the method according to the present invention has excellent dielectric strength and is suitable for use as an insulating layer between interconnects in integrated circuit devices, and as a dielectric layer in capacitors constituting dynamic random access memory devices. a MOS type transistor in which a high-melting point metal silicide formed by forming a single crystal silicon film on an oxide film formed by the method of the present invention is used as a gate electrode, and an oxide film of the silicide is used as a gate insulating film; It can be effectively applied to the production of etc.

【図面の簡単な説明】[Brief explanation of drawings]

第1図及び第2図は本発明による方法の実施例
における主要工程での断面の模式図。図中の番号
はそれぞれ以下のものを示している。 11,21……シリコン基板、12,22……
酸化シリコン膜、13,23……シリコン酸化膜
の開口、14……モリブデン膜、15……砒素イ
オンビーム、16,26……モリブデンシリサイ
ド、17,27……n+層、18,28……モリ
ブデンシリサイドの酸化膜、19,29……アル
ミニウム電極。
1 and 2 are schematic cross-sectional views of main steps in an embodiment of the method according to the present invention. The numbers in the figure indicate the following, respectively. 11, 21... Silicon substrate, 12, 22...
Silicon oxide film, 13, 23... opening in silicon oxide film, 14... molybdenum film, 15... arsenic ion beam, 16, 26... molybdenum silicide, 17, 27... n + layer, 18, 28... Molybdenum silicide oxide film, 19, 29...aluminum electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 シリコン上に高融点金属膜を堆積し、該高融
点金属膜の上からイオン注入を行なうことにより
該高融点金属膜と前記シリコンとの界面を混合し
次いで非酸化性雰囲気中で加熱して前記高融点金
属と前記シリコンを反応せしめて高融点金属シリ
サイド膜を形成した後未反応の高融点金属を除去
し、次いで酸化性雰囲気中で熱酸化することによ
り、該高融点金属シリサイド表面に酸化膜を形成
することを特徴とする半導体装置の製造方法。
1. Depositing a high melting point metal film on silicon, mixing the interface between the high melting point metal film and the silicon by implanting ions from above the high melting point metal film, and then heating in a non-oxidizing atmosphere. After the high melting point metal and the silicon are reacted to form a high melting point metal silicide film, the unreacted high melting point metal is removed, and then thermal oxidation is performed in an oxidizing atmosphere to oxidize the surface of the high melting point metal silicide. A method for manufacturing a semiconductor device, characterized by forming a film.
JP1736282A 1982-02-05 1982-02-05 Manufacture of semiconductor device Granted JPS58134427A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1736282A JPS58134427A (en) 1982-02-05 1982-02-05 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1736282A JPS58134427A (en) 1982-02-05 1982-02-05 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS58134427A JPS58134427A (en) 1983-08-10
JPH0154853B2 true JPH0154853B2 (en) 1989-11-21

Family

ID=11941917

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1736282A Granted JPS58134427A (en) 1982-02-05 1982-02-05 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS58134427A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4558507A (en) * 1982-11-12 1985-12-17 Nec Corporation Method of manufacturing semiconductor device
JPS61274325A (en) * 1985-05-29 1986-12-04 Mitsubishi Electric Corp Manufacture of semiconductor device
JPS6242524A (en) * 1985-08-20 1987-02-24 Fujitsu Ltd Manufacture of semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158454A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56158454A (en) * 1980-05-12 1981-12-07 Mitsubishi Electric Corp Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS58134427A (en) 1983-08-10

Similar Documents

Publication Publication Date Title
JP3132750B2 (en) Multilayer structure, semiconductor structure, capacitor of semiconductor device, method of preventing oxidation of silicon structure, and method of preventing diffusion of dopant
KR100530401B1 (en) Semiconductor device having a low-resistance gate electrode
JPH0523055B2 (en)
JP2001274380A (en) Semiconductor device and manufacturing method thereof
EP0051500B1 (en) Semiconductor devices
JP3313432B2 (en) Semiconductor device and manufacturing method thereof
KR0161380B1 (en) Transistor of semiconductor device and their manufacturing method
JP2000022105A (en) Manufacture of semiconductor device
JPH09312270A (en) Semiconductor device and manufacture thereof
JP3119190B2 (en) Method for manufacturing semiconductor device
JPH0154853B2 (en)
JPH10209291A (en) Manufacture of mos type semiconductor device
JPS6044823B2 (en) Manufacturing method of semiconductor device
JPS6165470A (en) Semiconductor ic device
JPH0529255A (en) Semiconductor device and manufacture thereof
JP2900897B2 (en) Method for manufacturing semiconductor device
JP2563317B2 (en) Method for manufacturing semiconductor device
JP3416205B2 (en) Semiconductor device and manufacturing method thereof
JPH1131791A (en) Electrode structure with bi laminar ferroelectric thin film, manufacture thereof, and ferroelectric thin film memory device
JP2827881B2 (en) Method for manufacturing semiconductor device
JPS59208772A (en) Manufacture of semiconductor device
JPH01103873A (en) Manufacture of semiconductor device
JPS5951128B2 (en) semiconductor equipment
JPH0434820B2 (en)
JP3791500B2 (en) Manufacturing method of semiconductor devices