JPH0235774A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPH0235774A
JPH0235774A JP18592988A JP18592988A JPH0235774A JP H0235774 A JPH0235774 A JP H0235774A JP 18592988 A JP18592988 A JP 18592988A JP 18592988 A JP18592988 A JP 18592988A JP H0235774 A JPH0235774 A JP H0235774A
Authority
JP
Japan
Prior art keywords
film
gate electrode
conductor film
stress
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP18592988A
Other languages
Japanese (ja)
Inventor
Shozo Okada
岡田 昌三
Kazuhiko Tsuji
和彦 辻
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP18592988A priority Critical patent/JPH0235774A/en
Publication of JPH0235774A publication Critical patent/JPH0235774A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To relieve stress in a gate electrode or interconnection by providing a multilayer structure consisting of films of high-melting metals or silicides thereof and a film of reaction barrier conductor such that each film has a thickness smaller than a specific value. CONSTITUTION:An oxide film 2 is formed on a P-type silicon substrate 1 and a thin oxide film 3 is formed in an active region. After a polycrystalline silicon film 4 is formed all over the surface by the CVD, a dopant such as phosphorus or the like is diffused to convert the polycrystalline silicon film 4 into a low resistor. Subsequently, a TiNx film 5 is formed all over the surface and a TiSix film 6, a TiNx film 7 and a TiSix film 8 are formed sequentially in that order such that each film has a thickness of 100nm or less. These layers 5, 6, 7 and 8 are etched sequentially to provide a gate electrode pattern and an interconnection pattern. Then, dopant ions are implanted into all the surface so that an implanted layer 14 is formed in the region not covered with the gate electrode. An interlayer insulating film 9 is then formed and heat treated so that source and drain layers 10 are formed. Contact holes 11 are provided and electrode patterns 12 are formed. In this manner, effect of stress to the elements can be relieved and it is made possible to provide the gate electrode and the interconnection stably and easily.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、抵抗値が低くかつ信頼性の高いゲート電極ま
たは配線を有する半導体装直に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a semiconductor device having a gate electrode or wiring having a low resistance value and high reliability.

従来の技術 半導体集積回路の高速化、高集積化に伴って、配線の高
密度化、多層化、低抵抗化が必要不可欠となっている。
BACKGROUND OF THE INVENTION As semiconductor integrated circuits become faster and more highly integrated, higher density wiring, multilayer wiring, and lower resistance are essential.

この為、配線材料として、抵抗値の高いポリシリコンや
、平坦化の為の高温熱処理に弱いアルミニウムの代わり
に、高融点金属またはそれらのシリサイドを使う方法が
提案されている。現在、配線材料を低抵抗の高融点金属
または高融点金属シリサイドに置き換えるか、従来のポ
リシリコン電極上に低抵抗の高融点金属または高融点金
属シリサイドを積層したポリサイド構造にすることによ
り、高密度低抵抗化の検討が行われている。
For this reason, methods have been proposed in which high-melting point metals or their silicides are used as wiring materials instead of polysilicon, which has a high resistance value, or aluminum, which is susceptible to high-temperature heat treatment for planarization. Currently, it is possible to achieve high density by replacing the wiring material with a low-resistance refractory metal or refractory metal silicide, or by creating a polycide structure in which a low-resistance refractory metal or refractory metal silicide is laminated on a conventional polysilicon electrode. Studies are being conducted to lower the resistance.

発明が解決しようとする課題 しかし、前記構造をたとえばゲート電極に用いた時、高
融点金属または高融点金属シリサイドの引っ張り応力が
大きい為、ゲート絶縁膜に大きな応力が加わり、トラン
ジスタ特性に影響のあることが判明した。(1987年
、秋季、第48回応用物理学会学術講演会予稿集第2巻
p、572゜横山他〉この悪影響を避ける一方法として
、高融点金属または高融点金属シリサイドの応力を小さ
(するために、高融点金属またはそのシリサイドの膜厚
を薄くする方法が考えられる。第2図のチタンシリサイ
ド膜厚が1100n以下の領域のように、薄膜では−・
般に膜のそり量が膜厚に依存しなくなる領域がある。そ
して、これは、形成当初の膜中には下地との整合性が不
連続領域が存在し、この領域のみの場合、熱処理をして
も膜中の粒形成長が抑制されるためと考えられている。
Problems to be Solved by the Invention However, when the above structure is used, for example, in a gate electrode, the tensile stress of the high melting point metal or high melting point metal silicide is large, so a large stress is applied to the gate insulating film, which may affect transistor characteristics. It has been found. (1987, Autumn, Proceedings of the 48th Annual Conference of the Japan Society of Applied Physics, Vol. 2, p. 572゜Yokoyama et al.) One way to avoid this negative effect is to reduce the stress of the refractory metal or refractory metal silicide. One possible method is to reduce the thickness of the high melting point metal or its silicide.As in the region where the titanium silicide film thickness is 1100 nm or less in Fig. 2, in a thin film -.
Generally, there is a region where the amount of warpage of the film does not depend on the film thickness. This is thought to be because there is a discontinuous region in the film when it is initially formed, and if only this region is present, grain growth in the film is suppressed even after heat treatment. ing.

しかし、この方法では膜厚が薄いため配線の抵抗を充分
に低くすることが不可能となる。また、応力の方法が逆
方向の二種類の導電体膜を組み合せて、膜全体の応力を
低減する方法も考えられる。
However, in this method, since the film thickness is thin, it is impossible to sufficiently reduce the resistance of the wiring. Another possible method is to combine two types of conductor films with stress applied in opposite directions to reduce the stress of the entire film.

しかし、この方法では膜間の応力差が大きい為、膜間の
剥離や局所的応力の問題が残る。それゆえ、本発明の目
的は、前述した欠点を解消し、高融点金属またはそのシ
リサイドを用いたゲート電極または配線の応力を緩和す
ると共に、抵抗の増大を防止することである。
However, in this method, since the stress difference between the films is large, problems such as peeling between the films and local stress remain. SUMMARY OF THE INVENTION Therefore, an object of the present invention is to eliminate the above-mentioned drawbacks, alleviate stress in gate electrodes or interconnections using high-melting point metals or silicides thereof, and prevent increases in resistance.

課題を解決するための手段 このような目的を達成するために、本発明においては、
高融点金属またはそのシリサイドと、熱処理による膜間
の反応を防止するだめの反応〕くリア導電体膜を、各々
の膜のそり量が膜厚に依存しなくなる膜厚以下に薄(し
て、交互に繰り返して多層に形成した構造にすることで
ある。
Means for Solving the Problems In order to achieve such objects, the present invention includes the following:
In order to prevent the reaction between the high-melting point metal or its silicide and the film due to heat treatment], the rear conductor film is thinned to a thickness below which the amount of warpage of each film does not depend on the film thickness. This is to create a multi-layered structure in which layers are alternately repeated.

作   用 本発明の前述の構造をとることによって、高融点金属ま
たはそのシリサイドと、反応バリア導電体膜の、それぞ
れの膜厚を膜のそり量が膜厚に依存しなくなる膜厚まで
薄くすることができる為、それぞれの膜の応力を低減で
きる。また低抵抗化の為に、前記高融点金属またはその
シリサイドと、前記反応バリア導電体膜を繰り返し多層
に積層しても、前記反応シバリア導電体金属によって膜
間の相互作用が防止される為、ゲート電極および配線と
しての応力も低抵抗を維持したまま低減できる。その結
果、ゲート絶縁膜に加わる応力も低減され、半導体装置
の高性能化および高信頼性化が容易に可能となる。
Effect: By adopting the above-described structure of the present invention, the respective film thicknesses of the high-melting point metal or its silicide and the reaction barrier conductor film can be reduced to a film thickness where the amount of warpage of the film does not depend on the film thickness. This allows the stress of each film to be reduced. Furthermore, even if the high melting point metal or its silicide and the reactive barrier conductor film are repeatedly laminated in multiple layers in order to lower the resistance, the reactive barrier conductor metal prevents interaction between the films. Stress in the gate electrode and wiring can also be reduced while maintaining low resistance. As a result, the stress applied to the gate insulating film is also reduced, making it easier to improve the performance and reliability of the semiconductor device.

実施例 以下、本発明によるチタンシリサイド (TiSi)−窒化チタン(TiN)−チタンシリサイ
ド(TiSi)−窒化クチン (TiS)−多結晶シリコンの多層ゲートNチャンネル
MO3!1回路の構造を、その製造工程順に図面を参照
しながら説明する。本実施例では反応バリア導電体膜と
して窒化チタン(TiN)、低抵抗導電体膜としてチタ
ンシリサイド(TiSi  )を用い、各々の膜を交互
に二回ずつ繰り返して多結晶シリコン上に形成した構造
を示している。
EXAMPLE The structure of a multilayer gate N-channel MO3!1 circuit of titanium silicide (TiSi)-titanium nitride (TiN)-titanium silicide (TiSi)-cutin nitride (TiS)-polycrystalline silicon according to the present invention will be described below, and its manufacturing process will be described. This will be explained in order with reference to the drawings. In this example, titanium nitride (TiN) is used as the reaction barrier conductor film, titanium silicide (TiSi) is used as the low resistance conductor film, and each film is alternately repeated twice to form a structure on polycrystalline silicon. It shows.

まず第1図(a)のように、p型シリコン基板1の一表
面上に周知の選択酸化法でフィールドシリコン酸化膜2
を形成し、更にアクティブ領域に薄いゲートシリコン酸
化膜3を形成する。
First, as shown in FIG. 1(a), a field silicon oxide film 2 is formed on one surface of a p-type silicon substrate 1 by a well-known selective oxidation method.
A thin gate silicon oxide film 3 is further formed in the active region.

次いで、全面に多結晶シリコン膜4を科学的気相成長法
(CVD)で形成し、しかる後リン(P)等の不純物を
拡散してその多結晶シリコン膜4を低抵抗体にする。こ
の場合、ドープト多結晶シリコン膜という熱処理を加え
ることによって低抵抗体になる膜をCVD法によって成
長させれば、上記不純物拡散を省略してもよい。
Next, a polycrystalline silicon film 4 is formed on the entire surface by chemical vapor deposition (CVD), and then impurities such as phosphorus (P) are diffused to make the polycrystalline silicon film 4 a low resistance material. In this case, the impurity diffusion may be omitted if a doped polycrystalline silicon film, which becomes a low resistance film by heat treatment, is grown by the CVD method.

次いで、例えばスパッタリング法により、全面に窒化チ
タン(TiN)膜5を形成し、さらにその後、チタンシ
リサイド(TiSi)膜6゜窒化チタン(TiN )膜
7.チタンシリサイド(T i S ix)膜8を連続
して形成する。この場合、各々膜の応力を少なくする為
、各々膜厚を1100n以下にする。
Next, a titanium nitride (TiN) film 5 is formed on the entire surface by, for example, sputtering, and then a titanium silicide (TiSi) film 6 and a titanium nitride (TiN) film 7 are formed. A titanium silicide (T i S ix) film 8 is continuously formed. In this case, in order to reduce stress in each film, the thickness of each film is set to 1100 nm or less.

次いで第1図(b)のように、周知のホトリソ技術を用
いて形成したレジストパターンをエツチングマスクとし
て上記のT i S i −T i N−TiSi −
TiN−多結晶シリコンを順次エツチングし、ゲート電
極パターンおよび必要に応じて配線パターンを形成する
。この結果、所定のパターンのTiS i  8,8a
−TiN  7,7a−TiSi6.6a−TiN  
5,5a−多結晶シノコン4.43からなる電極及び配
線を形成できる。
Next, as shown in FIG. 1(b), the above TiSi-TiN-TiSi-
TiN-polycrystalline silicon is sequentially etched to form a gate electrode pattern and, if necessary, a wiring pattern. As a result, a predetermined pattern of TiS i 8,8a
-TiN 7,7a-TiSi6.6a-TiN
Electrodes and wiring made of 5,5a-polycrystalline Sinocon 4.43 can be formed.

次に、全面にヒ素(As)、リン(P)などの不純物を
イオン打込みし、第1図(C)のように、シリコン基板
表面のアクティブ領域で、かつゲート電極におおわれて
いない部分にイオン打込層8を形成する。
Next, impurities such as arsenic (As) and phosphorus (P) are ion-implanted into the entire surface, and as shown in FIG. A implanted layer 8 is formed.

次いで第1図(C)のように、全面に層間絶縁膜9を形
成する。続いて熱処理を行い、前記のイオン打込みされ
た不純物を活性化し、ソース層およびドレイン層10を
形成する。
Next, as shown in FIG. 1(C), an interlayer insulating film 9 is formed on the entire surface. Subsequently, heat treatment is performed to activate the ion-implanted impurities and form the source layer and drain layer 10.

次いで第1図(d)のように、周知のホトリソ技術を用
いて形成したレジストパターンをエツチングマスクとし
て、ソースおよびドレイン上にコンタクトホール11を
設ける。そして次に、全面に例えばスパッタ法によりア
ルミニウム膜を形成し、周知のホトリソ技術を用いて形
成したレジストパターンをエツチングマスクとして、ア
ルミニウム電極パターン12を形成すると、所望のMO
S集積回路が形成できる。
Next, as shown in FIG. 1(d), contact holes 11 are formed on the source and drain using a resist pattern formed using the well-known photolithography technique as an etching mask. Next, an aluminum film is formed on the entire surface by sputtering, for example, and an aluminum electrode pattern 12 is formed using a resist pattern formed using a well-known photolithography technique as an etching mask.
S integrated circuits can be formed.

なお、本実施例では、反応バリア導電体膜および低抵抗
導電体1漠を、それぞれ交互に連続して二回ずつ偶数回
形成しているが、これは二回以上でも良く、また、反応
バリア導電体膜を偶数回、低抵抗導電体膜を反応バリア
導電体膜の形成回数より一回少ない奇数回数形成しても
同様の効果があるということは言うまでもないことであ
る。この場合、反応バリア導電体膜と低抵抗導電体膜の
形成順序が入れかわっても同じである。
In this example, the reaction barrier conductor film and the low-resistance conductor film are formed alternately and consecutively two times each in an even number of times, but this may be done two or more times. It goes without saying that the same effect can be obtained even if the conductor film is formed an even number of times and the low resistance conductor film is formed an odd number of times, one less than the number of times the reaction barrier conductor film is formed. In this case, the process remains the same even if the order of forming the reaction barrier conductor film and the low resistance conductor film is reversed.

さらに、反応バリア導電体膜、低抵抗導電体膜の形成回
数が多いほど、より低抵抗化が可能になると言うことも
言うまでもないことである。
Furthermore, it goes without saying that the more times the reaction barrier conductor film and the low resistance conductor film are formed, the lower the resistance becomes possible.

また、低抵抗導電体膜に用いる材料は、膜厚を膜のそり
量が膜厚に依存しなくなる膜厚以下に薄くすれば、−回
目に形成する材料と二回目以降に形成する材料が違って
いても同様の効果があることは言うまでもないことであ
り、同じく反応バリア導電体嘆についても、低抵抗導電
体膜と同じことが言える。
In addition, if the material used for the low-resistance conductor film is made thinner than the film thickness at which the amount of warpage of the film does not depend on the film thickness, the material formed the -th time and the material formed the second time onwards will be different. Needless to say, the same effect can be obtained even if the reaction barrier conductor film is used as a low-resistance conductor film.

以上述べてきた様な構造でMOS集積回路を形成するこ
とにより、ゲート電極4〜8や、配線4a〜8aの応力
が緩和される結果、ゲートシリコン酸化膜3に対する応
力が緩和され、また膜の剥離も防げる。
By forming a MOS integrated circuit with the structure described above, the stress on the gate electrodes 4 to 8 and the interconnections 4a to 8a is alleviated, and as a result, the stress on the gate silicon oxide film 3 is alleviated, and the stress on the gate silicon oxide film 3 is also alleviated. It also prevents peeling.

発明の効果 本発明によれば、高融点金属またはそのシリサイドと、
反応バリア導電体膜の、それぞれの膜厚を膜のそり量が
膜厚に依存しなくなる膜厚まで薄(することができる為
、それぞれの膜の応力を低減できる。また抵抗値を下げ
る為には、前記高融点金属またはそのシリサイドと、前
記反応バリア導電体膜を繰り返し多層に形成する必要が
あるのが、このような積層構造にしても、前記反応バリ
ア導電体金属によって膜間の相互作用が防止される為、
ゲート電極および配線としての応力も抵抗値を低(した
まま低減できる。また、前述のように、WI層構造のそ
れぞれの膜の応力が小さい為、各膜間の応力差ら小さく
なり、膜間の剥離や局所的応力集中の問題もなくなる。
Effects of the Invention According to the present invention, a high melting point metal or its silicide;
The thickness of each reaction barrier conductor film can be reduced to a thickness where the amount of warpage of the film does not depend on the film thickness, so the stress of each film can be reduced.Also, in order to lower the resistance value. The reason why it is necessary to repeatedly form multiple layers of the high melting point metal or its silicide and the reaction barrier conductor film is that even with such a laminated structure, the reaction barrier conductor metal prevents the interaction between the films. is prevented,
The stress of gate electrodes and wiring can also be reduced while keeping the resistance low.Also, as mentioned above, since the stress of each film in the WI layer structure is small, the stress difference between each film is small, and the The problems of peeling and local stress concentration are also eliminated.

その結果、素子への応力の影響が緩和され、ゲート電極
および配線の形成が安定かつ容易に可能となる。
As a result, the influence of stress on the element is alleviated, and gate electrodes and wiring can be formed stably and easily.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は、本発明の一実施例による高融
点金属シリサイドゲートMOS!積回路の製造方法を工
程順に示した製造工程断面図、第2図はチタンシリ4ノ
ーイド膜厚と、膜のそり量を示した特性図である。 4・・・・・・ゲート電極用多結晶シリコン膜、5,7
・・・・・・ゲー 1・電極用TiN 膜、6.8・・
・・・・ゲート電極用TiSi、膜、4a・・・・・・
配線用多結晶シリコン膜、5a、7a・・・・・・配線
用TiN膜、6a。 8a・・・・・・配線用TiSix膜、9・・・・・・
層間絶縁膜、10・・・・・・ソース、ドレイン層、1
2・・・・・・アルミニウム電極。 代理人の氏名 弁理士 粟野重孝 はか1名第 図 ゝl シソコン−zも石? 第 図
FIGS. 1(a) to 1(d) show a high melting point metal silicide gate MOS according to an embodiment of the present invention! FIG. 2 is a cross-sectional view of the manufacturing process showing the manufacturing method of the integrated circuit in the order of steps, and a characteristic diagram showing the thickness of the titanium-silicon 4-noid film and the amount of warpage of the film. 4... Polycrystalline silicon film for gate electrode, 5, 7
・・・・・・Game 1・TiN film for electrode, 6.8・・
...TiSi, film, 4a for gate electrode...
Polycrystalline silicon film for wiring, 5a, 7a...TiN film for wiring, 6a. 8a... TiSix film for wiring, 9...
Interlayer insulating film, 10... Source, drain layer, 1
2...Aluminum electrode. Name of agent: Patent attorney Shigetaka Awano (1 person) Is Sisokon-z also a stone? Diagram

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上に形成されたゲート電極および配線
として、低抵抗導電体膜と反応バリア導電体膜を交互に
複数回連続して積層した構造を有し、前記低抵抗導電体
膜および前記反応バリア導電体膜の膜厚が、各々下地と
の整合性が不連続な領域の膜厚以下に設定されているこ
とを特徴とする半導体装置。
(1) The gate electrode and wiring formed on the semiconductor substrate have a structure in which a low-resistance conductor film and a reaction barrier conductor film are alternately and consecutively laminated multiple times, and the low-resistance conductor film and the 1. A semiconductor device, wherein the thickness of the reaction barrier conductor film is set to be less than or equal to the thickness of each region where the consistency with the underlying layer is discontinuous.
(2)低抵抗導電体膜および前記反応バリア導電体膜の
、各々の下地との整合性が不連続な領域の膜厚を100
nm以下としたことを特徴とする請求の範囲第1項に記
載の半導体装置。
(2) The film thickness of the low-resistance conductor film and the reaction barrier conductor film in regions where the consistency with the base is discontinuous is 100%.
2. The semiconductor device according to claim 1, wherein the semiconductor device has a particle size of 1 nm or less.
(3)低抵抗導電体膜および前記反応バリア導電体膜を
上層とし、かつ、多結晶シリコンを下層とする多結晶構
造のゲート電極および配線を有する特許請求の範囲第1
項または第2項に記載の半導体装置。
(3) Claim 1 having a polycrystalline gate electrode and wiring having a low resistance conductor film and the reaction barrier conductor film as upper layers and polycrystalline silicon as a lower layer.
3. The semiconductor device according to item 1 or 2.
JP18592988A 1988-07-26 1988-07-26 Semiconductor device Pending JPH0235774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18592988A JPH0235774A (en) 1988-07-26 1988-07-26 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18592988A JPH0235774A (en) 1988-07-26 1988-07-26 Semiconductor device

Publications (1)

Publication Number Publication Date
JPH0235774A true JPH0235774A (en) 1990-02-06

Family

ID=16179347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18592988A Pending JPH0235774A (en) 1988-07-26 1988-07-26 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH0235774A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508772A1 (en) * 1995-03-01 1996-09-05 Schering Ag Methods and connections for the detection of analytes by means of remanence measurement and their use
US6404058B1 (en) * 1999-02-05 2002-06-11 Nec Corporation Semiconductor device having interconnection implemented by refractory metal nitride layer and refractory metal silicide layer and process of fabrication thereof
KR100480907B1 (en) * 1998-12-30 2005-07-07 주식회사 하이닉스반도체 Gate electrode formation method of semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19508772A1 (en) * 1995-03-01 1996-09-05 Schering Ag Methods and connections for the detection of analytes by means of remanence measurement and their use
DE19508772C2 (en) * 1995-03-01 1998-01-29 Schering Ag Methods and connections for the detection of analytes by means of remanence measurement and their use
KR100480907B1 (en) * 1998-12-30 2005-07-07 주식회사 하이닉스반도체 Gate electrode formation method of semiconductor device
US6404058B1 (en) * 1999-02-05 2002-06-11 Nec Corporation Semiconductor device having interconnection implemented by refractory metal nitride layer and refractory metal silicide layer and process of fabrication thereof

Similar Documents

Publication Publication Date Title
US5027185A (en) Polycide gate FET with salicide
JPH04226026A (en) Manufacture of semiconductor device
JPH08107087A (en) Semiconductor device and manufacture thereof
KR0161380B1 (en) Transistor of semiconductor device and their manufacturing method
JPS61144872A (en) Semiconductor device
JPH0235774A (en) Semiconductor device
JP2002208695A (en) Semiconductor device and manufacturing method thereof
JPH07321069A (en) Manufacture of semiconductor integrated circuit device
JP2002217311A (en) Semiconductor device and manufacturing method thereof
JP2662029B2 (en) Method for manufacturing MOS transistor
JPS59197162A (en) Semiconductor device
JPH0227716A (en) Manufacture of semiconductor device
JP2602848B2 (en) Method for manufacturing semiconductor device
JP3263941B2 (en) Method for manufacturing semiconductor device
JP2817518B2 (en) Semiconductor device and manufacturing method thereof
JPS59208773A (en) Manufacture of semiconductor device
JP3095452B2 (en) Method for manufacturing semiconductor device
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS62203363A (en) Manufacture of semiconductor device
JP3067433B2 (en) Method for manufacturing semiconductor device
JP3104609B2 (en) Semiconductor device and manufacturing method thereof
JPH0235773A (en) Semiconductor device
JPH02203565A (en) Semiconductor device and its manufacture
JPH02194653A (en) Mis transistor
JPH0341762A (en) Semiconductor device