JPS61144872A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61144872A
JPS61144872A JP26771284A JP26771284A JPS61144872A JP S61144872 A JPS61144872 A JP S61144872A JP 26771284 A JP26771284 A JP 26771284A JP 26771284 A JP26771284 A JP 26771284A JP S61144872 A JPS61144872 A JP S61144872A
Authority
JP
Japan
Prior art keywords
film
contact hole
electrode
resistance
polycrystalline silicon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP26771284A
Other languages
Japanese (ja)
Other versions
JPH0257707B2 (en
Inventor
Katsuya Okumura
勝弥 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP26771284A priority Critical patent/JPS61144872A/en
Publication of JPS61144872A publication Critical patent/JPS61144872A/en
Publication of JPH0257707B2 publication Critical patent/JPH0257707B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To dissolve increase of contact resistance at the time of step coverage at a side wall section of contact hole and taking out an electrode by polycrystalline Si and to contrive to improve high reliability and high integration by a method wherein an Si film is buried to the bottom section of a contact hole formed to the insulated film on a substrate through metallic nitride film with low resistance and high melting point. CONSTITUTION:A field oxide film, a thermallyu oxidized film and a polycrystalline Si film are formed on a p type Si substrate 11 and then a gate electrode 12 is formed patterning after P is duffused to the Si film. A gate oxide film 13 is formed etching the thermally oxidized film by means that the electrode 12 regards as a maks, then an n<+> type source and drain region 14, 15 is formed implanting As ion by means of the field oxide film and the electrode 12 regard as the masks. An SiO2 film 16 is deposited on all surface, making aperture to contact hole 171-173, depositing a TiN film 18, and a polycrystalline Si film 19 on all surface, making the film 19 diffuse P, forming TiN film 182 and an Al film 20 remaining the Si film 19 to the contact hole 171-173, and forming the wiring 21-23 by patterning of the film 181, 182, then MOST is obtained.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置に関し、特にコンタクトホールの
構造を改良した半導体装置に係わる。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to a semiconductor device with an improved contact hole structure.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来よりコンタクトホールから電極を取出す場合には、
AI2膜が用いられている。Affi電極は半導体基板
に形成されたn型、n型いずれの拡散層に対しても良好
なオーミックコンタクトが取れ、かつ接触抵抗も低いた
め、半導体装置の分野において長年に亙って汎用されて
いる。しかしながら、半導体装置が微細化、高集積化さ
れるに伴い、コンタクトホールの寸法が3μm、接合深
さが1μm以下になると、アロイスパイクを生じるため
、A2電極に変わって八2・3i合金からなる電極が使
用されている。A2・Si合金としては、高! (42
0〜500℃)の熱処理に耐えるように通常Si1度が
1〜2%のものが使用される。しかしながら、半導体装
置の高集積化に伴ってコンタクトホールの寸法が微細化
されると、第4図に示すように導電II(例えば半導体
基板の拡散層)との接触抵抗が急激に増加する。これは
、へ2中のSiの室温での固溶度が0.1%と低いため
に、A2・Si合金電極中の過分のStが偏析し、かつ
その偏析がコンタクトホール底部で発生し易く、更に前
記偏析した3iの寸法が0.5〜1μmと大きいことに
起因する。このため、コンタクトホールの寸法が2μm
以下、特に1.5μm以下になると前述した如く接触抵
抗が増大する。また、八β・5i合金躾は通常、スパッ
タリング技術により形成される。しかしながら、第5図
に示すように半導体基板1上の絶縁[12に開孔された
コンタクトホール3の寸法が微細化されると、AN・5
i合金膜4をスパッタリング技術により堆積した場合、
コンタクトホール3の内部に充分な厚さの合金膜が形成
されず、長期間の信頼性上、耐エレクトロマイグレーシ
ョン、という観点から問題である。
Conventionally, when taking out the electrode from the contact hole,
An AI2 membrane is used. Affi electrodes have been widely used in the field of semiconductor devices for many years because they can make good ohmic contact with both n-type and n-type diffusion layers formed on semiconductor substrates and have low contact resistance. . However, as semiconductor devices become smaller and more highly integrated, alloy spikes occur when the contact hole size becomes 3 μm and the junction depth becomes less than 1 μm, so A2 electrodes are replaced with 82.3i alloys. electrodes are used. High as an A2/Si alloy! (42
In order to withstand heat treatment at temperatures of 0 to 500° C., a material containing 1 to 2% Si is usually used. However, as the dimensions of the contact hole become finer as semiconductor devices become more highly integrated, the contact resistance with the conductor II (for example, the diffusion layer of the semiconductor substrate) increases rapidly, as shown in FIG. This is because the solid solubility of Si in He2 at room temperature is as low as 0.1%, so that an excessive amount of St in the A2-Si alloy electrode segregates, and this segregation tends to occur at the bottom of the contact hole. This is further caused by the fact that the size of the segregated 3i is as large as 0.5 to 1 μm. Therefore, the size of the contact hole is 2 μm.
Hereinafter, especially when the thickness is 1.5 μm or less, the contact resistance increases as described above. Further, the 8β.5i alloy is usually formed by sputtering technology. However, as shown in FIG.
When the i-alloy film 4 is deposited by sputtering technology,
An alloy film of sufficient thickness is not formed inside the contact hole 3, which is a problem from the viewpoint of long-term reliability and electromigration resistance.

一方、電極として多結晶シリコンも多く使用されている
。しかしながら、かかる多結晶シリコン電極をコンタク
トホールを通して半導体基板表面の拡散層や多結晶シリ
コン配線と接続する場合、コンタクトホールの寸法が2
μm以下と微細化されると、それらの間の接触抵抗が急
激に増大する。
On the other hand, polycrystalline silicon is also often used as an electrode. However, when connecting such a polycrystalline silicon electrode to a diffusion layer or polycrystalline silicon wiring on the surface of a semiconductor substrate through a contact hole, the size of the contact hole is 2.
When miniaturized to micrometers or less, the contact resistance between them increases rapidly.

これは、コンタクトホールから露出した拡散層や多結晶
シリコン配線表面に極薄いSiO2膜が形成され、これ
が高抵抗材料として関与することに起因する。前記5i
Ozlには、クラックやピンホールが存在するために、
これらの欠陥を通して電気的な導通が取られていたが、
コンタクトホールの寸法が微細化されると、前記欠陥の
ないコンタクトホールが存在するようになり、前述した
ような問題が発生する。
This is due to the fact that an extremely thin SiO2 film is formed on the surface of the diffusion layer and polycrystalline silicon wiring exposed from the contact hole, and serves as a high-resistance material. Said 5i
Because Ozl has cracks and pinholes,
Although electrical continuity was established through these defects,
As the dimensions of contact holes become smaller, contact holes without the above-mentioned defects will exist, causing the above-mentioned problems.

〔発明の目的〕[Purpose of the invention]

本発明は、コンタクトホールの寸法の微細化に伴うコン
タクトホール側壁部でのステップ力バレイジ及び多結晶
シリコンによる電極取出し時のコンタクト抵抗の増大を
解消した高信頼性、8集積度の半導体装置を提供しよう
とするものである。
The present invention provides a highly reliable, 8-integration semiconductor device that eliminates the step force balayage on the side wall of the contact hole due to miniaturization of the contact hole size and the increase in contact resistance when taking out the electrode due to polycrystalline silicon. This is what I am trying to do.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板と、−該基板上に設けられたコン
タクホールを有する絶縁膜と、該コンタクトホール底部
に少なくとも低抵抗の高融点金属窒化膜を介在して埋込
まれたシリコン膜とを具備したことを特徴とするもので
ある。かかる本発明によれば、既述の如くコンタクトホ
ールの寸法の微細化に伴うコンタクトホール側壁部での
ステップ力バレイジ及び多結晶シリコンによる電極取出
し時のコンタクト抵抗の増大を解消した高信頼性、高集
積度の半導体装置を得ることができるものである。
The present invention provides a semiconductor substrate, an insulating film provided on the substrate and having a contact hole, and a silicon film embedded in the bottom of the contact hole with at least a low-resistance high-melting point metal nitride film interposed therebetween. It is characterized by the following: According to the present invention, as described above, step force rayage on the side wall of the contact hole due to miniaturization of the contact hole size and increase in contact resistance when taking out the electrode due to polycrystalline silicon are eliminated, and high reliability and high performance can be achieved. It is possible to obtain a semiconductor device with a high degree of integration.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をnチャンネルMO8)−ランジスタに適
用した例について第1図(a)〜(f>に示す製造工程
を併記して説明する。
Hereinafter, an example in which the present invention is applied to an n-channel MO8) transistor will be described with reference to the manufacturing steps shown in FIGS. 1(a) to 1(f).

まず、p型シリコン基板11を選択酸化して図示しない
フィールド酸化膜を形成した後、熱酸化処理を施して該
フィールド酸化膜で分離された島状の基板11!1ll
E表面に厚さ180人の熱酸化層を成長させた。つづい
て、全面に例えば厚さ3000人の多結晶シリコン膜を
堆積し、該多結晶シリコン膜に例えばリン拡散を行なっ
て低抵抗化(例えばシート抵抗30Ω/口)させた後、
フォトエツチング技術によりパターニングしてゲート電
極12を形成した。ひきつづき、該ゲート電極12をマ
スクとして前記熱酸化層を選択的にエツチングしてゲー
ト酸化膜13を形成した後、図示しないフィールド酸化
膜及びゲート電極12をマスクとしてn型不純物、例え
ば砒素をイオン注入し、活性化して接合深さが0.15
μmの04″型ソース、ドレインam!14.15を形
成した(第1図(a)図示)。
First, a p-type silicon substrate 11 is selectively oxidized to form a field oxide film (not shown), and then a thermal oxidation treatment is performed to form island-shaped substrates 11!1ll separated by the field oxide film.
A thermal oxide layer with a thickness of 180 mm was grown on the E surface. Subsequently, a polycrystalline silicon film with a thickness of, for example, 3000 μm is deposited on the entire surface, and the polycrystalline silicon film is subjected to, for example, phosphorus diffusion to lower the resistance (for example, sheet resistance of 30Ω/hole).
A gate electrode 12 was formed by patterning using a photoetching technique. Subsequently, the thermal oxide layer is selectively etched using the gate electrode 12 as a mask to form a gate oxide film 13, and then an n-type impurity such as arsenic is ion-implanted using the field oxide film and the gate electrode 12 (not shown) as masks. The junction depth becomes 0.15 after activation.
A 04'' type source and drain am!14.15 μm were formed (as shown in FIG. 1(a)).

次イテ、全面ニcVD−8i 02 膜16ヲ堆1し、
表面の溶融化処理を施すことによりソース、ドレイン領
域14.15上の厚さを1.4μm1ゲ一トm極12上
の厚さを1.0μmとして平坦化させた後、該CVD−
8+ 02 WAl 6にフオトエツング技術により寸
法が1.2μmのコンタクトホール171〜173を開
孔した(同図(b)図示)。
Next, deposit cVD-8i 02 film 16 on the entire surface,
The CVD-
Contact holes 171 to 173 having dimensions of 1.2 μm were formed in 8+02 WAl 6 by photo etching technique (as shown in FIG. 8B).

次いで、全面に厚さ1000人の第1の窒化チタン(T
iN)II118xを堆積した。TiNIIIは直流マ
グネトロン型スパッタリング法によりTiターゲットか
らAr’/N2 (混合比1:2)の混合プラズマで化
成スパッタを行なった。なお、TiN膜の堆積直前に同
一真空槽内でスパッタエツチング法によりコンタクトホ
ール171〜173から露出するソース領域14等のク
リーニングを行なってもよい。つづいて、基板11を6
00〜650℃に加熱し、SiH4ガスの熱分解による
減圧CVD法によって全面に厚さ6500人の多結晶シ
リコンIl!19を堆積した。この際、減圧CVD法に
よる膜形成はステップ力バレイジが良好であるため、多
結晶シリコンはコンタクトホール171〜173内に充
分に埋込まれる。なお、減圧CVD法の代わりにプラズ
マCVD法、光CVD法、バイアススパッタ法等を採用
してもよい。
Next, a first titanium nitride (T
iN) II118x was deposited. TiNIII was formed by chemical sputtering using a mixed plasma of Ar'/N2 (mixing ratio 1:2) from a Ti target using a DC magnetron sputtering method. Note that the source region 14 and the like exposed from the contact holes 171 to 173 may be cleaned by sputter etching in the same vacuum chamber immediately before the TiN film is deposited. Next, the board 11 is
Polycrystalline silicon with a thickness of 6,500 mm is deposited on the entire surface by heating to 00 to 650°C and using a low-pressure CVD method using thermal decomposition of SiH4 gas. 19 were deposited. At this time, the polycrystalline silicon is sufficiently buried in the contact holes 171 to 173 because film formation by the low pressure CVD method has good step force coverage. Note that instead of the low pressure CVD method, a plasma CVD method, a photo CVD method, a bias sputtering method, etc. may be employed.

この後、900℃のPOCffi+の雰囲気中で多結晶
シリコン[119にリン拡散を行なってシート抵抗を2
0Ω/口まで低下させた (同図(C)図示)。この工
程において、イオン注入法でリン、砒素、ボロン等の不
純物を注入し、その後活性化して多結晶シリコン膜の低
抵抗化を図ってもよい。
After this, phosphorus was diffused into the polycrystalline silicon [119] in a POCffi+ atmosphere at 900°C to reduce the sheet resistance to 2.
It was lowered to 0Ω/mouth (as shown in the same figure (C)). In this step, impurities such as phosphorus, arsenic, and boron may be implanted by ion implantation and then activated to lower the resistance of the polycrystalline silicon film.

次いで、多結晶シリコン膜19をその膜厚程度全面エツ
チングしてコンタクトホール171〜173に多結晶シ
リコン19−を残存させた(同図(d)図示)。つづい
て、全面に上述したマグネトロン型スパッタリング法に
より厚さ1000人の第2のTiN膜182を堆積し、
更に全面に厚さ1μmのAλ膜20を蒸着した(同図(
e)図示)。ひきつづき、前記Affi!20及び第2
、第1のTiN膜182.181を順次フォトエツチン
グ技術によりパダーニングしてゲート、ソース、ドレイ
ンの取出し配線21〜23を形成してnチャンネルMO
Sトランジスタを製造した(同図Cf>図示)。
Next, the entire surface of the polycrystalline silicon film 19 was etched to the same thickness as the polycrystalline silicon film 19, leaving the polycrystalline silicon 19- in the contact holes 171 to 173 (as shown in FIG. 4D). Next, a second TiN film 182 with a thickness of 1000 nm is deposited on the entire surface by the magnetron sputtering method described above.
Furthermore, an Aλ film 20 with a thickness of 1 μm was deposited on the entire surface (see the same figure).
e) As shown). Continuing with the above Affi! 20 and 2nd
, the first TiN films 182 and 181 are sequentially padded using a photoetching technique to form gate, source, and drain interconnections 21 to 23, thereby forming an n-channel MO.
An S transistor was manufactured (Cf in the same figure>illustration).

しかして、本発明によれば多結晶シリコンからなるゲー
ト電極12、基板11表面に形成されたn+型のソース
、ドレイン領域14.15に対応するコンタクトホール
17!〜173内に多結晶シリコン1119”をその底
面に低抵抗で、耐酸化性の優れた第1のT i N1!
181を少なくとも配置した状態で残存、埋設すること
により、該残存多結晶シリコン11119”とソース領
1i!14等との間にSiO2膜が介在されることなく
、良好な低抵抗接続を図ることができる。その結果、コ
ンタクトホールの寸法を1μm角と微細化しても残存多
結晶シリコン1119−とn4型ソース領域14等との
接触抵抗を100〜200Ωに抑えることができる。し
かも、コンタクトホール171〜173の底面に第1の
TiN膜18里を設けることによって、前述の如くコン
タクトホール171〜173内に低抵抗(〜10“3Ω
・1)の多結晶シリコン11119′を埋込むことが可
能となるため、ARを使用した時のような微細なコンタ
クトホール内及び側壁でのステップ力バレイジの劣悪さ
に起因するMOSトランジスタの信頼性の低下を解消で
きる。
According to the present invention, the contact holes 17 correspond to the gate electrode 12 made of polycrystalline silicon and the n+ type source and drain regions 14 and 15 formed on the surface of the substrate 11! ~173, polycrystalline silicon 1119'' is placed on the bottom surface of the first T i N1 which has low resistance and excellent oxidation resistance!
By leaving and burying at least the polycrystalline silicon 11119'' in the arranged state, a good low-resistance connection can be achieved without interposing an SiO2 film between the remaining polycrystalline silicon 11119'' and the source region 1i!14, etc. As a result, even if the size of the contact hole is reduced to 1 μm square, the contact resistance between the remaining polycrystalline silicon 1119- and the n4 type source region 14 etc. can be suppressed to 100 to 200Ω.Moreover, the contact hole 171- By providing the first TiN film 18 on the bottom surface of the contact hole 173, a low resistance (~10"3Ω) is created in the contact holes 171 to 173 as described above.
・Since it is possible to embed polycrystalline silicon 11119' in 1), the reliability of MOS transistors, which is caused by poor step force coverage in minute contact holes and on the side walls when using AR, is improved. can eliminate the decline in

更に、コンタクトホール171〜173内に埋込んだ多
結晶シリコン膜19−の露出面にも第2のTiN111
182を設ければ、ソース領域14等を取出すためのA
2配線21〜23とコン2タクトホール171〜173
内の多結晶シリコン膜19′との3iとAIの反応を防
止でき、その結果Si偏析等の問題も回避できる。
Furthermore, a second TiN film 111 is also formed on the exposed surface of the polycrystalline silicon film 19- buried in the contact holes 171 to 173.
182, A for taking out the source region 14 etc.
2 wirings 21-23 and 2 contact holes 171-173
The reaction of 3i and AI with the polycrystalline silicon film 19' inside can be prevented, and as a result, problems such as Si segregation can also be avoided.

なお、上記実施例では第1のTiN膜をコンタクトホー
ルを含むCVD−8i 02 II全全面設けたが、こ
れに限定されない。例えば、第2図に示すようにCVD
−8i 02 膜を全面に被覆する前にゲート電極12
及びn“型ソース、ドレイン領域14.15の表面に第
1のTiN膜181を設けた構造してもよい。この場合
、ゲート電極12上の第1のTiN膜181とソース、
ドレイン領域14.15上の第1のTiN膜181とを
互いに分離して形成することが必要である。
In the above embodiment, the first TiN film was provided on the entire surface of the CVD-8i 02 II including the contact hole, but the present invention is not limited thereto. For example, as shown in Figure 2, CVD
-8i 02 Before covering the entire surface of the film, the gate electrode 12
In this case, the first TiN film 181 on the gate electrode 12 and the source,
It is necessary to form the first TiN film 181 on the drain regions 14 and 15 separately from each other.

上記実施例では、ゲート電橋及びソース、ドレイン領域
のコンタクトホールに埋込んだ多結晶シリコン膜にリン
等の不純物を拡散して低抵抗化したが、これに限定され
ない。例えば、第3図に示すようにソース、ドレイン領
域14.15のコンタクトホール171に埋込んだ多結
晶シリコン膜にはリン拡散を施さないようにして、該多
結晶シリコン膜を高抵抗体24として利用するようにし
てもよい。
In the above embodiment, impurities such as phosphorus are diffused into the polycrystalline silicon film buried in the contact holes of the gate bridge and the source and drain regions to lower the resistance, but the present invention is not limited thereto. For example, as shown in FIG. 3, the polycrystalline silicon film buried in the contact hole 171 of the source/drain region 14.15 is not subjected to phosphorus diffusion, and the polycrystalline silicon film is used as the high resistance element 24. You may also use it.

上記実施例では、高融点金属窒化膜としてTiN膜を使
用したが、これに限定されず、例えばTiN膜の代わり
に比抵抗が104Ω・α以下の2rN膜、TaN膜、H
fN膜等を用いてもよい。
In the above embodiment, a TiN film was used as the high melting point metal nitride film, but it is not limited thereto.
An fN film or the like may also be used.

上記実施例では、nチャンネルMOSトランジスタに適
用した例について説明したが、nチャンネルMOSトラ
ンジスタ、相補型MOSトランジスタ、バイポーラトラ
ンジスタ等にも同様に適用できる。また、第2層目の配
線として多結晶シリコン膜を採用し、この配線にAl1
又はAI2・Si合金の第3層配線を接続する多層配線
構造にも同様に適用できる。
In the above embodiment, an example in which the present invention is applied to an n-channel MOS transistor has been described, but the present invention can be similarly applied to an n-channel MOS transistor, a complementary MOS transistor, a bipolar transistor, etc. In addition, a polycrystalline silicon film is used as the second layer wiring, and this wiring is made of Al1
Alternatively, the present invention can be similarly applied to a multilayer wiring structure connecting third layer wiring of an AI2/Si alloy.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればコンタクトホールの
寸法の微細化に伴うコンタクトホール側壁部でのステッ
プ力バレイジ及び多結晶シリコンによる電極取出し時の
コンタクト抵抗の増大を解消した高信頼性、高集積度の
半導体装置を提供できるものである。
As described in detail above, the present invention eliminates the step force burrage on the side wall of the contact hole due to the miniaturization of the contact hole size and the increase in contact resistance when taking out the electrode due to polycrystalline silicon, thereby achieving high reliability and high performance. It is possible to provide a semiconductor device with a high degree of integration.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の実施例におけるnチャ
ンネルMOSトランジスタを得るための製造工程を示す
断面図、第2図及び第3図は夫々本発明の他の実施例を
示すnチャンネルMOSトランジスタの断面図、第4図
はコンタクトホールの寸法と接触抵抗との関係を示す特
性図、第5図は従来の半導体装置の問題点を説明するた
めの断面図である。 11・・・p型シリコン基板、12・・・多結晶シリコ
ンからなるゲート電極、14・・・n++ソース領域、
15・・・n+型トドレイン領域16・・・CVD−8
i021!、171〜173・・・コンタクトホール、
18i 、182・・・TiNI!I、19−・・・残
存多結晶シリコン膜、21〜23・・・A2配線、24
・・・高抵抗体。 出願人代理人 弁理士 鈴江武彦 第1図 第2図 第3図 第4図 コータ2ト、十づL→寸ユ大91m) 第5図
FIGS. 1(a) to (f) are cross-sectional views showing the manufacturing process for obtaining an n-channel MOS transistor in an embodiment of the present invention, and FIGS. 2 and 3 show other embodiments of the present invention, respectively. FIG. 4 is a sectional view of an n-channel MOS transistor, FIG. 4 is a characteristic diagram showing the relationship between contact hole dimensions and contact resistance, and FIG. 5 is a sectional view for explaining problems with conventional semiconductor devices. 11...p-type silicon substrate, 12...gate electrode made of polycrystalline silicon, 14...n++ source region,
15...n+ type drain region 16...CVD-8
i021! , 171-173... contact hole,
18i, 182...TiNI! I, 19-...Residual polycrystalline silicon film, 21-23...A2 wiring, 24
...High resistance body. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2 Figure 3 Figure 4 Coater 2, 10L → 91m) Figure 5

Claims (5)

【特許請求の範囲】[Claims] (1)半導体基板と、該基板上に設けられたコンタクホ
ールを有する絶縁膜と、前記コンタクホール内に該コン
タクトホール底部に少なくとも低抵抗の高融点金属窒化
膜を介在して埋込まれたシリコン膜とを具備したことを
特徴とする半導体装置。
(1) A semiconductor substrate, an insulating film provided on the substrate and having a contact hole, and silicon embedded in the contact hole with at least a low-resistance, high-melting-point metal nitride film interposed at the bottom of the contact hole. A semiconductor device characterized by comprising a film.
(2)低抵抗の高融点金属窒化膜が窒化チタン、窒化ジ
ルコニウム、窒化タンタル、窒化ハフニウムから選択さ
れるものであることを特徴とする特許請求の範囲第1項
記載の半導体装置。
(2) The semiconductor device according to claim 1, wherein the low resistance high melting point metal nitride film is selected from titanium nitride, zirconium nitride, tantalum nitride, and hafnium nitride.
(3)コンタクトホール内に埋込まれたシリコン膜にド
ナー化又はアプセプタ化する不純物を拡散させて比抵抗
を低減させたことを特徴とする特許請求の範囲第1項記
載の半導体装置。
(3) The semiconductor device according to claim 1, wherein the resistivity is reduced by diffusing an impurity that becomes a donor or an acceptor into the silicon film embedded in the contact hole.
(4)コンタクトホール内に埋込まれたシリコン膜の比
抵抗を大きくして、該シリコン膜を抵抗体として使用す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置。
(4) The semiconductor device according to claim 1, wherein the silicon film embedded in the contact hole has a high specific resistance and is used as a resistor.
(5)コンタクトホール内に埋込まれたシリコン膜の露
出面に高融点金属窒化膜を設けたことを特徴とする特許
請求の範囲第1項記載の半導体装置。
(5) The semiconductor device according to claim 1, wherein a high melting point metal nitride film is provided on the exposed surface of the silicon film buried in the contact hole.
JP26771284A 1984-12-19 1984-12-19 Semiconductor device Granted JPS61144872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26771284A JPS61144872A (en) 1984-12-19 1984-12-19 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26771284A JPS61144872A (en) 1984-12-19 1984-12-19 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61144872A true JPS61144872A (en) 1986-07-02
JPH0257707B2 JPH0257707B2 (en) 1990-12-05

Family

ID=17448500

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26771284A Granted JPS61144872A (en) 1984-12-19 1984-12-19 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61144872A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205951A (en) * 1987-02-19 1988-08-25 アドバンスト・マイクロ・ディバイシズ・インコーポレーテッド Stable low resistance contact
JPH01194335A (en) * 1988-01-29 1989-08-04 Toshiba Corp Semiconductor device
JPH0228320A (en) * 1988-04-06 1990-01-30 Fujitsu Ltd Manufacture of semiconductor device
JPH0283978A (en) * 1988-09-20 1990-03-26 Nec Corp Semiconductor device
JPH02199827A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Fine wiring
US5436489A (en) * 1993-03-24 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Field effect transistor
JPH0917791A (en) * 1996-08-02 1997-01-17 Hitachi Ltd Manufacture of semiconductor device
US5633525A (en) * 1994-11-11 1997-05-27 Fuji Electric Co., Ltd. Lateral field effect transistor
US6166416A (en) * 1995-12-07 2000-12-26 Hyundai Electronics Industries Co., Ltd. CMOS analog semiconductor apparatus and fabrication method thereof
US6414738B1 (en) 1997-03-31 2002-07-02 Seiko Epson Corporation Display
US6529251B2 (en) * 1999-02-23 2003-03-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63205951A (en) * 1987-02-19 1988-08-25 アドバンスト・マイクロ・ディバイシズ・インコーポレーテッド Stable low resistance contact
JPH01194335A (en) * 1988-01-29 1989-08-04 Toshiba Corp Semiconductor device
JPH0228320A (en) * 1988-04-06 1990-01-30 Fujitsu Ltd Manufacture of semiconductor device
JPH0283978A (en) * 1988-09-20 1990-03-26 Nec Corp Semiconductor device
JPH02199827A (en) * 1989-01-30 1990-08-08 Hitachi Ltd Fine wiring
US5436489A (en) * 1993-03-24 1995-07-25 Mitsubishi Denki Kabushiki Kaisha Field effect transistor
US5633525A (en) * 1994-11-11 1997-05-27 Fuji Electric Co., Ltd. Lateral field effect transistor
US6166416A (en) * 1995-12-07 2000-12-26 Hyundai Electronics Industries Co., Ltd. CMOS analog semiconductor apparatus and fabrication method thereof
JPH0917791A (en) * 1996-08-02 1997-01-17 Hitachi Ltd Manufacture of semiconductor device
US6414738B1 (en) 1997-03-31 2002-07-02 Seiko Epson Corporation Display
US6529251B2 (en) * 1999-02-23 2003-03-04 Sharp Kabushiki Kaisha Liquid crystal display device and method of manufacturing the same

Also Published As

Publication number Publication date
JPH0257707B2 (en) 1990-12-05

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
US4551908A (en) Process of forming electrodes and interconnections on silicon semiconductor devices
TWI283891B (en) Passive device and method for forming the same
US5278099A (en) Method for manufacturing a semiconductor device having wiring electrodes
JPS61144872A (en) Semiconductor device
JPS61133646A (en) Manufacture of semiconductor device
JP3023853B2 (en) Method for manufacturing semiconductor device
EP0613180A2 (en) Semiconductor device having wiring electrodes
JPS59197162A (en) Semiconductor device
JPS59208773A (en) Manufacture of semiconductor device
JPH0387061A (en) Semiconductor device
JPS58202553A (en) Semiconductor device
JPS59208772A (en) Manufacture of semiconductor device
JPS61258452A (en) Semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JP3017810B2 (en) Method for manufacturing semiconductor device
JPS62200747A (en) Manufacture of semiconductor device
JPH0527975B2 (en)
JP2659798B2 (en) Semiconductor device
JPH0235773A (en) Semiconductor device
JPH0235774A (en) Semiconductor device
JPS63127552A (en) Semiconductor device
JPS63265448A (en) Manufacture of mos type semiconductor device
JPH03187226A (en) Manufacture of semiconductor device
JPS63301556A (en) Bi-cmos semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees