JPS61258452A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61258452A
JPS61258452A JP60100915A JP10091585A JPS61258452A JP S61258452 A JPS61258452 A JP S61258452A JP 60100915 A JP60100915 A JP 60100915A JP 10091585 A JP10091585 A JP 10091585A JP S61258452 A JPS61258452 A JP S61258452A
Authority
JP
Japan
Prior art keywords
layer
alloy
semiconductor device
layers
tin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60100915A
Other languages
Japanese (ja)
Inventor
Takeo Maeda
前田 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60100915A priority Critical patent/JPS61258452A/en
Priority to DE19863650170 priority patent/DE3650170T2/en
Priority to EP9494108007A priority patent/EP0613180A3/en
Priority to EP86106245A priority patent/EP0209654B1/en
Publication of JPS61258452A publication Critical patent/JPS61258452A/en
Priority to US07/976,664 priority patent/US5278099A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

PURPOSE:To improve an electromigration resistance by providing diffused layers on the surface of a substrate, insulation films with contact holes and wirings with three-layer structures consisting of Al or Al alloy layers/TiN layers/Ti layers in the contact holes. CONSTITUTION:A P-type well 2, an N-type well 3 and a field oxide film 4, a gate oxide film 6 and gate electrodes 8a and 8b are formed on the surfaces of a P-type silicon substrate 1, an element region 5 and ion-implanted layers 7a and 7b respectively. After N<+> type source and drain regions 9a and 10a, P<+> type source and drain regions 9b and 10b and a layer insulation film 11 are formed, contact holes 12a and 12b are drilled. Ti layers 13, TiN layers 14 and pure Al layers 15 are deposited and patterned to form the first layer wirings 161 and 162 with three-layer structures. Then, after a CVD-SiO2 layer 17 is formed, a contact hole 18 is formed and the second layer Al wiring is formed with the same method. With this constitution, an electromigration resistance can be improved.

Description

【発明の詳細な説明】 〔発明の技術分野) 本発明は半導体装置に関し、特に配線材料に改良を加え
たものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and particularly to one in which improvements are made to wiring materials.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

従来、MO8型トランジスタなどの半導体装置においで
、例えばシリコン基板表面の拡散層とコンタクトホール
を介して接続する配線材料として八λが用いられている
。しかしながら、この場合、Al、のSiとの合金化に
よりアロイスパイクが発生し、PN接合の破壊が生じる
。また、AI、のエレクトロマイグレーションが生じる
BACKGROUND ART Conventionally, in semiconductor devices such as MO8 type transistors, 8λ has been used as a wiring material for connecting, for example, to a diffusion layer on the surface of a silicon substrate via a contact hole. However, in this case, alloy spikes occur due to alloying of Al with Si, resulting in destruction of the PN junction. Furthermore, electromigration of AI occurs.

そのため、AI中に予めSiを1〜5%程度含有させて
Al1中のSiの固溶度を十分に満足させる方法が取ら
れている。しかしながら、この方法によれば、Al1の
Si含有量をアロイスパイクが発生しない程度にすると
、Al配線中に固溶度を越えたSiが析出し、これが抵
抗として働きへβ配線の見掛は上の切れにつながる(配
線のオー7ン)。また、前述したAlのエレクトロマイ
グレーションも十分に解消するには至らない。
Therefore, a method has been adopted in which approximately 1 to 5% of Si is previously included in AI to fully satisfy the solid solubility of Si in Al1. However, according to this method, if the Si content of Al1 is set to a level that does not cause alloy spikes, Si exceeding the solid solubility will precipitate in the Al wiring, and this will act as a resistance, resulting in an increase in the appearance of the β wiring. This will lead to a break in the wiring (opening of the wiring). Further, the electromigration of Al mentioned above cannot be sufficiently eliminated.

更に、他の方法として、なんらかのバリアメタルを使用
し、Al中のSiの含有器を減らす方法が取られている
。この場合、バリアメタルとしては、TiNが良く用い
られている。しかしながら、TiNを用いない方法によ
れば、コンタクトをBF2又はB、BCn2が注入され
たP+拡散層上に形成した場合、前述したSlのコンタ
クトホー −ル中への析出が顕著に起り、コンタクトサ
イズの減少に伴うコンタクト抵抗の増大が激しく起こる
(コンタクト抵抗の増大)。また、TiNを用いた場合
、やはりTiNとP+型のS;の間でBのTiN中への
拡散が起り、良好なオーミックコンタクトが形成できな
い。
Furthermore, another method is to use some kind of barrier metal to reduce the amount of Si contained in Al. In this case, TiN is often used as the barrier metal. However, according to the method that does not use TiN, when a contact is formed on a P+ diffusion layer into which BF2, B, or BCn2 is implanted, the aforementioned precipitation of Sl into the contact hole occurs significantly, and the contact size increases. As contact resistance decreases, contact resistance increases sharply (increase in contact resistance). Furthermore, when TiN is used, diffusion of B into TiN occurs between TiN and P+ type S, making it impossible to form a good ohmic contact.

〔発明の目的〕[Purpose of the invention]

本発明は上記事情に鑑みてなされたもので、コンタクト
抵抗の増大、アロイスパイクを抑制するとともに、耐エ
レクトロマイグレーション強度を向上できる半導体装置
を提供することを目的とする。
The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a semiconductor device that can suppress an increase in contact resistance and alloy spikes, and can improve electromigration resistance.

〔発明の概要〕[Summary of the invention]

本発明は、半導体基板と、この基板表面に設けられた拡
散層と、同基板上に設けられ前記拡散層に対応する部分
にコンタクトホールを有した絶縁膜と、この絶縁膜のコ
ンタクトホールに設けられ八β又はへ2合金層/T i
 N層/ T i層の少なくとも3層構造の配線を具備
することを特徴とし、コンタクト抵抗の増大、アロイス
パイクを抑制するとともに、耐エレクトロマイグレーシ
ョン強度の向上を図ったものである。
The present invention provides a semiconductor substrate, a diffusion layer provided on the surface of this substrate, an insulating film provided on the substrate and having a contact hole in a portion corresponding to the diffusion layer, and a contact hole provided in the insulating film. 8 β or 2 alloy layer/T i
It is characterized by having wiring with at least a three-layer structure of N layer/Ti layer, and is intended to suppress an increase in contact resistance and alloy spikes, and to improve electromigration resistance.

本発明に係る配線としては、AM層/T i N層/T
il又はAl合金層/TiN層/Ti層の3層構造のも
の、若しくはAl又はAl合金層ZTi層/TiN1i
/TiNl1.TiSi層/A℃!/T i N層/T
i層、TlSi層/Afi合金層/T i Ni!/T
 i層の4層構造のものが挙げられる。
The wiring according to the present invention includes AM layer/T i N layer/T
il or Al alloy layer/TiN layer/Ti layer three-layer structure, or Al or Al alloy layer ZTi layer/TiN1i
/TiNl1. TiSi layer/A℃! /T i N layer/T
i layer, TlSi layer/Afi alloy layer/T i Ni! /T
Examples include those having a four-layer structure with an i-layer.

本発明に係るAlの材料としては、Al−s +合金、
AI−Ti−3l合金、AU−Zr−8l合金、AI−
Ti合金、AI−Zr合金等が挙げられる。
The Al material according to the present invention includes Al-s + alloy,
AI-Ti-3l alloy, AU-Zr-8l alloy, AI-
Examples include Ti alloy and AI-Zr alloy.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例に係る相補型(C)MOSトラ
ンジスタを製造工程順に第1図(a)〜(f)を参照し
て説明する。
Hereinafter, a complementary (C) MOS transistor according to an embodiment of the present invention will be described in the order of manufacturing steps with reference to FIGS. 1(a) to 1(f).

(1)、まず、通常の工程により、P型のシリコン基板
1の表面にPウェル2、Nウェル3及びフィールド酸化
膜4を形成したく第1図(a>図示)。なお同図(a>
において、5はフィールド酸化FI4で囲まれた素子領
域を示す。つづいて、前記素子領域5の表面にゲート酸
化116を形成し、トランジスタのしきい値電圧用のチ
ャネルインプラを行いイオン注入M7a、7bを夫々形
成した後、多結晶シリコン層を堆積した。次いで、この
多結晶シリコン層に所定の不純物をドープした債、これ
をパターニングしてゲート電極8a、8bを夫々形成し
た(第1図(b)図示)、、次いで、前記ゲート電極8
a、8bを夫々マスクとしてPウェル2、Nウェル3に
n型不純物、n型不純物(ボロン)を導入し、Pウェル
の表面にはN+型のソース、ドレイン領域9 a、10
aを形成し、Nウェル3にはP+型のソース、ドレイン
領域9b、10bを形成した。更に、全面に層間絶縁膜
1層を形成した後、前記ソース領域9a、9bに対応す
るゲート酸化膜6、層間絶縁1111にコンタクトホー
ル12a、12bを形成した(第1図(C)図示)。
(1) First, a P well 2, an N well 3, and a field oxide film 4 are formed on the surface of a P type silicon substrate 1 by a normal process in FIG. 1 (a>shown). The same figure (a>
In the figure, 5 indicates an element region surrounded by field oxidation FI4. Subsequently, gate oxide 116 was formed on the surface of the element region 5, channel implantation for the threshold voltage of the transistor was performed, ion implantations M7a and 7b were formed, and then a polycrystalline silicon layer was deposited. Next, this polycrystalline silicon layer was doped with a predetermined impurity and patterned to form gate electrodes 8a and 8b, respectively (as shown in FIG. 1(b)).
Using a and 8b as masks, n-type impurities and n-type impurities (boron) are introduced into the P-well 2 and N-well 3, respectively, and N+ type source and drain regions 9a and 10 are formed on the surface of the P-well.
In the N well 3, P+ type source and drain regions 9b and 10b were formed. Furthermore, after forming one layer of interlayer insulating film over the entire surface, contact holes 12a and 12b were formed in the gate oxide film 6 and interlayer insulating film 1111 corresponding to the source regions 9a and 9b (as shown in FIG. 1C).

(2)6次に、厚さ500人c7)T ill 3、厚
さ500人のTiN層14を同一真空槽中で化成 。
(2) 6 Next, a TiN layer 14 with a thickness of 500 layers is formed in the same vacuum chamber.

TiN層14の堆積の際、基板1にRFバイアスを加え
てコンタクトエツジ部でのTiN層14のステップカバ
レージ及びその部分の結晶性を改善してもよい。つづい
て、これら1Al層15、T i N11l 4及び7
1層13からなる3層を写真蝕剣法、反応性イオンエツ
チングを用いてバターニングを行った。ここで、エツチ
ングガスと、しては、BCj2i 、 Cff12、H
eを混合ガスを用イル。
During the deposition of the TiN layer 14, an RF bias may be applied to the substrate 1 to improve the step coverage of the TiN layer 14 at the contact edge and the crystallinity of that portion. Subsequently, these 1Al layer 15, T i N11l 4 and 7
The three layers consisting of layer 1 and layer 13 were buttered using photoetching and reactive ion etching. Here, the etching gas is BCj2i, Cff12, H
Use a mixed gas.

その結果、純へり層15、TiN層14.71層13の
3層構造の第11目の配置116t、162が形成され
た(第1図(e)図示)。次いで、全面に低温プラズマ
CVD法により、 CVD−Si 0217を形成した後、前記配線161
に対応する前記51021m7を選択的に除去し、コン
タクトホール18を形成した。更に、このコンタクトホ
ール18に前記と同様な方法により、第211I目のA
l配線を形成し、CMOSトランジスタを製造したく第
1図(f)図示)。
As a result, an eleventh arrangement 116t, 162 having a three-layer structure of a pure edge layer 15, a TiN layer 14, and a TiN layer 13 was formed (as shown in FIG. 1(e)). Next, after forming CVD-Si 0217 on the entire surface by low temperature plasma CVD method, the wiring 161
The contact hole 18 was formed by selectively removing the 51021 m7 corresponding to the contact hole 18. Furthermore, a 211Ith A is formed in this contact hole 18 by the same method as described above.
1(f) to form a CMOS transistor.

本発明に係るCMOSトランジスタは、第1図(f)に
示す如く、第1!1目の配線161.162を夫々Al
層15..’T i N層14/Ti113の3M構造
とし、この配線161.162を層間絶縁膜11に設け
られたコンタクトホール12a112bを夫々介してソ
ース領域9a、9b1.:l気的に接続した構成となっ
ている。従って、本発明によれば、以下に示す効果を有
する。
In the CMOS transistor according to the present invention, as shown in FIG.
Layer 15. .. 'A 3M structure of TiN layer 14/Ti 113 is used, and these wirings 161 and 162 are connected to source regions 9a, 9b1 . :It has a configuration in which it is electrically connected. Therefore, according to the present invention, the following effects are achieved.

■、配置!16s(又は162)を構成する純Al層1
5と71層13との間にTiN層14を介在させること
により、層間絶縁fi111のコンタクトホール12a
、12b1あるいは配線161.162のSiの析出を
なくし、コンタクト抵抗の増大を抑制でき、またPN接
合の破壊を抑止できる。また、TiN層14の下層に7
1層13を設けることにより、R2型のソース類[9b
中のボロンがTiN層14に拡散するのを防止し、良好
なコンタクト特性が得られる。事実、T ill 3を
450℃、15分の条件でシンターを行ったところ、T
iが7iSi2に変化し良好なコンタクトが形成できた
。なお、従来及び本発明のトランジスタによりコンタク
トホールの大きさとコンタクト抵抗との関係は第2図に
示す通りである。同図において、(イ)は本発明による
P+拡散層とのコンタクト抵抗を、(ロ)は同発明によ
るN1拡散層とのコンタクト抵抗を、また(ハ)、(ニ
)は夫々従来によるP”、N+拡散層とのコンタクト抵
抗を示す。同図により、本発明によれば、P1拡散層と
のコンタクト抵抗がコンタクトホールの大きさに比例し
て著しく減少することが確認できる。
■, Placement! Pure Al layer 1 constituting 16s (or 162)
By interposing the TiN layer 14 between the 5 and 71 layers 13, the contact hole 12a of the interlayer insulation fi111 is
, 12b1 or the wirings 161, 162, it is possible to suppress an increase in contact resistance, and it is also possible to suppress breakdown of the PN junction. In addition, 7
By providing one layer 13, R2 type sources [9b
This prevents the boron therein from diffusing into the TiN layer 14, resulting in good contact characteristics. In fact, when T ill 3 was sintered at 450°C for 15 minutes, T
i was changed to 7iSi2 and a good contact could be formed. Incidentally, the relationship between the size of the contact hole and the contact resistance of the conventional transistor and the transistor of the present invention is as shown in FIG. In the figure, (a) shows the contact resistance with the P+ diffusion layer according to the present invention, (b) shows the contact resistance with the N1 diffusion layer according to the same invention, and (c) and (d) respectively show the contact resistance with the conventional P" , which shows the contact resistance with the N+ diffusion layer. From this figure, it can be confirmed that according to the present invention, the contact resistance with the P1 diffusion layer is significantly reduced in proportion to the size of the contact hole.

■、前述した如<TiNR14の下層に11層13を設
けることにより、エレクトロマイグレーションを抑制で
きる。
(2) Electromigration can be suppressed by providing the 11 layer 13 below the TiNR layer 14 as described above.

■、前記■と同様な理由により、配線のオーブンを防止
できる。
(2) For the same reason as (2) above, wiring ovens can be prevented.

なお、上記実施例では、配線を純AJ2/TiN層/T
i層の3層構造としてが、例えばAl又はAり合金11
/T i i!/T 1Nlf/T i !!、あるい
はTi3l層/Al又はAl合金1/T i Nll/
Tilの41構造としてもよい。こうした構造にすれば
、八2にロックを防止できる。即ち、館者の場合は、T
ilによりTiN層中のNがAll!!i中に拡散する
のを押えるとともに、Ti層中のTiがAll中に拡散
することにより、Alヒロックを防止するものである。
In the above embodiment, the wiring is pure AJ2/TiN layer/T
The three-layer structure of the i-layer is, for example, Al or Al alloy 11
/ T i i! /T 1Nlf/T i! ! , or Ti3l layer/Al or Al alloy 1/T i Nll/
It may also be a Til 41 structure. With this structure, locking can be prevented to a large extent. In other words, in the case of the curator, T
Due to il, all N in the TiN layer! ! In addition to suppressing diffusion into the Ti layer, Ti in the Ti layer diffuses into the Al layer, thereby preventing Al hillocks.

一方、後者の場合は、TiSi層の応力がヒロックを抑
制する方向に働くとともに、Ti3l層中のTiがAl
2又はAl合金層中に拡散することにより、Aβヒロッ
クを防止するものである。そして、このTiはエレクト
ロマイグレージョンを抑止するためにも大きな効果を有
する。なお、前者の構造の場合、Ti1l、TiN層、
Ti1ii、Allの4層を同一真空中で堆積すること
ができる。
On the other hand, in the latter case, the stress in the TiSi layer acts in the direction of suppressing hillocks, and the Ti in the Ti3l layer
2 or diffused into the Al alloy layer to prevent Aβ hillocks. This Ti also has a great effect in suppressing electromigration. In addition, in the case of the former structure, Ti1l, TiN layer,
Four layers of Ti1ii and All can be deposited in the same vacuum.

また、上記実施例では、配線の上層に練入ρ層を用いた
が、これに限らず、既述した如く、Al−5r合金層、
Al−Ti−3l合金層、Al−Zr−8l合金層、A
l−Ti合金層、Al−Zr合金層のうちいずれか1つ
を用いてもよい。ここで、Ti又はZrを含んだ合金層
の場合は、Alのエレクトロマイグレーション、Al1
のとロックを抑制できる。また、Slを含んだ合金層の
場合は、AlのSiの含有量を低く押えることにより、
コンタクトホール及び配線中でのSiの析出を押え、コ
ンタクト抵抗の増大の抑制、特にボロンが注入された拡
散層でのコンタクト抵抗の増大を抑制でき、かつ配線の
オーブンを防止できるものである。
Further, in the above embodiment, a kneaded ρ layer was used as the upper layer of the wiring, but the invention is not limited to this, and as described above, an Al-5r alloy layer,
Al-Ti-3l alloy layer, Al-Zr-8l alloy layer, A
Either one of the l-Ti alloy layer and the Al-Zr alloy layer may be used. Here, in the case of an alloy layer containing Ti or Zr, electromigration of Al, Al1
and lock can be suppressed. In addition, in the case of an alloy layer containing Sl, by keeping the Si content of Al low,
It is possible to suppress the precipitation of Si in the contact hole and wiring, to suppress the increase in contact resistance, especially in the diffusion layer into which boron is implanted, and to prevent the wiring from being baked.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、コンタクト抵抗の増
大、アロイスパイスの発生を抑制するとともに、耐エレ
クトロマイグレーション強度を向上しえる半導体装置を
提供できる。
As described in detail above, according to the present invention, it is possible to provide a semiconductor device that can suppress an increase in contact resistance and the generation of alloy spices, and can improve electromigration resistance.

【図面の簡単な説明】[Brief explanation of drawings]

第1図(a)〜(f)は本発明の一実施例に係るCMO
Sトランジスタを製造工程順に示す断面図、第2図は従
来及び本発明によるコンタクトホールの大きさとコンタ
クト抵抗との関係を示す特性図である。 1・・・P型のシリコン基板、2・・・Pウェル、3・
・・Nウェル、4・・・フィールド酸化膜、5・・・素
子領域、6・・・ゲート酸化膜、7a、7b・・・イオ
ン注入領域、8a、8b・・・ゲート電極、9a、9 
b ・V−ス領域、10a、10b・・・ドレイン領域
、11・・・層間絶縁膜、 12a、12b、1 B・wンタ’) ト*−ル、13
・・・7l層、14・・・TiN層、15・・・練入2
層、161.162.19・・・配線、 17・・・CVD−Si 02 II。 出願人代理人 弁理士 鈴江武彦 II2図
FIGS. 1(a) to 1(f) show a CMO according to an embodiment of the present invention.
FIG. 2 is a cross-sectional view showing the S transistor in the order of manufacturing steps, and a characteristic diagram showing the relationship between contact hole size and contact resistance according to the conventional method and the present invention. 1... P-type silicon substrate, 2... P well, 3...
...N well, 4...Field oxide film, 5...Element region, 6...Gate oxide film, 7a, 7b...Ion implantation region, 8a, 8b...Gate electrode, 9a, 9
b・V-su region, 10a, 10b...drain region, 11...interlayer insulating film, 12a, 12b, 1 B*-tor') tor, 13
...7l layer, 14...TiN layer, 15...kneading 2
Layer, 161.162.19... Wiring, 17... CVD-Si 02 II. Applicant's agent Patent attorney Takehiko Suzue II Figure 2

Claims (13)

【特許請求の範囲】[Claims] (1)、半導体基板と、この基板表面に設けられた拡散
層と、同基板上に設けられ前記拡散層に対応する部分に
コンタクトホールを有した絶縁膜と、この絶縁膜のコン
タクトホールに設けられAl又はAl合金層/TiN層
/Ti層の少なくとも3層構造の配線とを具備すること
を特徴とする半導体装置。
(1) A semiconductor substrate, a diffusion layer provided on the surface of this substrate, an insulating film provided on the substrate and having a contact hole in a portion corresponding to the diffusion layer, and a contact hole provided in the insulating film. What is claimed is: 1. A semiconductor device comprising wiring having at least a three-layer structure of an Al or Al alloy layer/TiN layer/Ti layer.
(2)、配線が、Al又はAl合金層/Ti層/TiN
層/Ti層の4層構造であることを特徴とする特許請求
の範囲第1項記載の半導体装置。
(2) The wiring is Al or Al alloy layer/Ti layer/TiN
2. The semiconductor device according to claim 1, wherein the semiconductor device has a four-layer structure of Ti layer and Ti layer.
(3)、配線が、TiSi層/Al又はAl合金層/T
iN層/Ti層の4層構造であることを特徴とする特許
請求の範囲第1項記載の半導体装置。
(3) The wiring is TiSi layer/Al or Al alloy layer/T
The semiconductor device according to claim 1, characterized in that it has a four-layer structure of an iN layer/Ti layer.
(4)、Al層が純Al層であることを特徴とする特許
請求の範囲第1項〜第3項記載の半導体装置。
(4) The semiconductor device according to any one of claims 1 to 3, wherein the Al layer is a pure Al layer.
(5)、Al合金層が、Al−Si合金、 Al−Ti−Si合金、Al−Zr−Si合金、Al−
Ti合金、Al−Zr合金のうちいずれか1つからなる
ことを特徴とする特許請求の範囲第1項又は第3項記載
の半導体装置。
(5), the Al alloy layer is Al-Si alloy, Al-Ti-Si alloy, Al-Zr-Si alloy, Al-
4. The semiconductor device according to claim 1, wherein the semiconductor device is made of one of a Ti alloy and an Al-Zr alloy.
(6)、Al合金層中のSiの含有量を少量とすること
を特徴とする特許請求の範囲第1項記載の半導体装置。
(6) The semiconductor device according to claim 1, wherein the content of Si in the Al alloy layer is small.
(7)、Al層、TiN層、Ti層を同一真空中で堆積
することを特徴とする特許請求の範囲第1項記載の半導
体装置。
(7) The semiconductor device according to claim 1, wherein the Al layer, TiN layer, and Ti layer are deposited in the same vacuum.
(8)、Al又はAl合金層/Ti層/TiN層/Ti
層を同一真空中で堆積することを特徴とする特許請求の
範囲第2項記載の半導体装置。
(8), Al or Al alloy layer/Ti layer/TiN layer/Ti
3. A semiconductor device according to claim 2, wherein the layers are deposited in the same vacuum.
(9)、TiSi層/Al又は Al合金層/TiN層/Ti層を同一真空中で堆積する
ことを特徴とする特許請求の範囲第3項記載の半導体装
置。
(9) The semiconductor device according to claim 3, wherein the TiSi layer/Al or Al alloy layer/TiN layer/Ti layer are deposited in the same vacuum.
(10)、TiN層を反応性スパッタ法により堆積する
ことを特徴とする特許請求の範囲第1項〜第3項記載の
半導体装置。
(10) A semiconductor device according to any one of claims 1 to 3, characterized in that the TiN layer is deposited by a reactive sputtering method.
(11)、TiN層を堆積し、一度N_2雰囲気中で熱
処理した後、窒化し、更にAl又はAl合金層を形成す
ることを特徴とする特許請求の範囲第1項記載の半導体
装置。
(11) The semiconductor device according to claim 1, wherein a TiN layer is deposited, heat-treated once in an N_2 atmosphere, and then nitrided, and further an Al or Al alloy layer is formed.
(12)、TiN層を堆積し、一度N_2雰囲気中で熱
処理した後、窒化し、更にTi層、Al層を形成するこ
とを特徴とする特許請求の範囲第2項記載の半導体装置
(12) The semiconductor device according to claim 2, wherein a TiN layer is deposited, heat-treated once in an N_2 atmosphere, and then nitrided, and further a Ti layer and an Al layer are formed.
(13)、TiN層を堆積し、一度N_2雰囲気中で熱
処理した後、窒化し、更にAl層、 TiSi層を形成することを特徴とする特許請求の範囲
第3項記載の半導体装置。
(13) The semiconductor device according to claim 3, wherein a TiN layer is deposited, heat-treated once in an N_2 atmosphere, and then nitrided, and further an Al layer and a TiSi layer are formed.
JP60100915A 1985-05-13 1985-05-13 Semiconductor device Pending JPS61258452A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60100915A JPS61258452A (en) 1985-05-13 1985-05-13 Semiconductor device
DE19863650170 DE3650170T2 (en) 1985-05-13 1986-05-07 Semiconductor arrangement with connecting electrodes.
EP9494108007A EP0613180A3 (en) 1985-05-13 1986-05-07 Semiconductor device having wiring electrodes.
EP86106245A EP0209654B1 (en) 1985-05-13 1986-05-07 Semiconductor device having wiring electrodes
US07/976,664 US5278099A (en) 1985-05-13 1992-11-16 Method for manufacturing a semiconductor device having wiring electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60100915A JPS61258452A (en) 1985-05-13 1985-05-13 Semiconductor device

Publications (1)

Publication Number Publication Date
JPS61258452A true JPS61258452A (en) 1986-11-15

Family

ID=14286631

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60100915A Pending JPS61258452A (en) 1985-05-13 1985-05-13 Semiconductor device

Country Status (1)

Country Link
JP (1) JPS61258452A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244861A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture of same
JPS6441240A (en) * 1987-08-07 1989-02-13 Nec Corp Semiconductor integrated circuit device
JPH03129755A (en) * 1989-07-14 1991-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPH03179745A (en) * 1989-12-07 1991-08-05 Fujitsu Ltd Semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63244861A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture of same
JPS6441240A (en) * 1987-08-07 1989-02-13 Nec Corp Semiconductor integrated circuit device
JPH03129755A (en) * 1989-07-14 1991-06-03 Hitachi Ltd Semiconductor device and manufacture thereof
JPH03179745A (en) * 1989-12-07 1991-08-05 Fujitsu Ltd Semiconductor device

Similar Documents

Publication Publication Date Title
US5278099A (en) Method for manufacturing a semiconductor device having wiring electrodes
KR0178551B1 (en) Method of manufacturing semiconductor integrated circuit
US5652183A (en) Method for fabricating semiconductor device containing excessive silicon in metal silicide film
JPS61144872A (en) Semiconductor device
EP0209654B1 (en) Semiconductor device having wiring electrodes
JPS61258452A (en) Semiconductor device
KR920000636B1 (en) Semiconductor devices
JP2002208695A (en) Semiconductor device and manufacturing method thereof
GB2247349A (en) Method for fabricating MOS transistors
JP2817518B2 (en) Semiconductor device and manufacturing method thereof
EP0994511B1 (en) Semiconductor device and manufacturing method of the same
JP3263941B2 (en) Method for manufacturing semiconductor device
JPS60193333A (en) Manufacture of semiconductor device
JPS61267365A (en) Semiconductor device
JPS61150376A (en) Semiconductor device
JPS6255929A (en) Manufacture of semiconductor device
JPH02194653A (en) Mis transistor
JP2562868B2 (en) Semiconductor device and manufacturing method thereof
JPH0341762A (en) Semiconductor device
JPH0456359A (en) Semiconductor element structure
JPH06132523A (en) Manufacture of mos transistor
JPH05211131A (en) Semiconductor device
JPH06112477A (en) Semiconductor device and manufacture thereof
JPS63141360A (en) Semiconductor device
JPH0536974A (en) Semiconductor device and manufacture thereof