JPS60193333A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60193333A
JPS60193333A JP4961784A JP4961784A JPS60193333A JP S60193333 A JPS60193333 A JP S60193333A JP 4961784 A JP4961784 A JP 4961784A JP 4961784 A JP4961784 A JP 4961784A JP S60193333 A JPS60193333 A JP S60193333A
Authority
JP
Japan
Prior art keywords
film
electrode
impurity
heat treatment
gate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4961784A
Other languages
Japanese (ja)
Other versions
JPH0763060B2 (en
Inventor
Masanori Fukumoto
正紀 福本
Shohei Shinohara
篠原 昭平
Shozo Okada
岡田 昌三
Juro Yasui
安井 十郎
Koichi Kugimiya
公一 釘宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4961784A priority Critical patent/JPH0763060B2/en
Publication of JPS60193333A publication Critical patent/JPS60193333A/en
Publication of JPH0763060B2 publication Critical patent/JPH0763060B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

PURPOSE:To easily obtain an electrode having a small thickness when forming a two-layer wiring electrode on the surface of an Si substrate, by providing, in a layered manner, a polycrystalline Si film having a predetermined shape and containing a low-density impurity and a metallic film having a high melting point and containing an impurity, and heat treating them to cause uniform planer reaction on the interface thereof. CONSTITUTION:An extremely thin gate oxide film 2 is produced on the surface of an Si substrate 1 by heat treatment. A polycrystalline Si film 3 containing little impurity and a W silicide film 4 containing a high-density impurity are layered and deposited on the film 2. Unrequired portions of the films 4 and 3 are removed by gas plasma with the use of CCl4 or the like, so that a gate electrode having a desired shape and consisting of the films 3 and 4 is left. The structure is then subjected to heat treatment in N2 gas to reduce the resistance of the film 4 and to diffuse the impurity in the film 4 into the film 3 to reduce the electrode resistance. The whole surface is then covered with an SiO2 film 5 and an aperture is provided. An Al electrode 6 is fixed on the film 4 exposed by providing the aperture. In such a manner, a thin electrode is obtained without decreasing the dielectric strength.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、金属9合金やそれらの7リサイド等の化合物
からなる膜を含む低抵抗の電極、配線を有する半導体装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application The present invention relates to a method for manufacturing a semiconductor device having low resistance electrodes and wiring including a film made of a metal 9 alloy or a compound such as a 7 reside thereof.

従来例の構成とその問題点 微細化、高密度化されたMO8集積回路装置では、動作
速度を向上させるため、低抵抗のMo 、 W等の高融
点金属又はそれらのシリサイド等をゲート電極や配線と
して用いることができる。特にMO5界面における電気
的安定性を維持するために、リン等の不純物を拡散した
poly Si (多結晶シリコン)膜上に高融点金属
、金属シリサイド等を形成して得た金属−poly s
i、高融点金属シリサイド−四ly Siという二層の
ゲート電極にすることが一般に行なわれている。MO8
半導体装置のプロセスにおいては、二層ゲート電極形成
後、必ず高温熱処理工程が入る。特に金属シリサイドを
使うデバイスでは、ゲート自体の抵抗をデバイス特性に
有効な値まで下げるため、約1oOo℃の熱処理を必要
とする。しかし、この熱処理によって、ゲート電極とシ
リコン基板間のゲート絶縁膜に著しいリークが生じ、場
合によっては短絡状態になるという欠点が存在した。絶
縁耐圧の劣化を防止するためには、従来二層ゲートの下
層を構成するpoly Si膜厚を厚く形成する方法が
とられて米た。例えばMo812が200nm 、 p
oly Siがaoonmにすれば厚さ3511mのゲ
ート5i02膜の耐圧は、1000 ℃+ 30分の熱
処理後も劣化しないようにできる。
Conventional configurations and their problems In miniaturized, high-density MO8 integrated circuit devices, low-resistance high-melting-point metals such as Mo and W, or their silicides, etc., are used for gate electrodes and wiring in order to improve operating speed. It can be used as In particular, in order to maintain electrical stability at the MO5 interface, metal-polys is obtained by forming a high melting point metal, metal silicide, etc. on a polySi (polycrystalline silicon) film into which impurities such as phosphorus are diffused.
Generally, the gate electrode is made of two layers: i, high melting point metal silicide-4ly Si. MO8
In the process of semiconductor devices, a high-temperature heat treatment step is always performed after the formation of a two-layer gate electrode. In particular, devices using metal silicide require heat treatment at approximately 100° C. in order to reduce the resistance of the gate itself to a value effective for device characteristics. However, this heat treatment has the disadvantage that significant leakage occurs in the gate insulating film between the gate electrode and the silicon substrate, resulting in a short circuit in some cases. In order to prevent the breakdown voltage from deteriorating, conventional methods have been used to increase the thickness of the polySi film forming the lower layer of the two-layer gate. For example, Mo812 has a thickness of 200 nm, p
If olySi is aoonm, the withstand voltage of the gate 5i02 film with a thickness of 3511 m can be prevented from deteriorating even after heat treatment at 1000° C. for 30 minutes.

しかしなが6.MOSi2 / poly Siゲート
において、十分低いシート抵抗を得るためには200〜
300nmの厚さのMoSi2膜が必要であるから。
However, 6. In order to obtain a sufficiently low sheet resistance in a MOSi2/polySi gate, 200~
This is because a MoSi2 film with a thickness of 300 nm is required.

耐圧劣化のない二層ゲートの膜厚は500〜eo。The film thickness of the two-layer gate without breakdown voltage deterioration is 500 to eo.

nmになり、従来のpoly Siゲートの模りより大
きい値となるのである。膜厚が厚い場合、サイドエッチ
等により、二層膜の適用対象となる幅1μm〜サブミク
ロンのゲート・配線の精密微細加工性が損なわれ、また
厚い膜厚による段差゛によって。
nm, which is a larger value than that of conventional poly-Si gates. If the film is thick, the precision microfabrication of gates and interconnects with a width of 1 μm to submicron, to which the two-layer film is applied, is impaired due to side etching, etc., and also due to the step difference due to the thick film.

二層膜の上層に形成するアルミニウム配線の断線や、そ
の配線を形成するための異方性ドライエツチング不良に
よる配線間のショートが発生する確率が非常に高くなる
。この様な欠点は、集積回路の製造歩留りを大幅に下げ
るものである。
There is a very high probability that the aluminum wiring formed on the upper layer of the two-layer film will be disconnected, or that short circuits will occur between the wirings due to defective anisotropic dry etching for forming the wiring. These drawbacks significantly reduce the manufacturing yield of integrated circuits.

発明の目的 本発明は、二層ゲートにおけるpoly Si層を薄く
して、ゲート電極の膜厚を減少させ、かつゲート絶縁耐
圧を劣化させない製造方法を提供することによって、上
記従来例の欠点を除去するものである。
Purpose of the Invention The present invention eliminates the drawbacks of the conventional example by providing a manufacturing method that reduces the thickness of the gate electrode by thinning the polySi layer in the two-layer gate and does not deteriorate the gate dielectric breakdown voltage. It is something to do.

発明の構成 本発明による二層電極配線の製造方法は、導電型形成不
純物をほとんど含有しな゛いpoly Si膜を形成し
た後、その上に導電型形成不純物を含有する金属シリサ
イド、高融点金属等の低抵抗膜を形成して高温で熱処理
を施すことを特徴としている。
Structure of the Invention The method for manufacturing a two-layer electrode wiring according to the present invention involves forming a polySi film containing almost no conductivity type forming impurities, and then depositing metal silicide and high melting point metal containing conductivity type forming impurities thereon. It is characterized by forming a low-resistance film such as and subjecting it to heat treatment at a high temperature.

実施例の説明 以下不発rillの実施例を図面と共に説明する。第1
図は本発明の製造方法を具体的に説明するMOSキャパ
シターの工程断面図である。先ず最初にシリコン基板1
の表面に厚さ35 nmのゲート酸化膜2をパイロジェ
ニック法を用い900℃で成長させる(工程a)。次に
導電型を形成する不純物を?1とんど含有しないpol
y Si層3を例えばLPICVD法で形成した後、c
vn法により、リンを1X 1o2010A〜3 X 
10” 7cmの濃度で含有するタングステンシリサイ
ドWSiz膜4(!=2・0〜2.5)を被着する(工
程や)。
DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments of the unexploded rill will be described with reference to the drawings. 1st
The figures are process cross-sectional views of a MOS capacitor specifically explaining the manufacturing method of the present invention. First of all, silicon substrate 1
A gate oxide film 2 with a thickness of 35 nm is grown on the surface of the substrate at 900° C. using a pyrogenic method (step a). Next, what about impurities that form conductivity types? 1 Contains almost no pol
After forming the y Si layer 3 by, for example, the LPICVD method, c
By the vn method, 1X 1o2010A~3X
A tungsten silicide WSiz film 4 (!=2.0 to 2.5) containing a concentration of 10" 7 cm is deposited (step).

この後、ac14 、 cc14 +o2等のガスプラ
ズマで選択的に膜4および3を除去し、260μmnX
250/1mの寸法をもつゲート電極を形成し、このW
Si X膜4の抵抗を下げると同時にリンを四ly S
i層3の中へ拡散するために1000℃、30分の熱処
理をN2等の不活性ガス又はN2+02等の酸化性ガス
雰囲気中で熱処理する(工程C)。熱処理したゲート上
F CV D 5in2膜5を形成し、900’C。
After this, films 4 and 3 were selectively removed using gas plasma such as ac14, cc14 + o2, and 260μmnX
A gate electrode with a dimension of 250/1 m is formed, and this W
While lowering the resistance of the Si
In order to diffuse into the i-layer 3, heat treatment is performed at 1000° C. for 30 minutes in an atmosphere of an inert gas such as N2 or an oxidizing gas such as N2+02 (Step C). A FCVD 5in2 film 5 is formed on the heat-treated gate at 900'C.

60分N2中で第2の熱処理を施した後、コンタクト窓
を設けてA1電極6を形成する(工程d)。
After a second heat treatment in N2 for 60 minutes, a contact window is provided to form the A1 electrode 6 (step d).

上記実施例の方法で製造したMOSキャノ(ジターのゲ
ート酸化膜の絶縁耐圧歩留を測定した結果が第2図に示
されている。poly Si層3の膜早を50nmに薄
くしても、5MV/an以上の耐圧を示すキャパシター
の歩留りは99チ以上であった。
The results of measuring the dielectric breakdown voltage yield of the gate oxide film of the MOS capacitor (Jitter) manufactured by the method of the above embodiment are shown in FIG. The yield of capacitors exhibiting a withstand voltage of 5 MV/an or higher was 99 cm or higher.

これに対し従来のrI+poly Si膜を用いた場合
の歩留りは、polySiの膜厚が1100n以下にな
ると50%以下になったから1本方法は大幅なゲート絶
縁膜耐圧歩留改善効果を有する。第1図に示された同一
の工程に従ってMOSキャパ゛シタの製造f:5回行な
い、耐圧を測定したが、すべての場合においてゲート絶
縁膜耐圧歩留りは95チ以上であった。さらにWSi 
X膜4の膜厚を1100nからsoonmまで変化させ
ても歩留りの劣化はなく、安定した一定の耐圧が得られ
る。
On the other hand, the yield when using the conventional rI+poly Si film was less than 50% when the polySi film thickness was 1100 nm or less, so this method has the effect of significantly improving the gate insulating film breakdown voltage yield. A MOS capacitor was manufactured five times according to the same process shown in FIG. 1, and the breakdown voltage was measured. In all cases, the yield of the gate insulating film breakdown voltage was 95 cm or more. Furthermore, WSi
Even if the thickness of the X film 4 is changed from 1100 nm to soon nm, the yield does not deteriorate, and a stable and constant breakdown voltage can be obtained.

第3図は本発明の第2の実施例であり、ゲート配線とシ
リコン基板との直接コンタクトを有するMO3集積回路
の工程断面図を示すものである。
FIG. 3 is a second embodiment of the present invention, and shows a process cross-sectional view of an MO3 integrated circuit having direct contact between a gate wiring and a silicon substrate.

工程aでは、p型シリコン基板1の一部に素子分離領域
となる厚い5i02膜7を設け、トランジスタを形成す
べき領域には薄いゲートSiO2膜2を成長させ、膜2
の下地基板の一部にN型拡散層8を設ける。これら工程
を実行した後、拡散層8の表面のゲー) 5i02膜2
の一部を開口しく開口部9)、導電型を形成する不純物
をほとんど含まないpoly Si層3を全面に形成し
、続いてリンを含むWSiz膜4を被着する(工程b)
。上記3及び4からなる二層膜をac14 、 c c
14 + 012等を用いる異方性エッチで選択的に除
去しゲート電極と配線を形成する。次に900℃〜10
00’Cの温度範囲で約30分熱処理し、WSiz膜4
に含有するり’/ ”t I)Oly Si膜3の中へ
拡散してn poly Siにすると同時にこの二層膜
の抵抗を下げる。一方配線とn型拡散層8との直接コン
タクト窓9の部分では、前記熱処理により、poly 
Si膜3へ拡散層8からのn型不純物と、 WSix膜
4からのリンが同時に拡散して膜3の抵抗、WSiz 
−poly Siおよびpoly Sニーn型拡散層の
コンタクト抵抗を下げ。
In step a, a thick 5i02 film 7 is provided on a part of the p-type silicon substrate 1 to serve as an element isolation region, and a thin gate SiO2 film 2 is grown in the region where a transistor is to be formed.
An N-type diffusion layer 8 is provided on a part of the underlying substrate. After performing these steps, the surface of the diffusion layer 8 is coated with 5i02 film 2.
A polySi layer 3 containing almost no impurities forming a conductivity type is formed on the entire surface with an opening 9), and then a WSiz film 4 containing phosphorus is deposited (step b).
. The two-layer film consisting of 3 and 4 above was ac14, cc
The gate electrode and wiring are selectively removed by anisotropic etching using 14 + 012 or the like. Next, 900℃~10
After heat treatment in the temperature range of 00'C for about 30 minutes, the WSiz film 4
It is diffused into the Oly Si film 3 to form n poly Si and at the same time lowers the resistance of this two-layer film. By the heat treatment, the poly
The n-type impurity from the diffusion layer 8 and the phosphorus from the WSix film 4 are simultaneously diffused into the Si film 3, and the resistance of the film 3, WSiz
- Lower contact resistance of poly Si and poly S knee n-type diffusion layers.

この部分にオーミックコンタクトをつくる。次にゲート
電極をマスクとしてAs+のイオン注入を行ないソース
・ドレイン1oを形成する(工程C)。
Make ohmic contact in this part. Next, using the gate electrode as a mask, As+ ions are implanted to form the source/drain 1o (step C).

この後通常の工程によってCvDS102膜11の形成
、Al / Si電極12の形成を経て完成するのであ
る。本発明の方法は、第3図の様な直接コンタクトのな
い回路装置やCMO8集積回路の製造にももちろん適用
できるものである。
Thereafter, the CvDS 102 film 11 is formed and the Al/Si electrode 12 is formed through normal steps to complete the process. The method of the present invention can of course be applied to the manufacture of circuit devices without direct contact as shown in FIG. 3 and CMO8 integrated circuits.

本発明の方法はまだ別のデバイスにも適用できる。第4
図は、第3の実施例でありメモリーセル中にpoly 
Si抵抗負荷を備えたMOSスクチツクRAMの工程断
面図の一部であり、メモリーセル部のみを示している。
The method of the invention can also be applied to yet other devices. Fourth
The figure shows the third embodiment, in which poly is used in the memory cell.
This is a part of a process cross-sectional view of a MOS brick RAM equipped with a Si resistive load, and only the memory cell portion is shown.

厚いSi02膜7.ゲート5i02膜2を設けたp型シ
リコン基板1に、導電型形成不純物−1とんど含″!、
ないpoly Si膜3を形成し、この上にリンを含有
するWSiz膜4を被着する(工程a)。次に3及び4
からなる二層膜を選択的に除去し、ゲート電極と配線を
形成した後、900’C〜1000℃で約30分間熱処
理する。続いてゲート電極をマスクとしsAs”5イオ
ン注入してソース・ドレイン10f、H形成する(工程
b)。イオン注入の後。
Thick Si02 film7. The p-type silicon substrate 1 provided with the gate 5i02 film 2 contains almost all conductivity type forming impurities -1''!
A WSiz film 4 containing phosphorus is deposited thereon (step a). Next 3 and 4
After selectively removing the two-layer film consisting of and forming a gate electrode and wiring, heat treatment is performed at 900'C to 1000C for about 30 minutes. Next, using the gate electrode as a mask, sAs"5 ions are implanted to form the source/drain 10f and H (step b). After the ion implantation.

CVD5i0213を堆積して再び900’C〜100
0℃の熱処理を施し、CVD5iC)213の一部を除
去してコンタクト窓14を形成し% 10及び3,4か
ら成る二層配線の一部を露出させる(工程C)。
Deposit CVD5i0213 and heat to 900'C~100C again.
A heat treatment is performed at 0° C. to remove a portion of the CVD5iC) 213 to form a contact window 14 and expose a portion of the two-layer wiring consisting of %10 and 3,4 (Step C).

コンタクト窓14全含むCvDS10213の表面に負
荷抵抗となるpoly Si膜15 f、(L P G
 V D ヤフラズマCVD法で堆積し、抵抗パターン
を形成する。この後、900℃〜1000℃の熱処理を
行うと、1oに含有する人SとWSIX膜4に含有する
リンが共にpoly Si負荷抵抗15のコンタクト開
口部と重なる部分にのみ拡散し、16と10.15と4
とのコンタクト抵抗を下げることができるのである(工
程d)。工程d以降の製造プロセスは従来のものと同一
である。
A poly Si film 15 f, (L P G
V D is deposited by the yahra plasma CVD method to form a resistance pattern. After that, when heat treatment is performed at 900°C to 1000°C, both the S contained in 1o and the phosphorus contained in the WSIX film 4 are diffused only into the portion overlapping with the contact opening of the polySi load resistor 15, and 16 and 10 .15 and 4
This makes it possible to lower the contact resistance with the substrate (step d). The manufacturing process from step d onwards is the same as the conventional one.

上の実施例においては、膜4としてタングステンシリサ
イドWSix ’fr:用いたが、MoSix、 Ta
Six。
In the above example, tungsten silicide WSix'fr: was used as the film 4, but MoSix, Ta
Six.

TiSixの様な高融点金属シリサイド、Mo、W、T
a。
Refractory metal silicides such as TiSix, Mo, W, T
a.

T1等の様な高融点金属や複合膜であっても効果が発揮
される。またこれら材料に含有すべき不純物は、pol
y Si 3に拡散して抵抗を下げることができ、ある
場合にはこれと同時に二層膜と、Si基板、poly 
Si負荷抵抗とのオーミックコンタクトを形成できる導
電型形成不純物であるならば何でもよ(、As、B、G
a等も可能である。さらにこれら不純物を含む金属膜や
シリサイド膜はcvn法だけでなくスパッタリング法、
蒸着法も使用することができる。例えばリン金倉むWS
ix膜は、タングステンシリサイド全ターゲットとして
Ar 中’t:、’f pl(3を含む雰囲気でスパッ
タリング蒸着すれば1よいのである。
Even high-melting-point metals such as T1 and composite films are effective. In addition, the impurities that should be contained in these materials are pol
y can be diffused into Si 3 to lower the resistance, and in some cases, at the same time, the two-layer film, Si substrate, poly
Any conductivity type forming impurity that can form an ohmic contact with the Si load resistor (As, B, G
A etc. are also possible. Furthermore, metal films and silicide films containing these impurities can be prepared not only by CVN method but also by sputtering method.
Vapor deposition methods can also be used. For example, Rin Kanakura WS
The ix film can be deposited by sputtering in an atmosphere containing tungsten silicide as a total target in Ar.

実施し1]においてpoly Si膜3は、導電型形成
不純物をほとんど含んでいないが、実験結果では、不純
物濃度が約1×10/Cd以下になれば、ゲート酸化膜
の耐圧向上に効果があることが明きらかとなった。熱処
理後のpoly Si膜と7リサイドとの界面反応を解
析した結果、poly Si中の不純物濃度が低下する
と界面反応が平面的に一様となってゲート酸化膜の耐圧
歩留りは1oo%に近く、上昇すると不均一となって必
ず耐圧の歩留りが低下することがわかった。従って、p
olysi膜3の導電型形成不純物濃度は0に近い必要
はなく、一定値以下の低い値であってもよい。
In implementation 1], the poly Si film 3 contains almost no conductivity type forming impurities, but experimental results show that if the impurity concentration is about 1×10/Cd or less, it is effective in improving the breakdown voltage of the gate oxide film. It became clear. As a result of analyzing the interfacial reaction between the poly-Si film and 7-recide after heat treatment, it was found that as the impurity concentration in the poly-Si decreases, the interfacial reaction becomes uniform in a plane, and the breakdown voltage yield of the gate oxide film is close to 10%. It was found that as the voltage increases, it becomes non-uniform and the yield of withstand voltage necessarily decreases. Therefore, p
The conductivity type forming impurity concentration of the olysi film 3 does not need to be close to 0, and may be a low value below a certain value.

発明の効果 以上実施例に説明した様に、本発明による製造方法では
、不純物をほとんど含まない低不純物濃度のpoly 
Si膜上に不純物を含む金属やその/り丈イドよりなる
導電成金被着した膜を電極にするという簡単な方法によ
って、熱処理によるpolySi膜および導電膜との界
面反応を平面的にほぼ一様に起こし、 poly Si
膜が薄い場合にも高いゲ−ト酸化膜耐圧が容易に得られ
る。また薄いpolySiを用いることによってゲート
電極の段差が軽減できるため、電極自体の微細加工や上
部アルミ配線の加工不良等を防止できる。さらに導電型
形成不純物含有金属・シリサイド膜を用いるのでこの膜
から他の部分へ不純物拡散が可能で、例えばコンタクト
抵抗低減にも寄与する。この様に本発明は、従来の欠点
を除き、半導体装置の歩留り向上、特性向上にその効果
を発揮するものである。
Effects of the Invention As explained in the examples above, the manufacturing method according to the present invention can produce poly with a low impurity concentration that contains almost no impurities.
The interfacial reaction between the polySi film and the conductive film caused by heat treatment can be made almost uniform in a plane by using a simple method of using a conductive metal deposited film made of impurity-containing metal or its metallized metal as an electrode on the Si film. Wake up, poly Si
Even when the film is thin, a high gate oxide film breakdown voltage can be easily obtained. Further, by using thin polySi, the step difference in the gate electrode can be reduced, so that fine processing of the electrode itself and processing defects of the upper aluminum wiring can be prevented. Furthermore, since a metal/silicide film containing conductivity type forming impurities is used, impurities can be diffused from this film to other parts, contributing to, for example, a reduction in contact resistance. As described above, the present invention is effective in improving the yield and characteristics of semiconductor devices, while eliminating the conventional drawbacks.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(d)は本発明の第1の実施例で二層ゲ
ートのMOSキャパシタの製造工程を示す断面図。 第2図は第1図に示した工程及び従来の工程でそれぞれ
製造したMOSキャパシタのゲート5i02の耐圧歩留
りを示すグラフ、第3図(JL)〜(d)は本発明の第
2の実施例でゲート配線とシリコン基板との直接コンタ
クトをもつ半導体装置の工程断面図、第4図(&)〜(
d)は本発明の第3の実施例で、MOSスタチックRA
Mの工程断面図である。 1・・・・・・シリコン基板、2・・・・・・ゲート+
3i02膜、3・・・・・・導電型形成不純物をほとん
ど含まないpolySi膜、4°−−−−°WSiz膜
、 5−− CV D 5i02膜、6・・・・・・A
1電極%7・・・・・・4い5i02膜、8・・・・・
・N型拡散層、9・・・・・・コンタクト窓% 10町
・・ソース・ドL/(7,11−・−・−cvnsio
2膜、12−9−19.Al/Sil/Si電極用13
CV D 5i02膜、14・・・・・・コンタクト窓
% 16・・・・・・poly Si負荷抵抗。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
図 ? 第2隠I P崎s4.t)+膿屡 (川 第3図 第4図
FIGS. 1(a) to 1(d) are cross-sectional views showing the manufacturing process of a double-layer gate MOS capacitor according to a first embodiment of the present invention. FIG. 2 is a graph showing the breakdown voltage yield of the gate 5i02 of the MOS capacitor manufactured by the process shown in FIG. 1 and the conventional process, and FIGS. Figure 4 (&) - (
d) is a third embodiment of the present invention, in which a MOS static RA
It is a process sectional view of M. 1... Silicon substrate, 2... Gate +
3i02 film, 3...polySi film containing almost no conductivity type forming impurities, 4°----°WSiz film, 5-- CV D 5i02 film, 6...A
1 electrode%7...45i02 film, 8...
・N-type diffusion layer, 9...Contact window% 10...Source de L/(7,11-...-cvnsio
2 membrane, 12-9-19. 13 for Al/Sil/Si electrodes
CV D 5i02 film, 14... Contact window % 16... Poly Si load resistance. Name of agent: Patent attorney Toshio Nakao (1st person)
figure? 2nd Ink I Psaki s4. t) + phlegm (Fig. 3, Fig. 4)

Claims (1)

【特許請求の範囲】[Claims] 半導体基体上に、低不純物濃度の多結晶シリコン膜を形
成する工程と、前記シリコン膜上に少なくとも導電型形
成不純物を含む高融点金属膜又は高融点金属化合物のう
ちの一種類よりなる導電膜を被着する工程と、熱処理す
る工程を有し、前記熱処理による前記シリコン膜及び導
電膜との界面反応を平面的にほぼ一様に起こすことを特
徴とする半導体装置の製造方法。
A step of forming a polycrystalline silicon film with a low impurity concentration on a semiconductor substrate, and a conductive film made of one type of a high melting point metal film or a high melting point metal compound containing at least a conductivity type forming impurity on the silicon film. 1. A method for manufacturing a semiconductor device, comprising a step of adhering and a step of heat treatment, and the interfacial reaction between the silicon film and the conductive film caused by the heat treatment occurs almost uniformly in a plane.
JP4961784A 1984-03-15 1984-03-15 Method for manufacturing semiconductor device Expired - Lifetime JPH0763060B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4961784A JPH0763060B2 (en) 1984-03-15 1984-03-15 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4961784A JPH0763060B2 (en) 1984-03-15 1984-03-15 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPS60193333A true JPS60193333A (en) 1985-10-01
JPH0763060B2 JPH0763060B2 (en) 1995-07-05

Family

ID=12836191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4961784A Expired - Lifetime JPH0763060B2 (en) 1984-03-15 1984-03-15 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JPH0763060B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117368A (en) * 1985-11-15 1987-05-28 Mitsubishi Electric Corp Semiconductor device
JPH01120863A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor storage device
JPH01292865A (en) * 1988-05-20 1989-11-27 Fujitsu Ltd Manufacture of semiconductor device
JPH0277122A (en) * 1988-06-16 1990-03-16 Toshiba Corp Manufacture of semiconductor device
US5661081A (en) * 1994-09-30 1997-08-26 United Microelectronics Corporation Method of bonding an aluminum wire to an intergrated circuit bond pad
US5691235A (en) * 1994-11-30 1997-11-25 Micron Technology, Inc. Method of depositing tungsten nitride using a source gas comprising silicon

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62117368A (en) * 1985-11-15 1987-05-28 Mitsubishi Electric Corp Semiconductor device
JPH01120863A (en) * 1987-11-05 1989-05-12 Fujitsu Ltd Semiconductor storage device
JPH01292865A (en) * 1988-05-20 1989-11-27 Fujitsu Ltd Manufacture of semiconductor device
JPH0277122A (en) * 1988-06-16 1990-03-16 Toshiba Corp Manufacture of semiconductor device
US5661081A (en) * 1994-09-30 1997-08-26 United Microelectronics Corporation Method of bonding an aluminum wire to an intergrated circuit bond pad
US5734200A (en) * 1994-09-30 1998-03-31 United Microelectronics Corporation Polycide bonding pad structure
US5691235A (en) * 1994-11-30 1997-11-25 Micron Technology, Inc. Method of depositing tungsten nitride using a source gas comprising silicon
US6429086B1 (en) 1994-11-30 2002-08-06 Micron Technology, Inc. Method of depositing tungsten nitride using a source gas comprising silicon
US6472323B1 (en) 1994-11-30 2002-10-29 Micron Technology, Inc. Method of depositing tungsten nitride using a source gas comprising silicon
US6730954B2 (en) 1994-11-30 2004-05-04 Micron Technology, Inc. Method of depositing tungsten nitride using a source gas comprising silicon

Also Published As

Publication number Publication date
JPH0763060B2 (en) 1995-07-05

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
KR100257079B1 (en) Semiconductor device and method for fabricating the same
US5466638A (en) Method of manufacturing a metal interconnect with high resistance to electromigration
JPS61226959A (en) Semiconductor device and manufacture thereof
JPS5826184B2 (en) Zetsuen Gate Denkai Kouka Transistor No.
US6410953B2 (en) Integrated circuit device with MIM capacitance circuit
JPS5878466A (en) Low capacity field effect transistor
JPS60193333A (en) Manufacture of semiconductor device
US5612236A (en) Method of forming a silicon semiconductor device using doping during deposition of polysilicon
JPS609160A (en) Semiconductor device and manufacture thereof
JPH0653492A (en) Semiconductor device and fabrication thereof
JP3196241B2 (en) Method for manufacturing semiconductor device
JPS61267365A (en) Semiconductor device
JPS59112641A (en) Semiconductor device and manufacture thereof
JPS603156A (en) Manufacture of semiconductor device
JPH02288361A (en) Semiconductor device
JPS59121978A (en) Manufacture of semiconductor device
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPH01120051A (en) Semiconductor device
JPS61228661A (en) Semiconductor device and manufacture thereof
JPH05315333A (en) Manufactuer of semiconductor device
KR920010669B1 (en) Semiconductor device and its manufacturing method
JPS60160666A (en) Manufacture of semiconductor device
JPH04299564A (en) Manufacture of semiconductor device and semiconductor device
JPS6312389B2 (en)