JPS60160666A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60160666A
JPS60160666A JP1510484A JP1510484A JPS60160666A JP S60160666 A JPS60160666 A JP S60160666A JP 1510484 A JP1510484 A JP 1510484A JP 1510484 A JP1510484 A JP 1510484A JP S60160666 A JPS60160666 A JP S60160666A
Authority
JP
Japan
Prior art keywords
gate electrode
film
etching
shaped
resist
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1510484A
Other languages
Japanese (ja)
Inventor
Takashi Azuma
吾妻 孝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP1510484A priority Critical patent/JPS60160666A/en
Publication of JPS60160666A publication Critical patent/JPS60160666A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To eliminate accidents on short circuits by a method wherein a gate electrode is formed through isotropic etching, high-concentration impurity regions as source and drain regions are shaped, the skirt section of the gate electrode is removed through anisotropic etching and a low-concentration impurity region is formed to a removing section. CONSTITUTION:A gate SiO2 film 12 is formed on a P type silicon substrate 11, a substance 13 for a gate electrode consisting of a refractory metal is shaped, and a thin Si3N4 film 14 is further formed. A pattern of a resist 15 for shaping the gate electrode is formed, the Si3N4 film 14 is etched while using the pattern as a mask, and the gate electrode 13a is formed through isotropic etching while using the Si3N4 film 14 remaining under the resist 15 as a mask. An eave-shaped section in the Si3N4 film 14 is removed by phosphoric acid, and the resist 15 is also removed. N<+> regions 15, 16 in high impurity concentration are shaped, and an impurity is implanted up to a range of an intermediate point P in the skirt section of the gate electrode 13a. The skirt section of the gate electrode 13a except a section under the Si3N4 film 14 is removed through etching, and N<-> regions 17, 18 in low impurity concentration are shaped. Accordingly, accidents on short circuits due to the remaining of etching are eliminated.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は高集積度で高速化が可能な半導体装置の製造方
法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a method for manufacturing a semiconductor device that can be highly integrated and operate at high speed.

〔発明の貨景〕[Month of invention]

半導体回路を高集積化、高速化するために、近年、配線
幅は微細化する傾向にあり、これにともなってゲート酸
化膜の厚ざは薄くなり、また、ゲート電極の材料もポリ
シリコンからより低抵抗のりフラクトリメタA/ (r
efractory metal) シリサイドとポリ
シリコンとの2層構造のいわゆるポリサイド、さらには
低抵抗のりフラクトリーメタルに順次移ってきている。
In recent years, in order to increase the integration and speed of semiconductor circuits, the width of interconnections has tended to become smaller.As a result, the thickness of gate oxide films has become thinner, and the material for gate electrodes has also changed from polysilicon to polysilicon. Low resistance glue frac trimeta A/ (r
(efractory metal) There is a gradual shift to so-called polycide, which has a two-layer structure of silicide and polysilicon, and further to low-resistance factory metal.

このようにゲート酸化膜が薄くなると、ゲート電極とソ
ース・ドレインとの間の印加電圧によるゲート酸化膜中
の電界強度が高くなシ、ゲート酸化膜中にわずかの不純
物、結晶欠陥等が存在していても絶縁破壊が起りやすく
なる。
When the gate oxide film becomes thinner in this way, the electric field strength in the gate oxide film due to the voltage applied between the gate electrode and the source/drain becomes high, and small amounts of impurities, crystal defects, etc. are present in the gate oxide film. dielectric breakdown is more likely to occur.

また、配線加工法も従来のドライエツチング技術である
と、等方性エツチングのために加工のすそが拡が9回路
の微細化が難しくなるので、垂直方向に加工可能な異方
性エツチング法(以下RIIICと称す〕が多用されて
きている。しかしながら、RIEによると加工すべき面
に段差がある場合に段差の壁に存在する被加工物質がエ
ツチング除去されずに残ってしまうという大きな問題が
める。ここで、等方、性エツチング法を併用して、段差
壁の不要被加工物質を除去する必要性が生じる。
In addition, if the wiring processing method is conventional dry etching technology, the base of the processing will expand due to isotropic etching, making it difficult to miniaturize the circuit. RIE (hereinafter referred to as RIIIC) has been widely used.However, RIE poses a major problem in that when there is a step on the surface to be processed, the material to be processed on the wall of the step remains without being etched away. Here, it is necessary to use isotropic etching methods in combination to remove unnecessary material from the step wall.

第1図は通常のMO8形半導体メモリの平面図、第2図
はその■−■断面図、第3図は■−■断面図である。P
形のシリコン基板1にはゲート酸化膜となるSing膜
2が形成式れ、その上にゲート電極3.メモリ電極4が
形成されている。5は2つのメモリ素子を取り囲むLO
GO8Sin、膜である。
FIG. 1 is a plan view of an ordinary MO8 type semiconductor memory, FIG. 2 is a cross-sectional view taken along the line ■-■, and FIG. 3 is a cross-sectional view taken along the line ■-■. P
A Sing film 2 serving as a gate oxide film is formed on a shaped silicon substrate 1, and a gate electrode 3. A memory electrode 4 is formed. 5 is the LO surrounding the two memory elements
GO8Sin is a film.

なお、シリコン基板1に形成される炉のソース。Note that the source of the furnace is formed on the silicon substrate 1.

ドレイン領域は省略しである。The drain region is omitted.

メモリ素子はメモリ電極4とシリコン基板1の間に形成
されるメモリ領域と、MOS FETによって構成され
るメモリコントロール領域とからなり、両領域はABC
Dの領域によって分けられておシ、このABCDの領域
は油量、 80間で第3図に示すように、LOCO8S
in、膜5上に層間絶縁膜としての810.膜6がある
ために大きな段差が存在する。
The memory element consists of a memory area formed between the memory electrode 4 and the silicon substrate 1, and a memory control area formed by MOS FETs, and both areas are ABC.
It is divided by the area D, and this area ABCD is the oil amount, as shown in Figure 3, between 80 and LOCO8S.
810.in as an interlayer insulating film on the film 5. Due to the presence of the film 6, a large step exists.

このような構造において、ゲート電極となる物質を第4
図の点線に示すように被着し、配線を形成するためにこ
れを選択的にRIEすると、前記段差部にゲート電極と
なる物質Iが第4図に示すように残シ、これが相隣シあ
うゲー]・電極3間を短絡するという問題が生ずる。こ
の問題をなくすためには、ゲート電極を形成する際にあ
る程度等方性エツチングを行ない、段差部に残こる物質
を完全に除去する必要がある。
In such a structure, the material that will become the gate electrode is
When it is deposited as shown by the dotted line in the figure and selectively subjected to RIE to form wiring, the material I that will become the gate electrode remains in the stepped portion as shown in FIG. A problem arises in which the electrodes 3 are short-circuited. In order to eliminate this problem, it is necessary to perform isotropic etching to some extent when forming the gate electrode to completely remove the material remaining in the stepped portion.

また、第5図はゲート電極をマスクにソース。Also, Figure 5 shows the source using the gate electrode as a mask.

ドレイン領域を形成する状態の断面図である。シIJ)
7J[1上にSin、膜2を介してゲート電極3を形成
する際、レジストマスク8をパターニングした後、等方
性エツチングによりゲート酸化膜3を形成するが、等方
性のために富士山状になりすそを引いた形になる。その
後、N形不純物のイオン注入を行なってソース、ドレイ
ン領域となる丈領域9を形成する。この際、マスクのな
いAの範囲ではイオンはSin、膜2に損傷を与えなが
らシリコン基板1に打込まれてN+領域9が形成される
φよ、同時にゲート電極3のすその途中点からもイオン
は打込まれBの範囲にもsio、l膜2に損傷を与えな
がら虻領域は形成される。このような構造によると、B
の範囲でゲート電極3とN+領域9がオーバーラツプし
ていわゆる寄生的なミラー容量バ増加する問題がある。
FIG. 3 is a cross-sectional view of a state in which a drain region is formed. SIJ)
7J[When forming the gate electrode 3 through the Sin film 2 on the film 2, after patterning the resist mask 8, the gate oxide film 3 is formed by isotropic etching. It becomes the shape with the hem subtracted. Thereafter, N-type impurity ions are implanted to form height regions 9 that will become source and drain regions. At this time, in the range A where there is no mask, the ions are implanted into the silicon substrate 1 while damaging the Sin film 2, forming the N+ region 9. The ions are implanted and a fly region is formed in the region B, damaging the film 2. According to this structure, B
There is a problem that the gate electrode 3 and the N+ region 9 overlap in the range of .

さらに、ソース・ドレイン間に高電圧を印加した場合、
損傷を受けたBの範囲のホットキャリアがトラップされ
易くなり、スレシュホールド電圧■thが変化したす、
ソース。
Furthermore, if a high voltage is applied between the source and drain,
The damaged hot carriers in the range B become more likely to be trapped, and the threshold voltage ■th changes.
sauce.

ドレイン耐圧が低下したシする問題がある。このような
問題はゲート酸化膜が薄い程大きくなる。
There is a problem that the drain breakdown voltage is lowered. Such problems become more serious as the gate oxide film becomes thinner.

〔発明の目的〕[Purpose of the invention]

本発明は、このような従来の問題点を解決するためにな
されたものであり、段差部のエツチング残りによる短絡
事故がなく、しかもミラー容量の増加がなく、かつホッ
トキャリア効果による悪影響もないような半導体装置の
製造方法を提供することにある。
The present invention has been made to solve these conventional problems, and eliminates short-circuit accidents due to etching residue on the stepped portion, does not increase mirror capacitance, and does not have any adverse effects due to hot carrier effects. An object of the present invention is to provide a method for manufacturing a semiconductor device.

〔発明の概要〕[Summary of the invention]

本発明はこのような目的を達成するためになされたもの
であり、等方性エツチングを行なってゲート電極を形成
した後、これをマスクに不純物を注入してソース、ドレ
イン領域となる高濃度不純物領域を形成し、ゲート電極
上のマスクを用いて2−ト電極のすそ部分をRIEによ
シ除去し、さらここの除去した部分に低濃度不純物領域
を形成すbものである。
The present invention has been made to achieve such an object, and after forming a gate electrode by isotropic etching, impurities are implanted using this as a mask to form highly concentrated impurities that will become the source and drain regions. A region is formed, a base portion of the two-tooth electrode is removed by RIE using a mask on the gate electrode, and a low concentration impurity region is formed in the removed portion.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例を用いて詳細に説明する。 Hereinafter, the present invention will be explained in detail using examples.

第6図(、)〜(、)は、本発明に係る半導体装置の製
造方法の一実施例を適用した場合の各工程における断面
図を示す。
FIGS. 6(,) to 6(,) show cross-sectional views at each step when an embodiment of the method for manufacturing a semiconductor device according to the present invention is applied.

先づ、P形のシリコン基板11にゲートSin。First, a gate Sin is formed on a P-type silicon substrate 11.

膜12を形成した後、この表面に1%、W、Ta等のり
フラクトリー金属からなるゲート電極用物質13を形成
し、適当なアニール焼成した後に、この上にさらに薄い
81sN、膜14を形成する。この状態を第6図(、)
に示す。
After forming the film 12, a gate electrode material 13 made of a glue factory metal such as 1% W, Ta, etc. is formed on this surface, and after appropriate annealing, a thinner 81sN film 14 is formed thereon. . This state is shown in Figure 6 (,)
Shown below.

次に、ゲート電極形成用のレジスト15のパターンを形
成する。この状態を第6図(b)に示す。
Next, a pattern of resist 15 for forming a gate electrode is formed. This state is shown in FIG. 6(b).

次に、レジスト15をマスクにして518N4膜14を
エツチングし、次いでレジスト15の下に残った518
N、膜14をマスクにして、例えばCF、の02プラズ
マ中で等方性エツチングを行ないゲート電(i13aを
形成する。等方性エツチングによってゲート電極13a
は5i8N、膜14の直下が深くサイドエツチングされ
てすそを有する富士山形に々る。
Next, the 518N4 film 14 is etched using the resist 15 as a mask, and then the 518N4 film 14 remaining under the resist 15 is etched.
Using the N, film 14 as a mask, isotropic etching is performed in 02 plasma of CF, for example, to form a gate electrode (i13a).
is 5i8N, and has a Mt. Fuji shape with a deep side etching just below the film 14 and a skirt.

この状態を第6図(C)に示す。This state is shown in FIG. 6(C).

次に、レジスト15の下の813N4膜14のひさし状
になった部分を燐酸中にて処理して除去し、同時にレジ
スト15も除去する。次いで、A8等N形の不純物をイ
オン打込みしてソース、ドレイン領域となる高不純物濃
度の1領域15.16を形成する。不純物はゲート電極
13aのすそ部分の中途点Pの範囲まで打込まれる。こ
の状態を第6図(d)に示す。
Next, the eave-shaped portion of the 813N4 film 14 under the resist 15 is removed by treatment in phosphoric acid, and the resist 15 is also removed at the same time. Next, N-type impurity ions such as A8 are implanted to form one region 15 and 16 with high impurity concentration that will become the source and drain regions. The impurity is implanted up to the midpoint P of the base of the gate electrode 13a. This state is shown in FIG. 6(d).

次に、シリコン基板をRIEエツチングガス中にさらし
てSi、N、膜14下以外のゲート電極13aのすそ部
分をエツチング除去する。しかる後、P等を注入してゲ
ート電極13aの直下と虻領域15゜16との間に低不
純物濃度のN−領域17.18を形成する。
Next, the silicon substrate is exposed to RIE etching gas to etch away Si, N, and the base portion of the gate electrode 13a except under the film 14. Thereafter, P or the like is implanted to form N- regions 17 and 18 with a low impurity concentration between directly below the gate electrode 13a and the hip regions 15.16.

以上の実施例ではゲート電極としてリフラクトリ−金属
を用いた例で説明したが、次にポリサイドを用いた実施
例について第7図(、)〜(c)により説明する。
In the above embodiments, an example in which refractory metal was used as the gate electrode was explained. Next, an embodiment in which polycide was used will be explained with reference to FIGS. 7(a) to 7(c).

シリコン基板11上に形成した8108膜12の表面に
ポリシリコン層を形成し、さらにその上にMo−8i 
+Ta−8i +W−8l 等のシリサイド)−を形成
した後、第6図の実施例と同様に518N4膜14゜レ
ジスト15を形成し、しかる後エツチングを行なう。先
づ、等方性エツチングまた社RIEによってシリサイド
をエツチングした後、等方性エツチングによってポリシ
リコンをエツチングする。この状態を第7図(−)に示
す。ゲート電極13aはポリシリコン部13a□とシリ
サイド部13a、とからなる。
A polysilicon layer is formed on the surface of the 8108 film 12 formed on the silicon substrate 11, and Mo-8i is further formed on the polysilicon layer.
After forming a silicide such as +Ta-8i +W-8l, a 518N4 film 14° resist 15 is formed in the same manner as in the embodiment shown in FIG. 6, and then etching is performed. First, the silicide is etched by isotropic etching or RIE, and then the polysilicon is etched by isotropic etching. This state is shown in FIG. 7(-). The gate electrode 13a consists of a polysilicon portion 13a□ and a silicide portion 13a.

次に、5iaN+膜14のひさし部分およびレジスト1
5を除去し、不純物を打込んでN+領域15゜16を形
成する。この状態を第7図(b)に示す。
Next, the eaves part of the 5iaN+ film 14 and the resist 1
5 is removed and impurities are implanted to form N+ regions 15° and 16. This state is shown in FIG. 7(b).

次に、RIEによってゲート電極13aのポリシリコン
部13a1のすそ部分を除去し、しかる後、r領域17
.18を形成する。
Next, the base portion of the polysilicon portion 13a1 of the gate electrode 13a is removed by RIE, and then the r region 17
.. form 18.

〔発明の効果〕〔Effect of the invention〕

このように本発明に係る半導体装置の製造方法によると
、等方性エツチングによってゲート電極を形成するので
エツチング残シによる短絡事故がなくなる。また、等方
性エツチングによって生じたゲート電極のすそ部分によ
り虻領域がすその中途の範囲まで形成されるが、RIE
によってこのすそ部分を除去し、さらに除去した虻領域
の端にN−領域を形成するため、ゲート電極とのオーバ
ーラツプ容量がなくなるとともに、r領域によって?領
域の電界強度が低減されホットキャリア効果による悪影
響が減少するという優れた効果がある。
As described above, according to the method of manufacturing a semiconductor device according to the present invention, since the gate electrode is formed by isotropic etching, short-circuit accidents due to etching residues are eliminated. In addition, a gadfly region is formed halfway up the hem by the hem of the gate electrode produced by isotropic etching, but RIE
By removing this base portion, and forming an N- region at the end of the removed dovetail region, the overlap capacitance with the gate electrode is eliminated, and the r-region also eliminates the overlapping capacitance with the gate electrode. This has the excellent effect of reducing the electric field strength in the region and reducing the negative effects caused by hot carrier effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のMO8形半導体メモリの平面図、第2図
は第1図の■−■断面図、第3図は第1図の■−■断面
図、第4図はエツチング残りが生ずる状態を説明するた
めの断面図、第5図はゲート電極のすそ部分に不純物が
打込まれる状態を説明するだめの断面図、第6図(、)
〜(、)は本発明に係る半導体装置の製造方法の一実施
例における各工程の断面図、第7図(、)〜(c)は他
の実施例における各工程の断面図である。 11・・・・シリコン基板、12・・・・Sin。 膜−13a・・・・ゲート電極、14・・・・5i8N
。 膜、15・・・・レジスト、15.16・・・・N+領
領域17.18・・・・N−領域。 第1図 第2図 第5図 第6図
Figure 1 is a plan view of a normal MO8 type semiconductor memory, Figure 2 is a cross-sectional view taken along ■-■ of Figure 1, Figure 3 is a cross-sectional view taken along ■-■ of Figure 1, and Figure 4 is a diagram showing how etching remains. Figure 5 is a cross-sectional view to explain the state, and Figure 6 is a cross-sectional view to explain the state in which impurities are implanted into the base of the gate electrode.
7(,) are sectional views of each step in one embodiment of the method for manufacturing a semiconductor device according to the present invention, and FIGS. 7(,) to 7(c) are sectional views of each step in another embodiment. 11...Silicon substrate, 12...Sin. Film-13a...Gate electrode, 14...5i8N
. Film, 15...Resist, 15.16...N+ region 17.18...N- region. Figure 1 Figure 2 Figure 5 Figure 6

Claims (1)

【特許請求の範囲】[Claims] 第1導電形の半導体基板上に電極物質を形成し、この上
にマスクを形成した後、等方性エツチングを行なってゲ
ート電極を形成する工程と、全面に不純物を打込んで半
導体基板の主面に第2導電形の高濃度不純物領域を形成
する工程と、異方性エツチングを行なってマスク下のゲ
ート′電極のみ残しゲート電極の他の部分を除去する工
程と、しかる後に杢糸−を打込んで高濃度不純物領域の
端に低濃度不純物領域を形成する工程とを有する半導体
装置の製造方法。
After forming an electrode material on a semiconductor substrate of the first conductivity type and forming a mask on this, isotropic etching is performed to form a gate electrode, and impurity is implanted into the entire surface of the semiconductor substrate. A step of forming a high concentration impurity region of the second conductivity type on the surface, a step of performing anisotropic etching to remove the other part of the gate electrode leaving only the gate electrode under the mask, and then removing the heathered yarn. 1. A method for manufacturing a semiconductor device, comprising the step of implanting a low concentration impurity region at an end of a high concentration impurity region.
JP1510484A 1984-02-01 1984-02-01 Manufacture of semiconductor device Pending JPS60160666A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1510484A JPS60160666A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1510484A JPS60160666A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60160666A true JPS60160666A (en) 1985-08-22

Family

ID=11879526

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1510484A Pending JPS60160666A (en) 1984-02-01 1984-02-01 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60160666A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224974A (en) * 1986-03-27 1987-10-02 Toshiba Corp Manufacture of semiconductor device
JP2005129632A (en) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology Method for manufacturing mosfet semiconductor device
JP2009302528A (en) * 2008-06-11 2009-12-24 Magnachip Semiconductor Ltd Method for forming triple gate of semiconductor element

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62224974A (en) * 1986-03-27 1987-10-02 Toshiba Corp Manufacture of semiconductor device
JP2005129632A (en) * 2003-10-22 2005-05-19 National Institute Of Advanced Industrial & Technology Method for manufacturing mosfet semiconductor device
JP2009302528A (en) * 2008-06-11 2009-12-24 Magnachip Semiconductor Ltd Method for forming triple gate of semiconductor element

Similar Documents

Publication Publication Date Title
KR100257079B1 (en) Semiconductor device and method for fabricating the same
KR0138959B1 (en) Manufacture of gate electrode of cmos device
JPS63233569A (en) Manufacture of semiconductor device
JPH0348459A (en) Semiconductor device and manufacture thereof
US6410953B2 (en) Integrated circuit device with MIM capacitance circuit
US4397076A (en) Method for making low leakage polycrystalline silicon-to-substrate contacts
JPS60160666A (en) Manufacture of semiconductor device
KR19990087022A (en) Method for manufacturing semiconductor device
JPS60193333A (en) Manufacture of semiconductor device
JPH09148449A (en) Manufacture of semiconductor device
KR100268776B1 (en) A manufacturing method of semiconductor device
JPS63241965A (en) Insulated-gate field-effect transistor and manufacture thereof
KR0157119B1 (en) Semiconductor device and its manufacture
KR100873815B1 (en) Method for fabricating image sensor
KR100280537B1 (en) Semiconductor device manufacturing method
JP2817226B2 (en) Method for manufacturing semiconductor device
JPH08111419A (en) Semiconductor device and fabrication thereof
JPH04299564A (en) Manufacture of semiconductor device and semiconductor device
JPH0377376A (en) Manufacture of semiconductor device
JPS63175476A (en) Semiconductor device and manufacture thereof
JPS5843574A (en) Field effect transistor
JPS60163466A (en) Manufacture of semiconductor device
JPH02161753A (en) Semiconductor device
JPH03156932A (en) Manufacture of semiconductor device
JPH11145405A (en) Semiconductor device and its manufacture