JPS5814750B2 - Manufacturing method of semiconductor device - Google Patents

Manufacturing method of semiconductor device

Info

Publication number
JPS5814750B2
JPS5814750B2 JP4011878A JP4011878A JPS5814750B2 JP S5814750 B2 JPS5814750 B2 JP S5814750B2 JP 4011878 A JP4011878 A JP 4011878A JP 4011878 A JP4011878 A JP 4011878A JP S5814750 B2 JPS5814750 B2 JP S5814750B2
Authority
JP
Japan
Prior art keywords
electrode wiring
gate electrode
film
oxide film
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP4011878A
Other languages
Japanese (ja)
Other versions
JPS54132176A (en
Inventor
徹 望月
幸雄 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Original Assignee
CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by CHO ERU ESU AI GIJUTSU KENKYU KUMIAI filed Critical CHO ERU ESU AI GIJUTSU KENKYU KUMIAI
Priority to JP4011878A priority Critical patent/JPS5814750B2/en
Publication of JPS54132176A publication Critical patent/JPS54132176A/en
Publication of JPS5814750B2 publication Critical patent/JPS5814750B2/en
Expired legal-status Critical Current

Links

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法に関し、とくに高融点金
属硅化物からなる電極配線を備えた多層配線構造の半導
体装置の製造方法に係るものである。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a method for manufacturing a semiconductor device having a multilayer wiring structure including electrode wiring made of a high melting point metal silicide.

従来より、半導体装置の電極配線にはAlや多結晶シリ
コンが広く用いられている。
Conventionally, Al and polycrystalline silicon have been widely used for electrode wiring of semiconductor devices.

Alは比抵抗が小さく、シリコン基板とのコンタクトも
良好であるため最も多用されているが、融点が低いため
に高温処理工程が全て終了した後でなければ用いられな
いという制約がある。
Al is most commonly used because it has a low resistivity and good contact with the silicon substrate, but its low melting point means that it can only be used after all high-temperature treatment steps have been completed.

従ってMOSデバイスを自己整合法で作る場合や多層配
線構造の集積回路を作る場合には、多結晶シリコンがよ
く用いられる。
Therefore, polycrystalline silicon is often used when making MOS devices using the self-alignment method or when making integrated circuits with multilayer wiring structures.

しかしながら,多結晶シリコンを用いた電極配線にもい
くつかの欠点がある。
However, electrode wiring using polycrystalline silicon also has some drawbacks.

第1に、不純物を多量にドープしたとしてもAtに比べ
ると比抵抗がはるかに高く、高速動作化にとって不向で
ある。
First, even if it is doped with a large amount of impurities, its resistivity is much higher than that of At, making it unsuitable for high-speed operation.

第2に,CCDやMOSダイナミックRAMにおけるよ
うな二層シリコンゲート電極を形成する場合、第1層多
結晶シリコンゲート電極の表面を熱酸化して酸化膜でお
おい、その上に第2層多結晶シリコンゲート電極を形成
することが行われるが、多結晶シリコンの酸化膜は単結
晶シリコンのそれに比べて均一性、絶縁性が悪く絶縁膜
としての信頼性が低い。
Second, when forming a two-layer silicon gate electrode such as in a CCD or MOS dynamic RAM, the surface of the first layer polycrystalline silicon gate electrode is thermally oxidized and covered with an oxide film, and then the second layer polycrystalline silicon gate electrode is covered with an oxide film. Although a silicon gate electrode is formed, a polycrystalline silicon oxide film has poor uniformity and insulation properties and is less reliable as an insulating film than that of single-crystal silicon.

第3に、多結晶シリコンゲート電極を構成し自己整合法
によりMOSトランジスタを作る場合,ソース、ドレイ
ン拡散工程で多結晶シリコンの微結晶が成長して大きな
粒塊を形成し,また熱酸化によって酸化膜を形成する場
合にもやはり結晶粒塊が生成するため、結晶粒塊にそっ
て絶縁性が低下する。
Third, when constructing a polycrystalline silicon gate electrode and manufacturing a MOS transistor by the self-alignment method, polycrystalline silicon microcrystals grow to form large grains during the source and drain diffusion process, and are oxidized by thermal oxidation. When forming a film, agglomerates of crystal grains are also generated, and the insulation properties deteriorate along the agglomerates of crystal grains.

第4に,不純物として例えばリンが拡散された多結晶シ
リコンを酸化するとリン硅酸ガラスが形成されるが、こ
れは良く知られているように吸湿性に富むため、水分を
吸着して素子の特性が劣化し易い。
Fourth, when polycrystalline silicon in which phosphorus is diffused as an impurity is oxidized, phosphosilicate glass is formed.As is well known, this glass is highly hygroscopic, so it absorbs moisture and damages the device. Characteristics tend to deteriorate.

本発明は上記種々の欠点を一挙に解消するためになされ
たもので、素子の高速動作を可能とし、かつ素子特性の
安定性、信頼性を保障できる多層配線構造を実現した半
導体装置の製造方法を提供しようとするものである。
The present invention has been made in order to eliminate the various drawbacks mentioned above all at once, and provides a method for manufacturing a semiconductor device that realizes a multilayer wiring structure that enables high-speed operation of the device and guarantees stability and reliability of device characteristics. This is what we are trying to provide.

すなわち,本発明方法は少なくとも1つの半導体素子を
有する半導体装置を製造するにあたり、半導体基板上に
設けられた絶縁膜上に高融点金属硅化物膜を被着し、選
択エッチングして第一の電極配線を形成する工程と、前
記第一の電極配線をマスクとして露出する絶縁膜を除去
し半導体基板の一部を露出せしめる工程と、前記高融点
金属硅化物の電極配線と露出した半導体基板を同時に酸
化処理する工程と、前記第一の電極配線上の酸化膜上に
少なくとも二部がオーバーラップするように第二の電極
配線を形成する工程とを具備したことを特徴とするもの
である。
That is, in manufacturing a semiconductor device having at least one semiconductor element, the method of the present invention deposits a refractory metal silicide film on an insulating film provided on a semiconductor substrate and selectively etches it to form a first electrode. a step of forming wiring, a step of removing the exposed insulating film using the first electrode wiring as a mask to expose a part of the semiconductor substrate, and simultaneously removing the high melting point metal silicide electrode wiring and the exposed semiconductor substrate. The method is characterized by comprising a step of performing oxidation treatment, and a step of forming a second electrode wire so that at least two parts thereof overlap on the oxide film on the first electrode wire.

本発明における第一の電極配線材料である高融点金属硅
化物としては、たとえばMo,w1Ta,Nb等の高融
点金属の硅化物を挙げることができ、これら高融点金属
硅化物の被着にあたってはスパッタ法、蒸着法、気相成
長法等が採用される。
Examples of the high melting point metal silicide which is the first electrode wiring material in the present invention include silicides of high melting point metals such as Mo, w1Ta, and Nb. Sputtering method, vapor deposition method, vapor phase growth method, etc. are adopted.

本発明における高融点金属硅化物膜の選択エツチング法
としては、たとえばフレオンガスプラズマ、弗化水素と
硝酸の混液などをエッチング手段とした写真蝕刻法等が
採用できる。
As the selective etching method for the high melting point metal silicide film in the present invention, for example, photolithography using Freon gas plasma, a mixture of hydrogen fluoride and nitric acid, or the like as an etching means can be employed.

本発明における第二の電極配線を構成する材料としては
、上述の高融点金属硅化物、或いはアルミニウム、モリ
ブデン、タングステン、多結晶シリコンなどの他の材料
等が使用できる。
As the material constituting the second electrode wiring in the present invention, the above-mentioned high melting point metal silicide or other materials such as aluminum, molybdenum, tungsten, polycrystalline silicon, etc. can be used.

しかして、本発明方法によれば第一の電極配線材料とし
て高融点金属硅化物を用いることにより、形成された第
一の電極配線の比抵抗が従来の高濃度不純物を含む多結
晶シリコンからなる電極配線のそれに較べて著しく小さ
くなるため、第一の電極配線の信号の伝播速度が速く高
速動作が可能な半導体装置を得ることができる。
According to the method of the present invention, by using a high melting point metal silicide as the first electrode wiring material, the specific resistance of the formed first electrode wiring can be changed from the conventional polycrystalline silicon containing high concentration impurities. Since it is significantly smaller than that of the electrode wiring, it is possible to obtain a semiconductor device in which the signal propagation speed of the first electrode wiring is fast and capable of high-speed operation.

レかも、第一の電極配線に第二の電極配線を形成する際
、高融点金属硅化物からなる第一の電極配線を酸化処理
することにより生成された酸化膜を介して行なうため、
従来の如く多結晶シリコン膜を酸化して生成される酸化
膜を介装した場合に較べて、均一性、絶縁性の優れた信
頼性の高い半導体装置を得ることができる。
On the other hand, when forming the second electrode wiring on the first electrode wiring, the process is performed through an oxide film generated by oxidizing the first electrode wiring made of high melting point metal silicide.
Compared to the conventional case where an oxide film produced by oxidizing a polycrystalline silicon film is interposed, a highly reliable semiconductor device with excellent uniformity and insulation properties can be obtained.

すなわち、高融点金属硅化物膜を酸化して得られる酸化
膜はシリコン酸化膜(Sin2)とほぼ同じ組成を示し
、また高融点金属硅化物膜の結晶粒塊は多結晶シリコン
に較べて非常に小さく、熱工程においても多結晶シリコ
ンの場合のような著しい結晶粒塊の成長がみられず、更
に吸湿性に関しても極めて低いため,優れた絶縁特性を
示す。
In other words, the oxide film obtained by oxidizing the high melting point metal silicide film has almost the same composition as the silicon oxide film (Sin2), and the crystal grain agglomerates of the high melting point metal silicide film are much larger than that of polycrystalline silicon. It is small in size, does not undergo significant crystal grain agglomeration growth during thermal processing as in the case of polycrystalline silicon, and has extremely low hygroscopicity, so it exhibits excellent insulating properties.

また、本発明方法は第一の電極配線に酸化膜を形成する
に際して、該電極配線をマスクとして露出する基板上の
絶縁膜を除去して基板の一部を露出させた後、前記高融
点金属硅化物の電極配線と露出した半導体基板の一部を
同時に酸化処理するため、その後第二の電極配線を形成
した場合、第一、第二の電極配線間及び半導体基板、第
二の電極配線間には互いに膜厚が一定の関係を保持した
酸化膜を介在でき、その結果それら酸化膜の膜厚に影響
される電気特性としての閾値電圧(vtn)等を所定状
態に制御できる。
Further, in the method of the present invention, when forming an oxide film on the first electrode wiring, the insulating film on the exposed substrate is removed using the electrode wiring as a mask to expose a part of the substrate, and then the high melting point metal is removed. Since the silicide electrode wiring and the exposed part of the semiconductor substrate are oxidized at the same time, when the second electrode wiring is formed afterwards, the silicide electrode wiring and the exposed part of the semiconductor substrate are oxidized. Oxide films whose film thicknesses maintain a constant relationship can be interposed between them, and as a result, the threshold voltage (vtn), etc., which are electrical characteristics affected by the film thicknesses of these oxide films, can be controlled to a predetermined state.

次に、本発明を二層の転送ゲート電極を有する二相駆動
方式のCCDに適用した例について第1図a〜dを参照
して説明する。
Next, an example in which the present invention is applied to a two-phase drive type CCD having two layers of transfer gate electrodes will be described with reference to FIGS. 1a to 1d.

実施例 まず、第1図aに示すように、P型Si基板1の表面を
酸化して厚さIOOOAのシリコン酸化膜2を形成し、
このシリコン酸化膜2上にスパツタ法により厚さ300
0^のMo S i 2膜を被着した後、このMoSi
2膜をフレオンガスプラズマをエッチング手段とした写
真蝕刻法により選択エッチングし、パターニングして第
一層ゲート電極3の配設後、該ゲート電極3をマスクと
して露出するシリコン酸化膜2の部分をNH4F溶液で
エッチング除去して第1図bの如くP型Si基板1の一
部に露出部4を形成した。
EXAMPLE First, as shown in FIG. 1a, the surface of a P-type Si substrate 1 is oxidized to form a silicon oxide film 2 with a thickness of IOOOA.
A film with a thickness of 300 mm is deposited on this silicon oxide film 2 by sputtering.
After depositing the MoSi2 film of 0^, this MoSi
After selectively etching and patterning the two films by photolithography using Freon gas plasma as an etching means and forming the first layer gate electrode 3, the exposed portion of the silicon oxide film 2 is etched with NH4F using the gate electrode 3 as a mask. By etching away with a solution, an exposed portion 4 was formed in a part of the P-type Si substrate 1 as shown in FIG. 1b.

次いで、約1000℃の酸化性ガス中で熱処理して第1
図Cに示すように第一層ゲート電極3の表面に厚さ45
0AのMoSi2の酸化膜5及びP型Si基板1の露出
部4に同厚さのシリコン酸化膜6を形成した後、再度第
二層ゲート電罹材料としてのMoSi2膜を被着しパタ
ーニングして、第一層ゲート電極3に両側部が一部重な
るような第二層ゲート電極7を配設した(第1図d図示
)。
Next, the first
As shown in Figure C, the surface of the first layer gate electrode 3 has a thickness of 45 mm.
After forming a silicon oxide film 6 of the same thickness on the 0A MoSi2 oxide film 5 and the exposed portion 4 of the P-type Si substrate 1, a MoSi2 film as a second layer gate electrode material is again deposited and patterned. A second layer gate electrode 7 was provided so that both side portions of the second layer gate electrode 7 partially overlapped with the first layer gate electrode 3 (as shown in FIG. 1d).

この後、図示していないが、拡散工程を経て人出のTr
を形成した後、CVD酸化膜を被覆し、コンタクトホー
ルをあけ,Al膜を蒸着、バターニングして、隣接して
対をなす第一層ゲート電極と第二層ゲート電極を接続す
る配線や入出力電極配線を施してCCDを造った。
After this, although not shown, the Tr
After forming a CVD oxide film, a contact hole is formed, an Al film is deposited and patterned, and wiring and inputs are formed to connect an adjacent pair of first and second layer gate electrodes. A CCD was fabricated by wiring the output electrodes.

得られたCCD における第一層ゲート電極3及び第二
層ゲート電極Iの比抵抗を調べたところ、それら比抵抗
はいずれも1×10−4Ω一cm程度と、従来の高濃度
不純物を含む多結晶シリコンからなるゲート電極よりも
約1桁小さく、ゲート電極の信号の伝播速度が速められ
高速動作が可能となることがわかった。
When we investigated the specific resistance of the first layer gate electrode 3 and the second layer gate electrode I in the obtained CCD, we found that both of them were about 1 x 10-4 ohm 1 cm, which is different from the conventional multilayer film containing high concentration impurities. It was found that the gate electrode is about one order of magnitude smaller than a gate electrode made of crystalline silicon, and the signal propagation speed of the gate electrode is increased, enabling high-speed operation.

また、第一層ゲート電極3と第二層ゲート電極7の対向
面積を0.0028d とし、これら第一層、第二層の
ゲート電極3,7間の耐圧試験を行なったところ、第2
図の如き結果を得た。
In addition, when the opposing area of the first layer gate electrode 3 and the second layer gate electrode 7 was set to 0.0028 d, and a withstand voltage test was conducted between the first and second layer gate electrodes 3 and 7, the second layer gate electrode 3 and the second layer gate electrode 7 were tested.
The results shown in the figure were obtained.

この図から明らかなように、絶縁破壊電圧は35〜45
Vに分布し,中心値での平均絶縁破壊強度は9 X10
6V/cmと非常に良好であった。
As is clear from this figure, the breakdown voltage is 35 to 45
The average dielectric breakdown strength at the center value is 9 x 10
The voltage was very good at 6V/cm.

しかも漏洩電流も約10−14A程度であり、第一層、
第二層ゲート電極3,7間の酸化膜5は優れた絶縁膜で
あることが実証された。
Moreover, the leakage current is about 10-14A, and the first layer
It has been demonstrated that the oxide film 5 between the second layer gate electrodes 3 and 7 is an excellent insulating film.

以上詳述した如く本発明によれば、素子の高速動作を可
能とし、かつ素子特性の安定性,信頼性を保障できる多
層配線構造を実現したCC D,]VIO Sダイナミ
ックRAMをはじめ、同構造のヂバイスなどの半導体装
置を製造できる等顕著な効果を有する。
As detailed above, according to the present invention, devices such as CCD, VIO S dynamic RAM, etc., which have realized a multilayer wiring structure that enables high-speed operation of the device and guarantees stability and reliability of device characteristics, can be used. It has remarkable effects such as being able to manufacture semiconductor devices such as semiconductor devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a〜dは本発明をCCDに適用した実施例の製造
工程を示す断面図、第2図は第1図a〜dの工程により
得たCODの第一層、第二層ゲート電極間の耐圧試験結
果を示す特性図である。 1・・・P型Si基板、3・・・第一層ゲート電極、5
・・・・MoSi2の酸化膜,6・・・シリコン酸化膜
、7・・・第二層ゲート電極。
Figures 1a to d are cross-sectional views showing the manufacturing process of an embodiment in which the present invention is applied to a CCD, and Figure 2 is a first layer and second layer gate electrode of the COD obtained by the steps of Figures 1a to d. FIG. DESCRIPTION OF SYMBOLS 1... P-type Si substrate, 3... First layer gate electrode, 5
. . . MoSi2 oxide film, 6 . . . silicon oxide film, 7 . . . second layer gate electrode.

Claims (1)

【特許請求の範囲】[Claims] 1 少なくとも1つの半導体素子を有する半導体装置を
製造するにあたり、半導体基板上に設けられた絶縁膜上
に高融点金属硅化物膜を被着し、選択エッチングして第
一の電極配線を形成する工程と、前記第一の電極配線を
マスクとして露出する絶縁膜を除去し半導体基板の一部
を露出せしめる工程と、前記高融点金属硅化物の電極配
線と露出した半導体基板を同時に酸化処理する工程と、
前記第一の電極配線上の酸化膜上に少なくとも一部がオ
ーバラツプするように第二の電極配線を形成する工程と
を具備したことを特徴とする半導体装置の製造方法。
1. In manufacturing a semiconductor device having at least one semiconductor element, a step of depositing a high melting point metal silicide film on an insulating film provided on a semiconductor substrate and selectively etching it to form a first electrode wiring. a step of removing the exposed insulating film using the first electrode wiring as a mask to expose a part of the semiconductor substrate; and a step of simultaneously oxidizing the high melting point metal silicide electrode wiring and the exposed semiconductor substrate. ,
A method of manufacturing a semiconductor device, comprising the step of forming a second electrode wiring so as to at least partially overlap the oxide film on the first electrode wiring.
JP4011878A 1978-04-05 1978-04-05 Manufacturing method of semiconductor device Expired JPS5814750B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4011878A JPS5814750B2 (en) 1978-04-05 1978-04-05 Manufacturing method of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4011878A JPS5814750B2 (en) 1978-04-05 1978-04-05 Manufacturing method of semiconductor device

Publications (2)

Publication Number Publication Date
JPS54132176A JPS54132176A (en) 1979-10-13
JPS5814750B2 true JPS5814750B2 (en) 1983-03-22

Family

ID=12571910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4011878A Expired JPS5814750B2 (en) 1978-04-05 1978-04-05 Manufacturing method of semiconductor device

Country Status (1)

Country Link
JP (1) JPS5814750B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5660033A (en) * 1979-10-22 1981-05-23 Chiyou Lsi Gijutsu Kenkyu Kumiai Manufacture of semiconductor device
JPS57121252A (en) * 1981-01-20 1982-07-28 Sanyo Electric Co Ltd Wiring method for semiconductor device
JPS59159564A (en) * 1983-03-02 1984-09-10 Sony Corp Solid-state photo-electric conversion device

Also Published As

Publication number Publication date
JPS54132176A (en) 1979-10-13

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
US5373192A (en) Electromigration resistance metal interconnect
JPS61166075A (en) Semiconductor device and manufacture thereof
JPH03222367A (en) Insulated gate type field effect transistor
JPS61110449A (en) Manufacture of semiconductor device
US4924281A (en) Gate structure for a MOS FET
JPH088347B2 (en) Copper-semiconductor composite that can be formed at room temperature and method for forming the same
JP2950555B2 (en) Method for manufacturing semiconductor device
JPH0778975A (en) Insulated gate field-effect transistor
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPS609160A (en) Semiconductor device and manufacture thereof
JPS60193333A (en) Manufacture of semiconductor device
JPS6327864B2 (en)
JPS60775A (en) Semiconductor device and manufacture thereof
JPS5919378A (en) Insulated gate type transistor and manufacture thereof
JPS61245552A (en) Manufacture of semiconductor device
JPH01120051A (en) Semiconductor device
JPS6151941A (en) Manufacture of electrode wiring film
JPS61135156A (en) Semiconductor device and manufacture thereof
JPH06181219A (en) Manufacture of semiconductor device
JPS6132477A (en) Manufacture of semiconductor device
JPS603156A (en) Manufacture of semiconductor device
JPS6057974A (en) Manufacture of semiconductor device
JPS59136973A (en) Semiconductor device
JPS6333305B2 (en)