JPS6057974A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6057974A
JPS6057974A JP16695283A JP16695283A JPS6057974A JP S6057974 A JPS6057974 A JP S6057974A JP 16695283 A JP16695283 A JP 16695283A JP 16695283 A JP16695283 A JP 16695283A JP S6057974 A JPS6057974 A JP S6057974A
Authority
JP
Japan
Prior art keywords
film
layer
polycrystalline silicon
gate
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP16695283A
Other languages
Japanese (ja)
Inventor
Koichi Kugimiya
公一 釘宮
Shohei Shinohara
篠原 昭平
Shozo Okada
岡田 昌三
Masanori Fukumoto
正紀 福本
Juro Yasui
安井 十郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP16695283A priority Critical patent/JPS6057974A/en
Publication of JPS6057974A publication Critical patent/JPS6057974A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

PURPOSE:To enable to thin film thickness of the first layer polycyrstalline silicon film, and to facilitate etching of the two layer film of a semiconductor device by a method wherein the polycrystalline silicon film is formed on a gate oxide film, a natural oxide film, etc. generated thereon are removed, and a metal film or a metal silicide film is formed thereon in the condition not reformed with the films thereof. CONSTITUTION:After field oxide films 2 and a gate oxide film 3 are formed on a silicon substrate 1, a doped polycrystalline silicon film 4' of 1,000Angstrom film thickness if formed, for example. A natural oxide film 7 generated at this time is removed, and at the same time, an MoSi2 film 5 of 2,000Angstrom thickness, for example, is deposited according to the sputtering method in succession without exporsing in an oxidizing atmosphere as not to be reformed with the natual oxide film. A gate pattern is formed by a photo resist, and the two layer film is etched using the gate pattern therof as a mask. After the resist is removed, heat treatment is performed to reduce resistance of the MoSi2 film 5. The polycrystalline silicon film 4' is converted into an N<+> type doped silicon film 4 accroding to activation of phosphorus by this process. Accordingly, the gate electrodes 4, 5 are formed. After then, a source and the drain 6 are formed according to ion implantation.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は多結晶シリコンを第1層とし金属あるいは金属
シリサイドを第2層とするゲート材料を有する半導体装
置の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a semiconductor device having a gate material having a first layer of polycrystalline silicon and a second layer of metal or metal silicide.

従来例の構成とその問題点 半導体装置はますます高密度化すなわち微細化される傾
向にあり、そのための様々な問題が明らかになってきて
いる。その問題点のひとつとして、従来用いられてきた
多結晶シリコンゲートではゲート材料である多結晶シリ
コンの抵抗が高いため微細化されていくに従って配線に
よる信号の遅延をもたらすということがある。この配線
遅延についてはゲート材料を多結晶シリコンからよシ低
抵抗である金属あるいは金属シリサイドあるいはこれら
と多結晶シリコンとの2層構造に置き換えることにより
改善が図られている。
Conventional Structures and Problems Semiconductor devices are becoming increasingly denser, that is, more miniaturized, and various problems have become apparent. One of the problems with conventionally used polycrystalline silicon gates is that the resistance of polycrystalline silicon, which is the gate material, is high, so as gates become smaller, signals are delayed by wiring. This wiring delay has been improved by replacing polycrystalline silicon with a metal or metal silicide, which has a much lower resistance, or a two-layer structure of these and polycrystalline silicon as the gate material.

多結晶シリコンを低抵抗材料に置き換える場合、多結晶
シリコンゲートプロセスの特長あるいはプロセスの互換
性をできるかぎり失なわないことが望ましい。1000
“°C程度の耐熱性を有し、ソース、ドレインのセルフ
ァライン拡散が可能であるという特長を持つMOやWの
ような高融点金属や上記2つの特長に加えて耐酸化性と
弗酸などに対する耐薬品性などの特長をもつ高融点金属
クリサイドが、ゲートの配線抵抗を低くする材料として
使われ始めている。しかしながら高融点金属や高融点金
属シリサイドを多結晶シリコンと単に置き換えることは
できない。なぜなら、高融点金属あるいは高融点金属シ
リサイドは現在では原料としての純度が悪くトランジス
タの動作に影響を与えるNaイオンのような可動イオン
を含んでいること、またこれらの材料は多結晶シリコン
と仕事関数が異なることからトランジスタ特性が変わる
ということがあるからである。このような欠点を取シ除
くべく採用されているのが、多結晶シリコン第1層、高
融点金属あるいは高融点金属シリサイドを第2層とする
2層構造である。この2層構造を採用すれば、第1層目
の多結晶シリコンの存在により第2層目の材料に含捷れ
るアルカリイオン等の可動イオンの拡散が防止でき、か
つトランジスタ特性は第1層目の多結晶シリコンで規定
されるため多結晶シリコンゲートと変わらず、ゲート形
成以外のプロセスは多結晶シリコンゲートプロセスと同
様でよい。
When replacing polycrystalline silicon with a low resistance material, it is desirable to maintain as much of the features or process compatibility of the polycrystalline silicon gate process as possible. 1000
“High-melting point metals such as MO and W, which have heat resistance of about °C and enable self-line diffusion of sources and drains, and metals with oxidation resistance and hydrofluoric acid, which have the above two features, High melting point metal silicide, which has features such as chemical resistance, is beginning to be used as a material to lower gate wiring resistance.However, high melting point metals and high melting point metal silicide cannot simply be replaced with polycrystalline silicon. Currently, high-melting point metals or high-melting point metal silicides have poor purity as raw materials and contain mobile ions such as Na ions that affect transistor operation, and these materials have a work function that is similar to that of polycrystalline silicon. This is because the transistor characteristics may change due to the difference in characteristics.In order to eliminate these drawbacks, a first layer of polycrystalline silicon and a second layer of high melting point metal or high melting point metal silicide have been adopted. If this two-layer structure is adopted, the presence of polycrystalline silicon in the first layer can prevent the diffusion of mobile ions such as alkali ions contained in the material of the second layer. In addition, since the transistor characteristics are defined by the first layer of polycrystalline silicon, they are no different from those of polycrystalline silicon gates, and processes other than gate formation may be the same as polycrystalline silicon gate processes.

上記の2層ゲート構造の従来プロセスの1例を第1図に
示す。シリコン基板1上にフィールド酸化膜2、ゲート
酸化膜3を形成したのち、約2000〜3000へのN
+拡散された多結晶シリコン層4を形成する(第1図a
)。この多結晶シリコンへのN型不純物の導入は多結晶
シリコンの堆積時に同時に行なう場合もあり、またアン
ドープの多結晶シリコンを堆積したのちにN+拡散する
場合もある。この多結晶シリコンへのN+ドーピングは
トランジスタ特性を安定化させるためのものである。N
+拡散された多結晶シリコン上に高融点金属あるいは高
融点金属シリサイド5を堆積する申)。たとえば、約2
000〜3000へのMo512をスパッタ法によシ堆
積する。次にフォトレジストでゲートパターン形成し、
2層膜をエツチングする(C)。ゲートパターン形成の
のち、たとえば第2層がMOSi2の場合には、100
0”C,30分の熱処理を窒素雰囲気中で行ないMoS
 i2の抵抗を下げる。その後の、ソース・ドレイン6
をイオン注入して形成(d)、層間絶縁膜形成、Al電
極形成、パッシベーション膜形成などは通常の多結晶シ
リコンゲートプロセスと同様である。
An example of a conventional process for the above two-layer gate structure is shown in FIG. After forming a field oxide film 2 and a gate oxide film 3 on a silicon substrate 1, the N
+ Forming a diffused polycrystalline silicon layer 4 (Fig. 1a)
). The introduction of N-type impurities into polycrystalline silicon may be carried out simultaneously with the deposition of polycrystalline silicon, or N+ diffusion may be carried out after undoped polycrystalline silicon is deposited. This N+ doping into polycrystalline silicon is for stabilizing transistor characteristics. N
+ depositing a refractory metal or a refractory metal silicide 5 on the diffused polycrystalline silicon). For example, about 2
Mo512 having a molecular weight of 000 to 3000 is deposited by sputtering. Next, form a gate pattern with photoresist,
Etching the two-layer film (C). After forming the gate pattern, for example, when the second layer is MOSi2, 100
MoS was heat treated at 0''C for 30 minutes in a nitrogen atmosphere.
Lower the resistance of i2. After that, source/drain 6
Formation by ion implantation (d), formation of an interlayer insulating film, formation of an Al electrode, formation of a passivation film, etc. are the same as in a normal polycrystalline silicon gate process.

先に述べたように2層構造にすると、高融点金属やその
シリサイドを単独で用いる場合に比べてすぐれた特長を
有するが、以下に述べるような問題点がある。そのひと
つが、ゲート酸化膜の耐圧の劣化である。半導体装置の
製造には現在一般的に900”C以上の熱処理が必要と
され、特にゲート材料としてMo S i 2 、 W
S 12のような高融点金属シリサイドを用いる場合に
はその抵抗を下げるために約1000°Cの熱処理が必
要とされる。ゲート材料形成後このような熱処理を加え
ると、グー1酸化膜の耐圧が劣化する。この耐圧劣化は
、第1層多結晶シリコンの膜厚に依存することが判明し
ている。
As mentioned above, a two-layer structure has superior features compared to the case where a high melting point metal or its silicide is used alone, but there are problems as described below. One of these is the deterioration of the breakdown voltage of the gate oxide film. Currently, the manufacture of semiconductor devices generally requires heat treatment at 900"C or higher, especially when using MoSi2, W as the gate material.
When using a high melting point metal silicide such as S12, heat treatment at about 1000°C is required to lower its resistance. If such heat treatment is applied after forming the gate material, the withstand voltage of the Goo-1 oxide film will deteriorate. It has been found that this breakdown voltage deterioration depends on the film thickness of the first layer polycrystalline silicon.

第2図に260μm角のMOSダイオード(ゲート酸化
膜厚350人)の耐圧の多結晶シリコン膜厚依存性を示
す。この図より1多結晶シリコン膜厚が約1600Å以
上でないとゲート酸化膜耐圧の歩留が急激に低下するこ
とがわかる。半導体装置の微細化が問題となってきてい
る現在、横方向の微細化だけでなく、縦方向の微細化ま
たは平坦化が必要とされている。ゲートとして2層構造
を用いる場合、第2層目の高融点金属あるいは高融点金
属シリサイドもゲート材料として抵抗を低くするためあ
る程度の膜厚が必要とされるので、第1層目の多結晶シ
リコン層もできるだけ薄く形成することが望まれる。し
かしながらゲート酸化膜耐圧の問題のためこれまでは2
000八以上の多結晶シリコン層が用いられてきた。
FIG. 2 shows the dependence of the withstand voltage of a 260 μm square MOS diode (gate oxide film thickness: 350 μm) on the polycrystalline silicon film thickness. From this figure, it can be seen that unless the thickness of the polycrystalline silicon film is about 1600 Å or more, the yield of the gate oxide film breakdown voltage decreases rapidly. Currently, miniaturization of semiconductor devices has become a problem, and not only lateral miniaturization but also vertical miniaturization or planarization is required. When using a two-layer structure as a gate, the second layer of high-melting point metal or high-melting point metal silicide must also have a certain film thickness to lower the resistance as the gate material, so the first layer of polycrystalline silicon It is also desirable to form the layer as thin as possible. However, due to problems with gate oxide film breakdown voltage, it has been
Polycrystalline silicon layers of 0.008 or higher have been used.

このような厚いシリコン層を用うる時には2層膜のエツ
チングの問題がある。フォトレジストをマスクにして2
層膜を1度にドライエツチングするが、CF4やCCl
4などのガスを用いる場合、第1層のN+拡散された多
結晶シリコンの工yfング速度が、第2層の高融点金属
や高融点金属シリサイドのエツチング速度に比べて大き
く、そのために第2層のパターンエツジの内側に第1層
のエツチングが進行するサイドエッチが生じ、第1図(
C)に示すようにアンダーカットの状態となる。
When such a thick silicon layer is used, there is a problem of etching the two-layer film. Using photoresist as a mask 2
The layers are dry etched at once, but CF4 and CCl
When a gas such as No. 4 is used, the etching rate of the N+ diffused polycrystalline silicon in the first layer is higher than that of the refractory metal or refractory metal silicide in the second layer. A side etch where the etching of the first layer progresses occurs inside the pattern edge of the layer, as shown in Figure 1 (
As shown in C), an undercut state occurs.

このアンダーカットが生じた場合、エツチング後の層間
絶縁膜やAI配線の形成時に段差をおおいきれなくなる
可能性が高く、半導体装置の歩留を下げる原因となる。
If this undercut occurs, there is a high possibility that it will not be possible to cover the step when forming an interlayer insulating film or AI wiring after etching, which will cause a decrease in the yield of semiconductor devices.

このため、第1層の膜厚を薄くする必要性があった。For this reason, there was a need to reduce the thickness of the first layer.

ところで、本発明者らは先に述べたゲート酸化膜耐圧が
熱処理時の多結晶シリコンのN型不純物の濃度に依存す
ることを見い出し、その結果第2層金属あるいは金属シ
リサイドを堆積する前の第1層多結晶シリコンのN型不
純物濃度を小さくすればゲート酸化膜耐圧の劣化を防ぐ
ことができることが判明した。この原因については、本
発明者は多結晶シリコンとその上層である金属あるいは
金属シリサイドとの界面反応に起因しており、第3図に
示すように多結晶シリコン表面の自然酸化膜や汚染の存
在が耐圧劣化の原因であると推定している。
By the way, the present inventors have found that the above-mentioned gate oxide film breakdown voltage depends on the concentration of N-type impurities in polycrystalline silicon during heat treatment. It has been found that deterioration of the gate oxide film breakdown voltage can be prevented by reducing the N-type impurity concentration of the single layer polycrystalline silicon. The inventor believes that this is due to an interfacial reaction between polycrystalline silicon and the metal or metal silicide layer above it, and as shown in Figure 3, the presence of a natural oxide film or contamination on the surface of polycrystalline silicon. It is estimated that this is the cause of the breakdown voltage deterioration.

即ち、第3図(b)に示すように従来法では、酸化膜7
のために局所的な反応が生じ、その時に生ずる応力によ
ってさらに反応が加速され、耐圧劣化になると思われる
。本発明の方法によれば第3図(a)に示すように酸化
膜7がないため、全体的に平均して拡散が生じ、以上の
ような不均一性が生じない。
That is, as shown in FIG. 3(b), in the conventional method, the oxide film 7
Therefore, a local reaction occurs, and the stress generated at that time further accelerates the reaction, resulting in pressure deterioration. According to the method of the present invention, as shown in FIG. 3(a), since there is no oxide film 7, diffusion occurs on average throughout, and the above-mentioned non-uniformity does not occur.

また2層膜エツチングにおいても、多結晶シリコンの厚
さが小さくなり、アンダーカットを生じにくくすること
ができることが判明した。
It has also been found that in double-layer film etching, the thickness of polycrystalline silicon can be reduced, making undercuts less likely to occur.

発明の目的 本発明は以上のような問題に鑑み、第1層多結晶シリコ
ン膜厚を3oo人から1500人とうすくしてもゲート
酸化膜耐圧の劣化を生ぜず、かつ加工しやすい低抵抗ゲ
ート配線を有する半導体装置およびその製造方法を提供
することを目的とする。
Purpose of the Invention In view of the above problems, the present invention provides a low-resistance gate that does not cause deterioration in gate oxide film breakdown voltage even when the thickness of the first layer polycrystalline silicon film is reduced from 300 to 1500, and is easy to process. An object of the present invention is to provide a semiconductor device having wiring and a method for manufacturing the same.

発明の構成 本発明は、ゲート絶縁膜上に第1層多結晶シリコンを形
成したのち、その上に生ずる自然酸化膜を除去しその上
に金属あるいは金属シリサイドからなる第2層を形成す
る工程により、その後の熱処理によるゲート酸化膜耐圧
劣化が防げ、第1層多結晶シリコンを300人から15
00人の膜厚とすることができ、かつ2層膜を良好にエ
ツチングすることを可能とする。なお、2層膜を形成す
る工程の前後にイオン注入法、気相拡散法、または固相
拡散、法によシネ細物をドーピングし、熱拡散すること
により、多結晶シリコンをN+化し、多結晶シリコンゲ
ートと同様の安定したトランジスタ特性を得ることをも
可能とするものである。
Structure of the Invention The present invention involves a step of forming a first layer of polycrystalline silicon on a gate insulating film, removing a natural oxide film formed thereon, and forming a second layer of metal or metal silicide thereon. , the gate oxide film breakdown voltage deterioration due to subsequent heat treatment can be prevented, and the first layer polycrystalline silicon can be reduced from 300 to 15
It is possible to achieve a film thickness of 0.000 mm, and to perform good etching of a two-layer film. Note that before and after the step of forming the two-layer film, the polycrystalline silicon is converted to N+ by doping with a thin film by ion implantation, vapor phase diffusion, or solid phase diffusion, followed by thermal diffusion. It also makes it possible to obtain stable transistor characteristics similar to those of crystalline silicon gates.

実施例の説明 第4図に本発明の一実施例の方法を示す。シリコン基板
1上にフィールド酸化膜2、ゲート酸化膜3形成の後、
たとえば膜厚1o00人のドープした多結晶シリコン4
′を形成する(a)。この時生1゜ じた自然酸化膜7を除去すると同時に、自然酸化膜が再
形成されないように続いて、酸化性雰囲気にさらすこと
なくたとえば2000人のMoS i 2膜5をス・バ
ッタ法により堆積する0))。フォトレジストでゲート
パターンを形成しそれをマスクに2層膜のエツチングを
行なう(c)。レジストを除去した後M o S i 
2膜5の抵抗を下げるための熱処理をたとえば1000
“’C,300膜3素雰囲気中で行なう。この工程で多
結晶シリコン4′は燐の活性化により N+ドープされ
たシリコン4となる(d)。こうして4,5よりなるゲ
ート電極が作成される。
DESCRIPTION OF THE EMBODIMENTS FIG. 4 shows a method according to an embodiment of the present invention. After forming field oxide film 2 and gate oxide film 3 on silicon substrate 1,
For example, doped polycrystalline silicon 4 with a film thickness of 1000
(a). At this time, the 1° native oxide film 7 is removed, and at the same time, to prevent the natural oxide film from being re-formed, for example, a 2,000-layer MoSi 2 film 5 is removed by a sputtering method without exposing it to an oxidizing atmosphere. Deposit 0)). A gate pattern is formed using photoresist, and the two-layer film is etched using the gate pattern as a mask (c). After removing the resist M o Si
For example, the heat treatment to lower the resistance of the two films 5 is performed at 1000
"'C, 300 film is carried out in a 3-element atmosphere. In this step, the polycrystalline silicon 4' becomes N+ doped silicon 4 by activation of phosphorus (d). In this way, a gate electrode consisting of 4 and 5 is created. Ru.

その後のソース・ドレイン6をイオン注入により形成し
、以降の工程は通常の多結晶シリコンゲートプロセスと
同様である。
Thereafter, the source/drain 6 is formed by ion implantation, and the subsequent steps are similar to a normal polycrystalline silicon gate process.

以上に示したような本実施例を用いれば、第1層多結晶
シリコン膜厚が1500A以下でもゲート酸化膜耐圧劣
化を防ぐことができる。第5図に第4図と同じMOSダ
イオードを本実施例の工程を用いて作成したときのゲー
ト酸化膜耐圧の多結晶シリコン膜厚依存性を示す。多結
晶シリコン膜厚を300人まで薄くしても耐圧の歩留は
ほぼ100%であることが判明した。多結晶シリコン膜
厚300Å以下ではトランジスタ特性が多結晶シリコン
によって規定されなくなり、意味がなくなる。また、多
結晶シリコンのエツチング速度はN 拡散されたものに
比ベアンドープでは約半分となり、はぼMo S ! 
2のエツチング速度と同程度となることから、アンダー
カプトを生じにくく、マスクパターンに忠実な2層膜パ
ターンが形成できた。
By using this embodiment as described above, it is possible to prevent gate oxide film breakdown voltage from deteriorating even if the first layer polycrystalline silicon film thickness is 1500 Å or less. FIG. 5 shows the dependence of the gate oxide film breakdown voltage on the polycrystalline silicon film thickness when the same MOS diode as shown in FIG. 4 was fabricated using the process of this embodiment. It was found that even if the thickness of the polycrystalline silicon film was reduced to 300, the yield of withstand voltage was almost 100%. When the thickness of the polycrystalline silicon film is less than 300 Å, the transistor characteristics are no longer defined by the polycrystalline silicon, and there is no meaning. In addition, the etching rate of polycrystalline silicon is about half that of bare-doped polycrystalline silicon compared to that of N-diffused silicon;
Since the etching rate was about the same as that of No. 2, it was possible to form a two-layer film pattern that was less likely to cause undercapsulation and faithful to the mask pattern.

なお、実施例では第2層の材料としてM o S 12
を用いたが、Mo−jWのような金属や、WS 121
T I S 121 T a S 12 のような金属
シリサイドを用いてもよく、またこれらを組み合わせた
複層構造でもよい。
In addition, in the example, M o S 12 was used as the material of the second layer.
was used, but metals such as Mo-jW and WS 121
A metal silicide such as T I S 121 T a S 12 may be used, or a multilayer structure combining these may be used.

また、2層膜形成後にドーピングをイオン注入法や、P
OCl3.PH3などを用いた気相拡散法や、燐化ケイ
素ガラス等を用いた固相拡散法によってもよい。後でド
ーピングする方法では、第1層に形成される自然酸化膜
が非常に薄いので有利である。ドーピング種は燐に限ら
ず、砒素等のN型不純物または硼素等のP型不純物でも
よい。
In addition, after the two-layer film is formed, doping can be carried out using ion implantation method or P
OCl3. A gas phase diffusion method using PH3 or the like or a solid phase diffusion method using silicon phosphide glass or the like may be used. The later doping method is advantageous because the native oxide formed in the first layer is very thin. The doping species is not limited to phosphorus, but may be an N-type impurity such as arsenic or a P-type impurity such as boron.

なお、清浄化工程すなわち自然酸化膜7や汚染物の除去
工程は、逆スパッターやH2アニール(700“′C以
上)を用いても同様の結果が得られた。
In the cleaning process, that is, the process of removing the natural oxide film 7 and contaminants, similar results were obtained even when reverse sputtering or H2 annealing (700''C or higher) was used.

チャンネル長1.5μm、巾5μmのテストトランジス
ターにおけるvT変動(ΔvT)を第6図に示す。信頼
性を試すBTテストは、150“C210■で行った。
FIG. 6 shows vT variation (ΔvT) in a test transistor with a channel length of 1.5 μm and a width of 5 μm. The BT test to test reliability was conducted with 150"C210■.

ポリシリコン層なしのMO812単層のものでは、実線
11に示すように100mvを越す変動があり、従来の
ポリシリコン層単層のものを示す実線12に比べ非常に
大きい。これに対して、本発明におけるもの、ポリシリ
コン層1500人(一点鎖線13)、300人(点線1
4)では、後者がやや大きなりTの変動を生じているが
、共に従来のポリシリコン単層2のバラツキの範囲内に
あった。以上のように本発明では信頼性上も問題のない
ことが証明された。
In the MO812 single layer without a polysilicon layer, there is a variation of more than 100 mV as shown by the solid line 11, which is much larger than the solid line 12 showing the conventional single polysilicon layer. In contrast, in the present invention, the polysilicon layer has 1,500 layers (dotted line 13) and 300 layers (dotted line 1).
In 4), although the latter caused a somewhat large variation in T, both were within the range of variation in the conventional polysilicon single layer 2. As described above, it has been proven that the present invention poses no problems in terms of reliability.

発明の効果 3 以上のように、本発明はゲート酸化膜上に多結晶シリコ
ンを形成し、その上に形成された自然酸化膜等を除去し
、それらが再形成されない状態でその上に金属あるいは
金属シリサイドを形成することにより、熱処理に起因す
るゲート酸化膜耐圧劣化を防ぐことができる。その結果
、第1層多結晶シリコンの膜厚を従来得られなかった3
00人と から160〇八と薄くすることが可能特なり、ゲート材
料の抵抗値を高くすることなく半導体装置の平坦化に寄
与するという効果が得られる。また、多結晶シリコンを
非常に薄くてもよいことから、2層膜のエツチングにお
いてアンダーカットを余り生じることがなく、エツチン
グによる加工が容易となる効果を得ることができる。そ
して、信頼性についても問題のないことが確認された。
Effect 3 of the Invention As described above, the present invention forms polycrystalline silicon on a gate oxide film, removes the natural oxide film formed on it, and deposits metal or By forming metal silicide, it is possible to prevent the breakdown voltage of the gate oxide film from deteriorating due to heat treatment. As a result, the film thickness of the first layer of polycrystalline silicon was increased to 3.
In particular, it is possible to reduce the thickness from 0.00 to 160.08 mm, which has the effect of contributing to planarization of the semiconductor device without increasing the resistance value of the gate material. In addition, since the polycrystalline silicon can be very thin, undercuts are less likely to occur during etching of the two-layer film, and the effect of facilitating etching processing can be obtained. It was also confirmed that there were no problems with reliability.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(d)は従来のゲート形成プロセスを示
した断面図、第2図は従来プロセスにより作製したMO
Sダイオードのゲート酸化膜耐圧の多結晶シリコン膜厚
依存性を示す図、第3図(荀、 (heは本4 発明者らが推定する耐圧劣化を説明するモデル図、第4
図(−)〜(e)は本発明によるゲート形成プロセスの
一実施例を示した断面図、第5図は本発明によるプロセ
スにより作製したMOSダイオードのゲート酸化膜耐圧
の多結晶シリコン膜厚依存性の改善例を示す図、第6図
は信頼性試験の結果を示す図である。 1・・・・・シリコン基板、3・・・・・・ゲート酸化
、4・・・パ°N+多結晶シリコン層、4′・・・・・
・アンドープ多結晶シリコン層、6・・・・・金属ある
いは金属シリサイド層、7・・・ 自然酸化膜や汚染。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名聾 
N \ 諭寸へ \ −S 巴 N \ N 3 マ c3 −コ () ζノ ++J ++J r1 P+S も り 吊5図 多結晶シワコン膜厚(わ 第6図 □ 時 間 C−□r)
Figures 1 (,) to (d) are cross-sectional views showing the conventional gate formation process, and Figure 2 is the MO fabricated using the conventional process.
A diagram showing the dependence of the gate oxide film breakdown voltage of an S diode on the polycrystalline silicon film thickness.
Figures (-) to (e) are cross-sectional views showing an example of the gate formation process according to the present invention, and Figure 5 is the dependence of the gate oxide film breakdown voltage on the polycrystalline silicon film thickness of the MOS diode manufactured by the process according to the present invention. FIG. 6 is a diagram showing an example of improvement in reliability, and FIG. 6 is a diagram showing the results of a reliability test. 1...Silicon substrate, 3...Gate oxidation, 4...Par°N+polycrystalline silicon layer, 4'...
- Undoped polycrystalline silicon layer, 6...Metal or metal silicide layer, 7... Natural oxide film or contamination. Name of agent: Patent attorney Toshio Nakao and one other person who is deaf
N \ To measurement \ -S Tomoe N \ N 3 ma c3 -ko () ζノ ++J ++J r1 P+S Figure 5 Polycrystalline wrinkled film thickness (Figure 6 □ Time C-□r)

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板上にゲート絶縁膜を形成する工程、前
記絶縁膜上に多結晶シリコンを第1層として形成する工
程、前記第1層表面に形成された自然酸化膜や汚染層を
除去する清浄化工程、さらにこの清浄化工程層、酸化性
雰囲気にさらすことなく金属あるいは金属シリサイドの
単層ないしは複数層を第2層として積層したゲート層を
形成する工程を含むことを特徴とした半導体装置の製造
方法。
(1) A step of forming a gate insulating film on a semiconductor substrate, a step of forming polycrystalline silicon as a first layer on the insulating film, and removing a natural oxide film and a contaminant layer formed on the surface of the first layer. A semiconductor device characterized by comprising a cleaning step and a step of forming a gate layer in which a single layer or multiple layers of metal or metal silicide are laminated as a second layer without exposing the cleaning step layer to an oxidizing atmosphere. manufacturing method.
(2)清浄化工程として、逆スパッター法を用うろこと
を特徴とする特許請求の範囲第1項記載の半導体装置の
製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the cleaning step is performed using a scale using a reverse sputtering method.
(3)清浄化工程として、水素アニールを用いることを
特徴とする特許請求の範囲第1項記載の半導体装置の製
造方法。 半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein hydrogen annealing is used as the cleaning step. A method for manufacturing a semiconductor device.
JP16695283A 1983-09-09 1983-09-09 Manufacture of semiconductor device Pending JPS6057974A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16695283A JPS6057974A (en) 1983-09-09 1983-09-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16695283A JPS6057974A (en) 1983-09-09 1983-09-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6057974A true JPS6057974A (en) 1985-04-03

Family

ID=15840662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16695283A Pending JPS6057974A (en) 1983-09-09 1983-09-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6057974A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136342A (en) * 1987-10-22 1989-05-29 Ncr Corp Method of reducing self-burning oxde for sealing nitride deposition
JPH11145474A (en) * 1997-08-16 1999-05-28 Samsung Electron Co Ltd Gate electrode forming method of semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662339A (en) * 1979-10-26 1981-05-28 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device
JPS57138159A (en) * 1981-02-20 1982-08-26 Fujitsu Ltd Formation of thin film

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5662339A (en) * 1979-10-26 1981-05-28 Chiyou Lsi Gijutsu Kenkyu Kumiai Production of semiconductor device
JPS57138159A (en) * 1981-02-20 1982-08-26 Fujitsu Ltd Formation of thin film

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01136342A (en) * 1987-10-22 1989-05-29 Ncr Corp Method of reducing self-burning oxde for sealing nitride deposition
JPH11145474A (en) * 1997-08-16 1999-05-28 Samsung Electron Co Ltd Gate electrode forming method of semiconductor device

Similar Documents

Publication Publication Date Title
US4954867A (en) Semiconductor device with silicon oxynitride over refractory metal gate electrode in LDD structure
JP4002868B2 (en) Dual gate structure and method of manufacturing integrated circuit having dual gate structure
JPH03173480A (en) Manufacture of semiconductor device having multilayer conduction line lying on board
JP3626773B2 (en) Conductive layer of semiconductor device, MOSFET, and manufacturing method thereof
JPS5946107B2 (en) Manufacturing method of MIS type semiconductor device
JPH11289087A (en) Semiconductor device and its manufacture
JPS6057974A (en) Manufacture of semiconductor device
JPS60775A (en) Semiconductor device and manufacture thereof
JPS609160A (en) Semiconductor device and manufacture thereof
KR100200184B1 (en) Manufacturing method of semiconductor device
JPH04155967A (en) Manufacture of semiconductor device
JPH04266031A (en) Manufacture of semiconductor device
JPH07183515A (en) Manufacture of semiconductor device
JPS6057975A (en) Manufacture of semiconductor device
JPH02181918A (en) Manufacture of semiconductor device
JPS59161072A (en) Semiconductor device
KR0167601B1 (en) Method for fabricating semiconductor device
JPH0730108A (en) Mis type semiconductor device and its manufacture
JP3022629B2 (en) Semiconductor device and manufacturing method thereof
JPS5814750B2 (en) Manufacturing method of semiconductor device
JPH06181219A (en) Manufacture of semiconductor device
JPH0750411A (en) Manufacturing method of semiconductor device
KR960014721B1 (en) Method of manufacturing dos transistor
JP3191313B2 (en) Method for manufacturing semiconductor device
JPH06104428A (en) Semiconductor device and its manufacture