KR960014721B1 - Method of manufacturing dos transistor - Google Patents

Method of manufacturing dos transistor Download PDF

Info

Publication number
KR960014721B1
KR960014721B1 KR1019930012889A KR930012889A KR960014721B1 KR 960014721 B1 KR960014721 B1 KR 960014721B1 KR 1019930012889 A KR1019930012889 A KR 1019930012889A KR 930012889 A KR930012889 A KR 930012889A KR 960014721 B1 KR960014721 B1 KR 960014721B1
Authority
KR
South Korea
Prior art keywords
tungsten silicide
silicide film
film
gate
temperature
Prior art date
Application number
KR1019930012889A
Other languages
Korean (ko)
Other versions
KR950004457A (en
Inventor
정성희
Original Assignee
현대전자산업 주식회사
김주용
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 현대전자산업 주식회사, 김주용 filed Critical 현대전자산업 주식회사
Priority to KR1019930012889A priority Critical patent/KR960014721B1/en
Publication of KR950004457A publication Critical patent/KR950004457A/en
Application granted granted Critical
Publication of KR960014721B1 publication Critical patent/KR960014721B1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

depositing a gate oxide(3) and a doped polysilicone layer(4) on a silicone substrate(1), and depositing a first tungsten silicide film(5) with a Si/W ratio of 2.6 on top of the wafer at the temperature of 390-400 deg.C; depositing a second tungsten silicide film(6) with a Si/W ratio of 2.8 on the first tungsten silicide film(5) at the temperature of 450-500 deg.C; depositing a third tungsten silicide film(7) with a Si/W ratio of 2.0 on the second tungsten silicide film(6) at the temperature of 390-400 deg.C; and forming a polycide gate(10) by patterning process using a gate mask.

Description

MOS트랜지스터 제조방법MOS transistor manufacturing method

제1도 내지 제4도에 의해 본 발명의 MOS트랜지스터의 폴리사이드 구조의 게이트를 제조하는 단계를 도시한 단면도.1 through 4 are cross-sectional views showing the steps of manufacturing a gate of the polyside structure of the MOS transistor of the present invention.

* 도면의 주요부분에 대한 부호의 설명* Explanation of symbols for main parts of the drawings

1 : 실리콘기판 2 : 소자분리막1: silicon substrate 2: device isolation film

3 : 게이트 산화막 4 : 폴리실리콘층3: gate oxide film 4: polysilicon layer

5 : 제1텅스텐 실리사이드막 6 : 제2텅스텐 실리사이드막5: first tungsten silicide film 6: second tungsten silicide film

7 : 제3텅스텐 실리사이드막 10 : 게이트7: third tungsten silicide film 10: gate

본 발명은 고집적 반도체소자인 MOS트랜지스터 제조방법에 관한 것으로, 특히 텅스텐 실리사이드막를 증착할때 다른 조건을 갖는 3단계 공정에 걸쳐 텅스텐 실리사이드를 증착하여 게이트 산화막에 대한 불소(Fluorine)이온의 영향을 줄여 게이트 산화막 특성을 개선시킨 MOS트랜지스터 제조방법에 관한 것이다.The present invention relates to a method for manufacturing a MOS transistor, which is a highly integrated semiconductor device, and in particular, by depositing tungsten silicide over a three-step process having different conditions when depositing a tungsten silicide film, the effect of fluorine ions on the gate oxide film is reduced. The present invention relates to a MOS transistor manufacturing method having improved oxide film characteristics.

현재 일반적으로 텅스텐 폴리사이드 구조를 게이트에 적용할때 WF6와 SiH4환원에 의한 CVD(Chemical Vapour Deposition)로 텅스텐 실리사이드를 증착하는데 면저항 개선에서 폴리실리콘층만 이용한 게이트에 비해 장점이 있지만 텅스텐 실리사이드(WSix)막내에 포함되어 있는 불소이온이 다음과 같은 메카니즘(Mechanism)에 의해 게이트 산화막에 영향을 미친다.Currently, when tungsten polyside structure is applied to the gate, tungsten silicide is deposited by chemical vapor deposition (CVD) by WF 6 and SiH 4 reduction. Tungsten silicide ( The fluorine ions contained in the WSi x ) film affect the gate oxide film by the following mechanism (Mechanism).

즉, 불소이온(F)은 게이트 산화막(SiO2)내에 있는 약한 Si-O결합을 끊고 O를 대체함으로써 전자트랩을 형성하여, 이때 분해된 O는 폴리실리콘과 실리콘기판쪽으로 확산하여 부가적인 산화막을 형성함으로써 쓰레쉬홀드 전압의 변화, 게이트 산화막의 TDDB(Constant Current Stress Test, Breakdown Voltage)특성의 열화를 유발시켜 소자를 제거하는데 많은 문제점을 야기한다.In other words, fluorine ion (F) forms an electronic trap by breaking the weak Si—O bond in the gate oxide film (SiO 2 ) and replacing O, where the decomposed O diffuses toward the polysilicon and silicon substrate to form an additional oxide film. Formation causes a change in the threshold voltage and deterioration of the TDDB (Constant Current Stress Test, Breakdown Voltage) characteristics of the gate oxide, which causes many problems in removing the device.

모노 사이렌(Mono Silane) 텅스텐 실리사이드막내에 있는 불소(fluorine)는 균일한 분포로 이루어지는데 후속공정에서 열(Thermal)공정을 가하면 불소는 농도구배(Grandient)에 의해 폴리실리콘층을 통과하여 게이트 산화막으로 확산됨으로 인하여 게이트 산화막에 불소 피크를 형성하고 또다른 불소이온은 텅스텐 실리사이드막 표면으로 확산된다.The fluorine in the monosilane tungsten silicide film has a uniform distribution. When the thermal process is applied in the subsequent process, the fluorine passes through the polysilicon layer by the concentration gradient to the gate oxide film. The diffusion forms fluorine peaks in the gate oxide film and another fluorine ion diffuses to the surface of the tungsten silicide film.

일번적으로 불순물 원자의 이동은 농도구배에 의해 고농도 위치에서 저농도 위치로 이동하는데 이때의 식은(J : 원자흐름, D : 특정솔벤트에서 확산상수, △x : 위치차이, △c : 농도경사)으로 표현된다. 이때 확산상수 D는(D0: 원자나 격자구조에서 움직이는데 필요한 포텔셜 베리어를 얻는데 필요한 주파수, Ea : Energy Barrier height, T : 온도)의 식으로 표현된다.In general, the movement of impurity atoms moves from the high concentration position to the low concentration position by the concentration gradient. (J: atomic flow, D: diffusion constant in a specific solvent, Δx: position difference, Δc: concentration gradient). Where the diffusion constant D is It is expressed as the formula (D 0 : frequency required to obtain the potential barrier to move in an atom or lattice structure, Ea: Energy Barrier height, T: temperature).

따라서, 본 발명은 상기와 같은 원자이동의 원리를 이용하여 모노 사이렌 실리사이드막 내에 불소이온의 농도를 다르게 함으로써 불소이온이 폴리실리콘층과 그 하부의 게이트 산화막으로 이용하는 것을 감소시켜 게이트 산화막의 특성을 향상시키는 MOS트랜지스터 제조방법을 제공하는데 그 목적이 있다.Accordingly, the present invention improves the characteristics of the gate oxide film by reducing the use of fluoride ions as the polysilicon layer and the gate oxide film below by varying the concentration of fluorine ions in the mono siren silicide film using the principle of atomic migration as described above. It is an object of the present invention to provide a MOS transistor manufacturing method.

이하, 첨부된 도면을 참조하여 본 발명을 상세히 설명하기로 한다.Hereinafter, with reference to the accompanying drawings will be described in detail the present invention.

제1도 내지 제4도는 본 발명에 의해 MOS트랜지스터의 게이트를 폴리사이드 구조로 제조하는 단계를 도시한 단면도이다.1 through 4 are cross-sectional views illustrating the steps of fabricating a gate of a MOS transistor into a polyside structure according to the present invention.

제1도는 실리콘기판(1)의 소정부분에 소자분리막(2)을 형성하고, 소자분리막(2)와 실리콘기판(1) 상부에 게이트 산화막(3)과 도프된 폴리실리콘층(4)을 각각 예정된 두께로 적층하고, 폴리실리콘층(4) 상부면에 Si/W조성비가 2.6정도의 제1텅스텐 실리사이드막(5)을 390∼400℃의 온도에서 일정두께 증착한 단면도이다.FIG. 1 shows the device isolation film 2 formed on a predetermined portion of the silicon substrate 1 and the gate oxide film 3 and the doped polysilicon layer 4 on the device isolation film 2 and the silicon substrate 1, respectively. It is sectional drawing which laminated | stacked to predetermined thickness, and deposited the 1st tungsten silicide film 5 of Si / W composition ratio about 2.6 on the upper surface of the polysilicon layer 4 at the temperature of 390-400 degreeC.

제2도는 제1도 공정후, 제1텅스텐 실리사이드막(5) 상부에 Si/W의 조성비가 2.8정도인 제2텅스텐 실리사이드막(6)을 450∼500℃의 온도에서 증착한 단면도로서, 제2텅스텐 실리사이드막(6)에는 불소의 양은 줄어들고 반대로 실리콘의 양은 많아진다.FIG. 2 is a cross-sectional view of depositing a second tungsten silicide film 6 having a Si / W composition ratio of about 2.8 on the first tungsten silicide film 5 at a temperature of 450 to 500 ° C. after the first drawing process. In the tungsten silicide film 6, the amount of fluorine decreases and, on the contrary, the amount of silicon increases.

제3도는 제2도 공정후, SiH4/WF6의 유량을 조절하여 Si/W의 조성비가 약 2.0정도인 제3텅스텐 실리사이드막(7)을 390∼400℃의 온도에서 증착한 단면도로서, 제1텅스텐 실리사이드막(5)/제2텅스텐 실리사이드막(6)/제3텅스텐 실리사이드막(7)의 Si/W의 조성비는 2.6/2.8/2.0이며 불소의 농도는 많음/적음/많음의 형태가 된다.3 is a cross-sectional view of depositing a third tungsten silicide film 7 having a composition ratio of Si / W of about 2.0 by adjusting the flow rate of SiH 4 / WF 6 after the process of FIG. The composition ratio of Si / W of the first tungsten silicide film 5 / the second tungsten silicide film 6 / the third tungsten silicide film 7 is 2.6 / 2.8 / 2.0 and the concentration of fluorine is high / low / high Becomes

제4도는 제3도의 공정후, 패턴닝 공정으로 제3/제2/제1텅스텐 실리사이드막(7,6,5)과 폴리실리콘층(4) 일정부분을 식각하여 폴리사이드 구조의 게이트(10)를 형성한 단면도로서, 이후 공정에서 고온공정 예를 들어 확산공정이나, 산화공정을 실시하게 되면 텅스텐 실리사이드막 상호간에 불소이동에 대한 Ea(에너지 베리어높이)는 폴리실리콘층/제1텅스텐 실리사이드막>제1텅스텐 실리사이드/제2텅스텐 실리사이드>제1텅스텐 실리사이드막/표면의 순서로 된다. 즉, Ea가 크다는 것은 불소이동이 어렵다는 것을 의미하게 되는데 제1텅스텐 실리사이드에서의 불소는 폴리실리콘층 방향보다는 제2텅스텐 실리사이드 쪽으로 이동될 것이고, 제3텅스텐 실리사이드 내의 불소는 외부표면으로 이동될 것이다.FIG. 4 is a polyside gate 10 by etching a portion of the third, second, and first tungsten silicide layers 7, 6, and 5 and the polysilicon layer 4 after the process of FIG. ) Is a cross-sectional view of a polysilicon layer and a first tungsten silicide film in which the Ea (energy barrier height) for fluorine transfer between the tungsten silicide films is subjected to a high temperature process such as a diffusion process or an oxidation process in a subsequent process. > First tungsten silicide / second tungsten silicide> first tungsten silicide film / surface. In other words, a large Ea means that fluorine migration is difficult. The fluorine in the first tungsten silicide will move toward the second tungsten silicide rather than the polysilicon layer direction, and the fluorine in the third tungsten silicide will move to the outer surface.

따라서, 제2텅스텐 실리사이드막은 제1텅스텐 실리사이드막의 불소를 흡수하는 역할을 하게됨으로서 게이트 산화막으로 비치는 불소의 영향을 감소시켜 게이트 산화막의 TDDB특성을 향상시키게 된다.Accordingly, the second tungsten silicide film serves to absorb fluorine in the first tungsten silicide film, thereby reducing the influence of fluorine on the gate oxide film, thereby improving the TDDB characteristics of the gate oxide film.

그리고 상대적으로 높는 온도(450∼500℃)에서 텅스텐 실리사이드막을 증착함으로써 결정화가 더 이루어져 텅스텐 실리콘막의 온도에 대한 스트레스변화는 390∼400℃에서 증착된 텅스텐 실리사이드막에 비해 낮음으로써 게이트 산화막에 미치는 영향이 감소할 것이다.Further, crystallization is further performed by depositing a tungsten silicide film at a relatively high temperature (450-500 ° C.), so that the stress variation on the temperature of the tungsten silicon film is lower than that of the tungsten silicide film deposited at 390-400 ° C. Will decrease.

Claims (3)

MOS트랜지스터 제조방법에 있어서, 실리콘기판 상부면에 게이트 산화막과 도프된 폴리실리콘층을 적층하고, 상부면에 Si/W의 조성비가 2.6정도인 제1텅스텐 실리사이드막을 390∼400℃의 온도에서 증착하는 단계와, 제1텅스텐 실리사이드막 상부에 Si/W조성비가 2.8정도인 제2텅스텐 실리사이드막을 450∼500℃의 온도에서 증착하는 단계와, 제2텅스텐 실리사이드막 상부면에 Si/W의 비가 2.0정도인 제2텅스텐 실리사이드막을 390∼400℃의 온도에서 증착하는 단계와, 게이트 마스크를 이용한 패턴공정으로 폴리사이드 구조의 게이트를 형성하는 단계를 포함하는 MOS트랜지스터 제조방법.In the method of manufacturing a MOS transistor, a gate oxide film and a doped polysilicon layer are stacked on an upper surface of a silicon substrate, and a first tungsten silicide layer having a composition ratio of about 2.6 Si / W is deposited at a temperature of 390 to 400 ° C. And depositing a second tungsten silicide film having a Si / W composition ratio of about 2.8 on the first tungsten silicide film at a temperature of 450 to 500 ° C., and a Si / W ratio of about 2.0 on the upper surface of the second tungsten silicide film. A method of fabricating a MOS transistor comprising depositing a phosphorous second tungsten silicide layer at a temperature of 390 to 400 ° C. and forming a gate of a polyside structure by a pattern process using a gate mask. 제1항에 있어서, 상기 제1, 제2, 제3텅스텐 실리사이드막을 한 장비에서 크린닝 공정없이 연속적으로 진행하는 것을 특징으로 하는 MOS트랜지스터 제조방법.The method of claim 1, wherein the first, second, and third tungsten silicide films are continuously processed in one device without a cleaning process. 제1항에 있어서, 폴리사이드 구조의 게이트를 형성한 다음, 후공정에서 고온공정을 실시할때 제1텅스텐 실리사이드막에 포함된 불소가 제2텅스텐 실리사이드막으로 이동되도록 하는 것을 특징으로 하는 MOS트랜지스터 제조방법.The MOS transistor according to claim 1, wherein after forming the polyside gate, the fluorine contained in the first tungsten silicide layer is transferred to the second tungsten silicide layer when the high temperature process is performed. Manufacturing method.
KR1019930012889A 1993-07-09 1993-07-09 Method of manufacturing dos transistor KR960014721B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1019930012889A KR960014721B1 (en) 1993-07-09 1993-07-09 Method of manufacturing dos transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1019930012889A KR960014721B1 (en) 1993-07-09 1993-07-09 Method of manufacturing dos transistor

Publications (2)

Publication Number Publication Date
KR950004457A KR950004457A (en) 1995-02-18
KR960014721B1 true KR960014721B1 (en) 1996-10-19

Family

ID=19359006

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1019930012889A KR960014721B1 (en) 1993-07-09 1993-07-09 Method of manufacturing dos transistor

Country Status (1)

Country Link
KR (1) KR960014721B1 (en)

Also Published As

Publication number Publication date
KR950004457A (en) 1995-02-18

Similar Documents

Publication Publication Date Title
US4954867A (en) Semiconductor device with silicon oxynitride over refractory metal gate electrode in LDD structure
US5476802A (en) Method for forming an insulated gate field effect transistor
JP4002868B2 (en) Dual gate structure and method of manufacturing integrated circuit having dual gate structure
US20070215951A1 (en) Semiconductor devices having silicided electrodes
US20050250318A1 (en) CVD tantalum compounds for FET gate electrodes
US7960237B2 (en) Structure and method for mosfet with reduced extension resistance
JPH0673375B2 (en) Method for manufacturing semiconductor device
JP2000003885A (en) Manufacture of field-effect device and capacitor using improved thin film dielectric substance and device obtained thereby
US5554558A (en) Method of making high precision w-polycide-to-poly capacitors in digital/analog process
TW200525751A (en) Silicide/semiconductor structure and method of fabrication
US7550346B2 (en) Method for forming a gate dielectric of a semiconductor device
KR100682643B1 (en) Gate electrode stack, circuit device including the gate electrode stack and fabrication method therof
EP1225628B1 (en) CMOS capacitor fabrication
US7375015B2 (en) Manufacturing method which prevents abnormal gate oxidation
KR960014721B1 (en) Method of manufacturing dos transistor
US8497556B2 (en) Semiconductor devices with active semiconductor height variation
JP2006518547A (en) Manufacturing method of semiconductor device and semiconductor device obtained by such method
US20050136580A1 (en) Hydrogen free formation of gate electrodes
KR100203896B1 (en) Manufacturing method of the gate electrode
JP3589136B2 (en) Semiconductor device and manufacturing method thereof
KR100705175B1 (en) Method of manufacturing MOS structure
KR100260377B1 (en) Method for fabricating gate electrode of mos semiconductor device
KR100317338B1 (en) Method for manufacturing of semiconductor device
KR100602088B1 (en) Formation method of metal line of semiconductor device
US20070232078A1 (en) In situ processing for ultra-thin gate oxide scaling

Legal Events

Date Code Title Description
A201 Request for examination
G160 Decision to publish patent application
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20050922

Year of fee payment: 10

LAPS Lapse due to unpaid annual fee