JPS61135156A - Semiconductor device and manufacture thereof - Google Patents

Semiconductor device and manufacture thereof

Info

Publication number
JPS61135156A
JPS61135156A JP25648984A JP25648984A JPS61135156A JP S61135156 A JPS61135156 A JP S61135156A JP 25648984 A JP25648984 A JP 25648984A JP 25648984 A JP25648984 A JP 25648984A JP S61135156 A JPS61135156 A JP S61135156A
Authority
JP
Japan
Prior art keywords
film
silicide
silicon
tungsten
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP25648984A
Other languages
Japanese (ja)
Inventor
Shiyoujirou Sugashiro
菅城 象二郎
Nobuyoshi Kobayashi
伸好 小林
Naotaka Hashimoto
直孝 橋本
Seiichi Iwata
誠一 岩田
Nobuyoshi Kashu
夏秋 信義
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP25648984A priority Critical patent/JPS61135156A/en
Publication of JPS61135156A publication Critical patent/JPS61135156A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/45Ohmic electrodes
    • H01L29/456Ohmic electrodes on silicon

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To improve high-frequency characteristics by inserting a metallic film 4, the formation free energy of an oxide of which is smaller than or approximately the same as that of an silicon oxide, between a tungsten film or a molybdenum film and a natural oxide film 3 consisting of silicon. CONSTITUTION:An silicon dioxide film 11 is formed on the surface of a P type silicon single crystal substrate 10, a film 12 is shaped, and a polycrystalline silicon film 13 is deposited and the polycrystalline silicon 13 at a desired position is etched. An N type impurity region 15 is formed, a titanium film 16 and a tungsten film 17 are shaped, and natural oxide films 18 are reduced and titanium silicide films 19 and tungsten silicide films 20 are formed in succession in direct contacting sections among the natural oxide films 18 and silicon and the titanium film 16. The tungsten film 17 and the titanium film 16 in a section not reacted are removed, an aluminum film is deposited, and the aluminum film except a desired position is removed and a source wiring and a gate wiring are shaped. Accordingly, tungsten silicide has small resistivity, and the resistance of an silicon impurity diffusion layer is increased, thus obtaining a semiconductor device having extremely excellent high-frequency characteristics and high reliability.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は、珪化高融点金属を用いて不純物拡散層の低抵
抗化をはかった微細で高性能な半導体装置およびその製
造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Application of the Invention] The present invention relates to a fine and high-performance semiconductor device in which the resistance of an impurity diffusion layer is reduced by using a silicided high-melting point metal, and a method for manufacturing the same.

〔発明の背景〕[Background of the invention]

高融点金属の珪化物を用いた不純物拡散層の低抵抗化に
ついては、従来、特開昭57−186341号に記載さ
れたように、スパッタ法等により不純物拡散層上に高融
点金属の珪化物を形成している。この方法はシリコン基
板中に応力を生じに<<、かつ結晶欠陥が生じにくいと
ともに、耐薬品性にすぐれ、均一な膜厚の珪化物が形成
できるなどのすぐれた性質を有している。しかしながら
上記方法では、高融点金属の珪化物を不純物拡散層上に
自己整合的に形成することができない、このため高融点
金属の珪化物膜の加工には、写真食刻法を用いる必要が
あり、半導体装置の微細化の妨げになっていた。
Regarding lowering the resistance of an impurity diffusion layer using a silicide of a high melting point metal, as described in Japanese Patent Application Laid-open No. 186341/1983, it has been reported that a silicide of a high melting point metal is coated on an impurity diffusion layer by sputtering or the like. is formed. This method does not cause stress in the silicon substrate, is less likely to cause crystal defects, has excellent chemical resistance, and has excellent properties such as being able to form a silicide with a uniform thickness. However, with the above method, it is not possible to form a silicide of a high melting point metal on the impurity diffusion layer in a self-aligned manner.Therefore, it is necessary to use photolithography to process the silicide film of a high melting point metal. This has hindered the miniaturization of semiconductor devices.

また、自己整合的に不純物拡散層上に高融点金属の珪化
物を形成して上記不純物拡散層の低抵抗化をはかる場合
について、どのような高融点金属の珪化物を、どのよう
に形成するかという点については今まで十分に論じられ
ていない。
In addition, in the case where a silicide of a refractory metal is formed on an impurity diffusion layer in a self-aligned manner to lower the resistance of the impurity diffusion layer, what kind of silicide of a refractory metal is formed and how is it formed? This point has not been sufficiently discussed so far.

珪化タングステン膜および珪化モリブデン膜は、シリコ
ン基板上に形成された場合に膜内の応力が他の高融点金
属の珪化物より小さく、シリコン基板内に結晶欠陥を生
じにくい、これは珪化タングステンおよび珪化モリブデ
ンの熱膨張係数とシリコンの熱膨張係数との差異が比較
的少ないためである。また珪化タングステンおよび珪化
モリブデンは、シリコン半導体工業でしばしば用いられ
る弗酸によってエツチングされないため、シリコン、半
導体装置の製造に関して極めて好都合である。
When tungsten silicide and molybdenum silicide are formed on a silicon substrate, the stress within the film is lower than that of silicides of other high-melting point metals, and crystal defects are less likely to occur in the silicon substrate. This is because the difference between the coefficient of thermal expansion of molybdenum and the coefficient of thermal expansion of silicon is relatively small. Additionally, tungsten silicide and molybdenum silicide are extremely advantageous in the manufacture of silicon and semiconductor devices because they are not etched by hydrofluoric acid, which is often used in the silicon semiconductor industry.

しかしシリコンと高融点金属との反応により均一な膜厚
の高融点金属の珪化物を形成する上では。
However, it is difficult to form a silicide of a high melting point metal with a uniform thickness by the reaction between silicon and a high melting point metal.

高融点金属として、チタン、タンタル、ニオブ、ハフニ
ウムおよびジルコニウムを用いる方が、高融点金属とし
てタングステンやモリブデンを用いるよりも好ましい、
これはシリコンと高融点金属との反応による高融点金属
における珪化物の形成機構に起因している。つぎにその
理由を記す、珪化物形成前にシリコンと高融点金属との
界面には。
It is more preferable to use titanium, tantalum, niobium, hafnium, and zirconium as the high melting point metal than to use tungsten or molybdenum as the high melting point metal.
This is due to the formation mechanism of silicide in the high melting point metal due to the reaction between silicon and the high melting point metal. The reason for this is as follows: Before the formation of silicide, the interface between silicon and high melting point metal.

高融点金属の被着前にシリコン表面に生成したシリコン
の自然酸化膜が介在している。高融点金属の珪化物を形
成するためにはこのシリコンの自然酸化膜を破壊し、シ
リコンと高融点金属とを直接接触させる必要がある。高
融点金属としてタングステンおよびモリブデンを選んだ
場合、これらの金属の酸化物生成の自由エネルギが酸化
シリコンの生成自由エネルギよりも大きいため、シリコ
ンの自然酸化膜を破壊するためには、高温にして熱的な
変動を用いる必要がある。しかし熱的な変動を用いて自
然酸化膜を破壊する場合は、膜厚が薄い個所のようにシ
リコン自然酸化膜の膜質か弱い個所で局部的に破壊し、
この部分で高融点金属の珪化物生成の反応が局部的に起
ってしまう、そのため生成した高融点金属の珪化物の膜
厚が不均一になり、粗表面になる。このことに関して。
There is a natural silicon oxide film formed on the silicon surface before the high melting point metal is deposited. In order to form a silicide of a high melting point metal, it is necessary to destroy the natural oxide film of silicon and bring the silicon and the high melting point metal into direct contact. When tungsten and molybdenum are selected as high-melting point metals, the free energy of forming oxides of these metals is greater than the free energy of forming silicon oxide, so in order to destroy the natural oxide film of silicon, it is necessary to heat It is necessary to use a certain variation. However, when the natural oxide film is destroyed using thermal fluctuations, it is locally destroyed in areas where the silicon natural oxide film is weak, such as areas where the film thickness is thin.
In this part, the reaction of producing a silicide of the high melting point metal occurs locally, and as a result, the film thickness of the produced silicide of the high melting point metal becomes uneven, resulting in a rough surface. Regarding this.

Japanase J 、 Appl、 Phys、 
(1983年)■、L57−L59におけるNagas
awa他による“A  5elf−Aligned M
o −5ilicide Formation”と題す
る文献では、高融点金属被着後にイオン注入を行うこと
により、上記シリコンの自然酸化膜を破壊し均一な高融
点金属の珪化物を形成することに関して論じている。し
かしこの方法によると、高融点金属下部のシリコン基板
の結晶性が劣化し。
Japanase J, Appl, Phys.
(1983)■, Nagas in L57-L59
“A 5elf-Aligned M” by awa et al.
The document titled ``O-5ilicide Formation'' discusses how to destroy the natural oxide film of silicon and form a uniform silicide of the high melting point metal by performing ion implantation after depositing the high melting point metal.However, According to this method, the crystallinity of the silicon substrate below the high melting point metal deteriorates.

この劣化は高融点金属の珪化物形成後にも残存し、半導
体装置の信頼性を低下させる。
This deterioration remains even after the silicide of the high melting point metal is formed, reducing the reliability of the semiconductor device.

一方、高融点金属としてチタン、タンタル、ニオブ、ハ
フニウムおよびジルコニウムを用いた場合には、これら
の金属の酸化物生成自由エネルギが酸化シリコンの生成
自由エネル、ギと同程度か。
On the other hand, when titanium, tantalum, niobium, hafnium, and zirconium are used as high-melting point metals, is the free energy of oxide formation of these metals comparable to the free energy of formation of silicon oxide?

または小さいため、シリコンの自然酸化膜を還元し消滅
させることができる。このため均一な高融点金属の珪化
物生成が比較的容易に行われる。
Also, since it is small, it is possible to reduce and eliminate the natural oxide film of silicon. Therefore, uniform silicide formation of high melting point metal is relatively easily achieved.

上記のように、すべての点においてシリコン半導体装置
への適用に適した高融点金属の珪化物は従来見出されて
いない。
As mentioned above, a high melting point metal silicide suitable for application to silicon semiconductor devices in all respects has not been found so far.

〔発明の目的〕[Purpose of the invention]

本発明は、シリコン膜と高融点金属膜との反応によって
形成される均一な膜厚の珪化タングステン膜あるいは珪
化モリブデン膜を設けて不純物拡散層の低抵抗化を行い
、高周波特性がすぐれた半導体装置およびその製造方法
を得ることを目的とする。
The present invention provides a semiconductor device with excellent high frequency characteristics by lowering the resistance of an impurity diffusion layer by providing a tungsten silicide film or a molybdenum silicide film with a uniform thickness formed by a reaction between a silicon film and a high-melting point metal film. and its manufacturing method.

〔発明の概要〕[Summary of the invention]

珪化タングステン膜および珪化モリブデン膜はシリコン
半導体装置の製造に対してすぐれた特性を有しているが
、これら高融点金属の珪化物を生成する場合に、シリコ
ン表面に介在するシリコンの自然酸化膜によって上記高
融点金属の珪化物生成が抑止され、膜厚が均一な珪化物
を形成することが妨げられていた。しかし第2図に示す
ように。
Tungsten silicide films and molybdenum silicide films have excellent properties for manufacturing silicon semiconductor devices, but when producing silicides of these high-melting point metals, the natural oxide film of silicon interposed on the silicon surface Silicide formation of the above-mentioned high melting point metal was suppressed, and formation of a silicide with a uniform film thickness was prevented. However, as shown in Figure 2.

タングステン膜またはモリブデン膜と、シリコン膜1を
覆うシリコンの自然酸化膜3との間に、酸化物の生成自
由エネルギがシリコン酸化物の生成自由エネルギよりも
小さいか、または同程度の金属膜4を挿入することによ
って、つぎに示すように、上記問題点を解決することが
できた。
Between the tungsten film or molybdenum film and the natural silicon oxide film 3 covering the silicon film 1, there is a metal film 4 whose free energy of oxide formation is smaller than or comparable to that of silicon oxide. By inserting this, the above problem could be solved as shown below.

熱処理を行うと、上記金属膜4は珪化タングステンまた
は珪化モリブデンの形成に先立って上記シリコンの自然
酸化膜3を還元し、第3図に示すように自然酸化膜3を
消滅させ、新たに金属の酸化膜5を生成するが、この金
属酸化膜5は膜厚が0から10nmと極めて不均一であ
り、大部分の領域でタングステン膜あるいはモリブデン
膜2が、上記金属膜4を介してシリコン膜1と接触する
ことになる。すなわち熱処理によって上記金属膜4が珪
化物生成反応をしたのちに、タングステン膜またはモリ
ブデン膜2の珪化物反応が均一に起り、均一な膜厚の上
記金属の珪化物膜6と珪化タングステンまたは珪化モリ
ブデン膜7を形成することができる。
When heat treatment is performed, the metal film 4 reduces the silicon natural oxide film 3 before forming tungsten silicide or molybdenum silicide, and as shown in FIG. 3, the natural oxide film 3 disappears and a new metal is formed. An oxide film 5 is formed, but this metal oxide film 5 has a film thickness of 0 to 10 nm, which is extremely non-uniform, and in most areas, the tungsten film or molybdenum film 2 forms a silicon film 1 through the metal film 4. will come into contact with. That is, after the metal film 4 undergoes a silicide production reaction by heat treatment, the silicide reaction of the tungsten film or molybdenum film 2 occurs uniformly, and the tungsten silicide or molybdenum silicide is formed between the metal silicide film 6 of uniform thickness and the tungsten silicide or molybdenum silicide. A film 7 can be formed.

酸化物の生成自由エネルギが酸化シリコンの生成自由エ
ネルギより小さいか同程度である金属としては、チタン
、タンタル、ニオブ、ハフニウム、ジルコニウムおよび
これらの化合物が挙げられる。
Examples of metals whose free energy of formation of an oxide is smaller than or comparable to that of silicon oxide include titanium, tantalum, niobium, hafnium, zirconium, and compounds thereof.

また、これらの金属およびその珪化物の耐熱温度は10
00℃程度であるため、一般の半導体装置の製造に際し
ては差支えがない、このチタン、タンタル、ニオブ、ハ
フニウム、ジルコニウム、またはこれらの金属からなる
合金の膜厚は、シリコンの自然酸化膜をすべて還元でき
る厚さであれば十分である。この膜を厚くしすぎると、
珪化タングステンまたは珪化モリブデンの生成前に、上
記金属の厚い珪化物膜が生成され、シリコン基板の応力
が増大する。さらにこれら金属の珪化物中のシリコン元
素の拡散定数は、珪化タングステンまたは珪化モリブデ
ンのシリコン元素の拡散定数と同程度か大きい、このた
め自然酸化膜に覆われたシリコンと、これらの金属が直
接接触している部分での自他タングステンまたは珪化モ
リブデンの生成と並行し、この部分の周辺においても二
九ら金属の珪化物が形成されてしまう、さらにこの珪化
物中を経由してタングステン膜またはモリブデン膜中に
シリコンが供給されるため、結局自然酸化膜に覆われた
シリコンと上記金属との直接接触部の周辺においても珪
化タングステンまたは珪化モリブデンが形成されて′し
まう、この現象はブリッジングと言われ、半導体装置の
製造上好ましくない。
In addition, the heat resistance temperature of these metals and their silicides is 10
The film thickness of titanium, tantalum, niobium, hafnium, zirconium, or alloys made of these metals is such that all the natural oxide film of silicon is reduced. As long as it is as thick as possible, it is sufficient. If this film is made too thick,
Prior to the formation of tungsten silicide or molybdenum silicide, a thick silicide film of the metal is formed, increasing stress on the silicon substrate. Furthermore, the diffusion constant of silicon element in the silicides of these metals is comparable to or larger than the diffusion constant of silicon element in tungsten silicide or molybdenum silicide, so these metals are in direct contact with silicon covered with a natural oxide film. In parallel with the formation of self-other tungsten or molybdenum silicide in the area where the tungsten silicide is formed, silicide of the metal is also formed around this area, and furthermore, tungsten film or molybdenum Because silicon is supplied into the film, tungsten silicide or molybdenum silicide is eventually formed around the direct contact area between the silicon covered by the natural oxide film and the above metal. This phenomenon is called bridging. However, this is not preferable in terms of manufacturing semiconductor devices.

上記の点を考慮すると、チタン、タンタル、ニオブ、ハ
フニウム、ジルコニウム、またはこれらの金属の合金か
らなる金属膜の膜厚はIons以下にすることが望まし
い。
Considering the above points, it is desirable that the thickness of the metal film made of titanium, tantalum, niobium, hafnium, zirconium, or an alloy of these metals be less than Ions.

本発明による半導体装置およびその製造方法は。A semiconductor device and a method for manufacturing the same according to the present invention.

開口部をもつ絶縁膜で覆われたシリコン半導体を有する
半導体装置において、開口部を有するシリコン半導体層
上に、チタン、タンタル、ニオブ、ハフニウム、ジルコ
ニウムのうち少なくとも一種の金属よりなる下部金属層
を被着する工程と、上記下部金属層上にタングステンま
たはモリブデンあるいはそれら両者よりなる上部金属層
を被着する工程と、窒素、水素、酸素、希ガス、水蒸気
のうち少なくとも一種類のガスよりなる雰囲気または真
空中で400℃以上の熱処理を行う工程とを含み、上記
下部金属層の珪化物と上部金属層の珪化物とを備え、か
つ上部開口部に接する部分の絶縁物の裏面より上記シリ
コン半導体層の内側に、上記下部金属層の珪化物の裏面
が位置するようにしたものである。
In a semiconductor device having a silicon semiconductor covered with an insulating film having an opening, a lower metal layer made of at least one metal selected from titanium, tantalum, niobium, hafnium, and zirconium is coated on the silicon semiconductor layer having the opening. a step of depositing an upper metal layer made of tungsten or molybdenum or both on the lower metal layer; and a step of performing heat treatment at 400° C. or higher in vacuum, the silicon semiconductor layer comprising the silicide of the lower metal layer and the silicide of the upper metal layer, and from the back surface of the insulator at the portion in contact with the upper opening. The back surface of the silicide of the lower metal layer is located inside the metal layer.

〔発明の実施例〕[Embodiments of the invention]

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による半導体装置の一実施例を示す断面
図で、(a)、(b)、(c)はそれぞれ製造工程にお
ける断面図である。第1図(a)において、p型シリコ
ン単結晶基板lOの表面の所望の位置に、素子間の絶縁
分離領域となる二酸化シリコン膜11を通常の選択酸化
によって形成した。
FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor device according to the present invention, and (a), (b), and (c) are cross-sectional views in the manufacturing process, respectively. In FIG. 1(a), a silicon dioxide film 11, which will serve as an insulating isolation region between elements, is formed at a desired position on the surface of a p-type silicon single crystal substrate IO by ordinary selective oxidation.

つぎにシリコンの熱酸化反応によってゲート酸化膜12
を上記シリコン基板10の露出面上に5on11形成し
た。さらに多結晶シリコン膜13を通常の化学気相成長
法によって30on鵬の厚さに堆積し写真食刻法により
所望の位置の多結晶シリコン13をエツチングした。つ
ぎに通常の化学気相成長法を用いてりんガラス膜を50
0nm堆積し、引続き反応性イオンエツチングによりエ
ツチングを行い、上記りんガラス膜14および多結晶シ
リコン膜13に覆われていないゲート酸化膜の部分12
′を形成した。なお反応性イオンエツチングでは、シリ
コン基板10の表面に平行方向のエツチング速度が垂直
方向の速度に比して極めて遅いため、多結晶シリコン膜
13の側壁に沿いりんガラス14およびゲート酸化膜の
表面12′が残存する。その後通常のイオン打込みおよ
び熱処理によってn型不純物領域15を形成した。
Next, a gate oxide film 12 is formed by a thermal oxidation reaction of silicon.
was formed in a 5-on-11 pattern on the exposed surface of the silicon substrate 10. Further, a polycrystalline silicon film 13 was deposited to a thickness of 30 mm by conventional chemical vapor deposition, and the polycrystalline silicon 13 was etched at desired positions by photolithography. Next, a phosphor glass film of 50% was deposited using the usual chemical vapor deposition method.
A portion 12 of the gate oxide film that is not covered with the phosphor glass film 14 and the polycrystalline silicon film 13 is deposited to a thickness of 0 nm and then etched by reactive ion etching.
' was formed. Note that in reactive ion etching, the etching speed in the direction parallel to the surface of the silicon substrate 10 is extremely slow compared to the speed in the perpendicular direction. ' remains. Thereafter, an n-type impurity region 15 was formed by normal ion implantation and heat treatment.

つぎに希弗酸液を用いてシリコン露出面を洗浄したのち
、第1図(b)に示すようにチタン膜16をlOnm真
空蒸着法によって形成した。上記チタン膜16の代りと
してタンタル膜、ニオブ膜、ハフニウム膜、ジルコニウ
ム膜、またはこれらを混合した膜を用いてもよい。なお
、n型不純物拡散領域15および多結晶シリコン膜13
と上記チタン膜16との界面には、上記チタン膜16堆
積前に生成したシリコンの自然酸化膜18が存在してい
た。上記チタン膜16上にタングステン膜17を5On
朧の厚さに通常のスパッタ堆積法により形成した。上記
タングステン膜17はモリブデン膜を代りに用いてもよ
い。
Next, after cleaning the exposed silicon surface using a dilute hydrofluoric acid solution, a titanium film 16 was formed by a lOnm vacuum evaporation method, as shown in FIG. 1(b). In place of the titanium film 16, a tantalum film, a niobium film, a hafnium film, a zirconium film, or a mixture thereof may be used. Note that the n-type impurity diffusion region 15 and the polycrystalline silicon film 13
A natural oxide film 18 of silicon, which was formed before the titanium film 16 was deposited, was present at the interface between the titanium film 16 and the titanium film 16 . A 5ON tungsten film 17 is placed on the titanium film 16.
It was formed to a hazy thickness by a conventional sputter deposition method. A molybdenum film may be used instead of the tungsten film 17.

つぎに第1図(Q)に示すように、真空中において58
0°の熱処理を行い、自然酸化膜18に覆われたシリコ
ンとチタン膜16とが直接接触している部分で、チタン
膜16により自然酸化膜18の還元、珪化チタン膜19
および珪化タングステン膜20の生成を順次行った。上
記熱処理は必ずしも真空中で行う必要はなく、窒素雰囲
気、希ガス雰囲気、水素雰囲気、酸素界−気、水蒸気ま
たはこれらのガスの混合雰囲気中で行ってもよい、その
後過酸化水素により未反応部分のタングステン膜17お
よびチタン膜16を除去した。ついで通常の化学気相成
長法によりりんガラス膜21を500ns被着し、写真
食刻法によって所望の位置に孔を開口したのちアルミニ
ウム膜を真空蒸着法によって堆積し、さらに写真食刻法
により所望個処以外のアルミニウム膜を除去してソース
配線22.23およびゲート配線24を形成した。
Next, as shown in Figure 1 (Q), 58
Heat treatment at 0° is performed, and in the areas where the silicon covered with the natural oxide film 18 and the titanium film 16 are in direct contact, the natural oxide film 18 is reduced by the titanium film 16, and the titanium silicide film 19 is reduced.
Then, a tungsten silicide film 20 was sequentially formed. The above heat treatment does not necessarily need to be carried out in a vacuum, and may be carried out in a nitrogen atmosphere, a rare gas atmosphere, a hydrogen atmosphere, an oxygen field, water vapor, or a mixed atmosphere of these gases.The unreacted portion is then removed with hydrogen peroxide. The tungsten film 17 and titanium film 16 were removed. Next, a phosphor glass film 21 is deposited for 500 ns by a conventional chemical vapor deposition method, holes are opened at desired positions by a photolithography method, an aluminum film is deposited by a vacuum evaporation method, and then a desired area is formed by a photolithography method. Source wirings 22, 23 and gate wirings 24 were formed by removing the aluminum film except for these areas.

本実施例により、均一な膜厚を有する珪化タングステン
膜20をソースおよびドレインのn型不純物拡散領域1
5の表面に自己整合的に形成することができた。電気的
特性を測定した結果、ソースおよびドレインの不純物拡
散領域15のシート抵抗を低減でき、素子の高周波特性
の改善が見られた。
According to this embodiment, a tungsten silicide film 20 having a uniform thickness is formed in the source and drain n-type impurity diffusion regions 1.
could be formed in a self-aligned manner on the surface of No. 5. As a result of measuring the electrical characteristics, it was found that the sheet resistance of the source and drain impurity diffusion regions 15 could be reduced, and the high frequency characteristics of the device were improved.

さらに珪化タングステン膜の膜厚が均一で、かつ応力が
低いため、逆方向耐圧等の特性がすぐれたn型不純物拡
散層15とP型シリコン基板間の接合が得られ、半導体
装置の信頼性の向上をはかφことができた。
Furthermore, since the tungsten silicide film has a uniform thickness and low stress, a bond between the n-type impurity diffusion layer 15 and the P-type silicon substrate with excellent characteristics such as reverse breakdown voltage can be obtained, which improves the reliability of the semiconductor device. I was able to improve my performance.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による半導体装置およびその製造方
法は、開口部をもつ絶縁物で覆われたシリコン半導体を
有する半導体装置およびその製造方法において、開口部
を有するシリコン半導体層上に、チタン、タンタル、ニ
オブ、ハフニウム、ジルコニウムのうち少なくとも一種
の金属よりなる下部金属層を被着する工程と、上記下部
金属層上にタングステンまたはモリブデンあるいはそれ
ら両者よりなる上部金属層を被着する工程と、窒素、水
素、酸素、希ガス、水蒸気のうち少なくとも一種類のガ
スよりなる雰囲気または真空中で400℃以上の熱処理
を行う工程とを含み、上記下部金属層の珪化物と上部金
属層の珪化物とを備え、かつ上記開口部に接する部分の
絶縁物の裏面より上記シリコン半導体層の内側に、上記
下部金属層の珪化物の裏面が位置するようにしたことに
より。
As described above, a semiconductor device and a method for manufacturing the same according to the present invention include a semiconductor device having a silicon semiconductor covered with an insulator having an opening, and a method for manufacturing the same. , niobium, hafnium, and zirconium; depositing an upper metal layer on the lower metal layer, consisting of tungsten or molybdenum, or both; nitrogen; A step of heat-treating the silicide of the lower metal layer and the silicide of the upper metal layer in an atmosphere of at least one gas selected from hydrogen, oxygen, a rare gas, and water vapor or in a vacuum at a temperature of 400°C or higher. and the back surface of the silicide of the lower metal layer is located inside the silicon semiconductor layer from the back surface of the insulator in contact with the opening.

均一な膜厚を有する珪化タングステン膜または珪化モリ
ブデン膜を、シリコンの露出部にだけ自己整合的に形成
できるとともに、上記珪化タングステンまたは珪化モリ
ブデンは比抵抗が小さいため、シリコン不純物拡散層の
低抵抗化をはかることができ、高周波特性がよく、極め
て信頼性が高い半導体装置を得ることができる。
A tungsten silicide film or a molybdenum silicide film having a uniform thickness can be formed in a self-aligned manner only on the exposed portions of silicon, and since the tungsten silicide or molybdenum silicide has a low resistivity, the resistance of the silicon impurity diffusion layer can be reduced. Therefore, it is possible to obtain a semiconductor device which can be measured, has good high frequency characteristics, and is extremely reliable.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による半導体装置の一実施例を示す断面
図で、(a)、(b)、(c)はそれぞれ製造工程にお
ける断面図、第2図は本発明の概要を示す説明図、第3
図は上記状態の熱処理後における状態を示す説明図であ
る。 10・・・シリコン半導体層 11・・・二酸化シリコ
ン膜12・・・ゲート酸化膜   13・・・多結晶シ
リコン14・・・りんガラス膜
FIG. 1 is a cross-sectional view showing one embodiment of a semiconductor device according to the present invention, (a), (b), and (c) are cross-sectional views in the manufacturing process, respectively, and FIG. 2 is an explanatory diagram showing an outline of the present invention. , 3rd
The figure is an explanatory diagram showing the state after heat treatment in the above state. 10... Silicon semiconductor layer 11... Silicon dioxide film 12... Gate oxide film 13... Polycrystalline silicon 14... Phosphorus glass film

Claims (3)

【特許請求の範囲】[Claims] (1)開口部をもつ絶縁膜で覆われたシリコン半導体層
を有する半導体装置において、上記開口部でシリコン半
導体層に接し、かつ上記シリコン半導体層との反応によ
って生成した珪化チタン、珪化タンタル、珪化ニオブ、
珪化ハフニウム、珪化ジルコニウムのうち少なくとも一
種の珪化物よりなる下部珪化物層と、該下部珪化物層と
接し、上記シリコン半導体層との反応により生成した珪
化タングステン、珪化モリブデンのうち少なくとも一種
の珪化物よりなる上部珪化物層とを備え、かつ上記開口
部に接する部分の絶縁膜の裏面より上記シリコン半導体
層の内側に、上記下部珪化物層の裏面が位置することを
特徴とする半導体装置。
(1) In a semiconductor device having a silicon semiconductor layer covered with an insulating film having an opening, titanium silicide, tantalum silicide, silicide, etc. that are in contact with the silicon semiconductor layer at the opening and generated by reaction with the silicon semiconductor layer niobium,
a lower silicide layer made of at least one type of silicide selected from hafnium silicide and zirconium silicide; and at least one type of silicide selected from tungsten silicide and molybdenum silicide, which is in contact with the lower silicide layer and is produced by reaction with the silicon semiconductor layer. and an upper silicide layer consisting of an upper silicide layer, the back surface of the lower silicide layer being located inside the silicon semiconductor layer from the back surface of the insulating film in contact with the opening.
(2)開口部を有するシリコン半導体層上に、チタン、
タンタル、ニオブ、ハフニウム、ジルコニウムのうち少
なくとも一種の金属よりなる下部金属層を被着する工程
と、上記下部金属層上にタングステンまたはモリブデン
あるいはそれら両者よりなる上部金属層を被着する工程
と、窒素、水素、酸素、希ガス、水蒸気のうち少なくと
も一種類のガスよりなる雰囲気または真空中で400℃
以上の熱処理を行う工程とを含むことを特徴とする半導
体装置の製造方法。
(2) Titanium,
a step of depositing a lower metal layer made of at least one metal selected from tantalum, niobium, hafnium, and zirconium; a step of depositing an upper metal layer of tungsten or molybdenum or both on the lower metal layer; , 400°C in an atmosphere containing at least one gas among hydrogen, oxygen, rare gas, and water vapor or in vacuum.
A method for manufacturing a semiconductor device, comprising the step of performing the above heat treatment.
(3)上記下部金属層は、その膜厚が10nm以下であ
ることを特徴とする特許請求の範囲第2項に記載した半
導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 2, wherein the lower metal layer has a thickness of 10 nm or less.
JP25648984A 1984-12-06 1984-12-06 Semiconductor device and manufacture thereof Pending JPS61135156A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP25648984A JPS61135156A (en) 1984-12-06 1984-12-06 Semiconductor device and manufacture thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP25648984A JPS61135156A (en) 1984-12-06 1984-12-06 Semiconductor device and manufacture thereof

Publications (1)

Publication Number Publication Date
JPS61135156A true JPS61135156A (en) 1986-06-23

Family

ID=17293346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP25648984A Pending JPS61135156A (en) 1984-12-06 1984-12-06 Semiconductor device and manufacture thereof

Country Status (1)

Country Link
JP (1) JPS61135156A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114211A (en) * 1986-10-31 1988-05-19 Fujitsu Ltd Manufacture of semiconductor device
JPS6459954A (en) * 1987-08-31 1989-03-07 Nec Corp Semiconductor integrated circuit
JPH08116054A (en) * 1994-10-14 1996-05-07 Nec Corp Semiconductor device comprising cobalt silicide film and its manufacture

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63114211A (en) * 1986-10-31 1988-05-19 Fujitsu Ltd Manufacture of semiconductor device
JPS6459954A (en) * 1987-08-31 1989-03-07 Nec Corp Semiconductor integrated circuit
JPH08116054A (en) * 1994-10-14 1996-05-07 Nec Corp Semiconductor device comprising cobalt silicide film and its manufacture
JP2586345B2 (en) * 1994-10-14 1997-02-26 日本電気株式会社 Semiconductor device comprising cobalt silicide film and method of manufacturing the device

Similar Documents

Publication Publication Date Title
US6033537A (en) Sputtering target and method of manufacturing a semiconductor device
US4505028A (en) Method of producing semiconductor device
KR0140379B1 (en) Process for the selective encapsulation an electrically conductive structure in a semiconductor device
TWI255007B (en) Method of fabricating a semiconductor device having reduced contact resistance
JPS62101049A (en) Formation of silicide
EP0725429A2 (en) Method of forming a metalfluoride film of an electronic device
JPH08116057A (en) Manufacture of tin gate electrode on semiconductor device
JP3486118B2 (en) Method for manufacturing semiconductor device
JPS61135156A (en) Semiconductor device and manufacture thereof
EP0100454B1 (en) Semiconductor device having a conductive layer consisting of a high-melting point metal silicide and a method for manufacturing such a semiconductor device
JPS609160A (en) Semiconductor device and manufacture thereof
KR20020056261A (en) Gate of semiconductor and method for manufacturing the same
JPH08255770A (en) Method of manufacturing semiconductor device
JP2918914B2 (en) Semiconductor device and manufacturing method thereof
JPS61224435A (en) Semiconductor device
JPH04320029A (en) Manufacture of semiconductor device
KR19990049059A (en) Manufacturing method of semiconductor device
JPH06120355A (en) Manufacture of semiconductor device
JPS5966165A (en) Electrode wiring and manufacture thereof
JPH10223561A (en) Manufacture of semiconductor device
JPS6138264B2 (en)
JPS63283064A (en) Formation of polycide pattern
JPH07183515A (en) Manufacture of semiconductor device
JPH09293722A (en) Manufacture of semiconductor device
JPH09306867A (en) Manufacturing semiconductor device