JPH03222367A - Insulated gate type field effect transistor - Google Patents

Insulated gate type field effect transistor

Info

Publication number
JPH03222367A
JPH03222367A JP1700990A JP1700990A JPH03222367A JP H03222367 A JPH03222367 A JP H03222367A JP 1700990 A JP1700990 A JP 1700990A JP 1700990 A JP1700990 A JP 1700990A JP H03222367 A JPH03222367 A JP H03222367A
Authority
JP
Japan
Prior art keywords
substrate
gate electrode
exposed
silicon substrate
insulating layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1700990A
Other languages
Japanese (ja)
Inventor
Yasushi Oyama
泰 大山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP1700990A priority Critical patent/JPH03222367A/en
Publication of JPH03222367A publication Critical patent/JPH03222367A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To prevent a transistor of this design from deteriorating in characteristics by a method wherein a gate electrode of silicon carbide layer is formed on a one conductivity type semiconductor substrate through the intermediary of an insulating layer, and opposite conductivity type impurities are introduced into the exposed part of the substrate on the sides to form a source and drain region. CONSTITUTION:An isolation insulating layer 2 is formed on an N-type silicon substrate 1, a gate oxide film 3 is formed on the exposed surface of the substrate 1, and an SiC film 4 is formed on the entire surface. Then, a resist mask 5 is formed, and a plasma etching is carried out onto the exposed SiC film 4 to form a gate electrode 41, and then the exposed gate oxide film 3 is also etched to make the silicon substrate 1 exposed. Then, the resist mask 5 is removed, the surface of the silicon substrate 1 is treated to form an oxide film 32 on the exposed surface of the substrate 1, and a source region and drain region 6 of P-type are formed on the substrate 1. In succession, the oxide film 32 is removed, an interlaminar insulating layer 7 of phospho-silicate glass is formed on the surface of the silicon substrate 1, a contact hole 71 is formed, and a wiring 8 connected to the source and the drain regions 6 is formed to complete a transistor of this design.

Description

【発明の詳細な説明】 〔概 要〕 絶縁ゲート型電界効果 関し。[Detailed description of the invention] 〔overview〕 Insulated gate field effect Regarding Seki.

トランジスタ(IG−FET)に ゲート電極形成後に残留するゲート電極構成物質による
汚染に起因するトランジスタ特性の劣化を回避すること
を目的とし。
The purpose is to avoid deterioration of transistor characteristics caused by contamination by gate electrode constituent materials remaining after forming a gate electrode in a transistor (IG-FET).

1G−FETの構造を、−導電型の半導体基板と、該半
導体基板上に形成したSiC@から戒るゲート電極と、
該ゲート電極と半導体基板との間に介在する絶縁層と、
該ゲート電極の両側に表出する該半導体基板に反対導電
型の不純物を選択的に導入して形成されたソース領域お
よびドレイン領域とから成るように構成する。
The structure of the 1G-FET includes a - conductivity type semiconductor substrate, a gate electrode formed on the semiconductor substrate, and
an insulating layer interposed between the gate electrode and the semiconductor substrate;
A source region and a drain region are formed by selectively introducing impurities of opposite conductivity type into the semiconductor substrate exposed on both sides of the gate electrode.

〔産業上の利用分野〕[Industrial application field]

本発明は、絶縁ゲート型トランジスタ(IG−FET)
に係り、とくに、ゲート電極として、多結晶シリコンよ
り低抵抗の物質を用いて成るIG−FETに関する。
The present invention is an insulated gate transistor (IG-FET)
In particular, the present invention relates to an IG-FET using a material having a lower resistance than polycrystalline silicon as a gate electrode.

(従来の技術〕 半導体集積回路の高密度化にともなって、ゲート電極幅
が縮小されている。このために、ゲート電極の低抵抗化
が要求される。低抵抗ゲート電極を実現する方法として
、多結晶シリコン層上にシリサイド層を積層したポリサ
イドと呼ばれる二重構造のゲート電極が実用されている
。上記シリサイドとしては、タングステンシリサイド(
WSiz)。
(Prior art) With the increase in the density of semiconductor integrated circuits, the width of gate electrodes has been reduced.For this reason, lower resistance of gate electrodes is required.As a method for realizing a low resistance gate electrode, A gate electrode with a double structure called polycide, in which a silicide layer is laminated on a polycrystalline silicon layer, is in practical use.The silicide mentioned above is tungsten silicide (
WSiz).

モリブデンシリサイド(MoSiz)、チタンシリサイ
ド(TiSiz)等が用いられている。これらシリサイ
ドは、多結晶シリコンより低抵抗であるが、 SiO□
等から成る絶縁層に対する付着性の点では多結晶シリコ
ンが優れているため、上記のような二重構造とするので
ある。
Molybdenum silicide (MoSiz), titanium silicide (TiSiz), etc. are used. These silicides have lower resistance than polycrystalline silicon, but SiO□
Since polycrystalline silicon has excellent adhesion to the insulating layer made of polycrystalline silicon, it has the double structure as described above.

〔発明が解決しようとする課題] 上記ポリサイド構造のゲート電極は、シリコン基板上に
多結晶シリコン層とシリサイド層を順次堆積し、これら
の層を1例えば臭化水・素(HBr)ガスと塩素(ch
)ガスとの混合ガスをエツチング剤とするプラズマエツ
チングにより所定寸法のゲート電極に加工する。そして
、上記エツチングにおいて用いられたレジストやエツチ
ング反応生成物の残渣を除去するための湿式処理を行っ
たのち。
[Problems to be Solved by the Invention] The gate electrode having the above-mentioned polycide structure is obtained by sequentially depositing a polycrystalline silicon layer and a silicide layer on a silicon substrate, and then depositing these layers in one layer using, for example, hydrogen bromide/hydrogen (HBr) gas and chlorine gas. (ch
) The gate electrode is processed into a gate electrode of a predetermined size by plasma etching using a mixed gas as an etching agent. Then, a wet process is performed to remove the resist used in the etching and the residues of the etching reaction products.

ソース・ドレイン領域形成のためのイオン注入や層間絶
縁層の形成等の工程が行われる。
Steps such as ion implantation for forming source/drain regions and formation of interlayer insulating layers are performed.

上記湿式処理は、ゲート電極が形成されたシリコン基板
を70’Cの硝酸溶液に浸漬するものであるが、この処
理において、ポリサイド層の金属成分が溶液中に微量溶
解し、シリコン基板表面に吸着する。このようにして吸
着した金属成分は、水洗等によっても除去されずに残り
、そののちに、シリコン基板が種々の熱処理工程を経る
間に、基板中をチャネル領域まで拡散する。このため、
好ましくない不純物準位を形成し、 IG−FETの閾
値電圧(Vい)を所望の値より低くしてしまう等、トラ
ンジスタ特性に重大な影響を与える問題があった。
In the above-mentioned wet treatment, the silicon substrate on which the gate electrode is formed is immersed in a nitric acid solution at 70'C. do. The metal components adsorbed in this way remain without being removed even by washing with water or the like, and are then diffused into the substrate to the channel region while the silicon substrate undergoes various heat treatment steps. For this reason,
There are problems that seriously affect transistor characteristics, such as forming undesirable impurity levels and lowering the threshold voltage (V) of the IG-FET than a desired value.

本発明は上記のようなポリサイド構造のゲート電極を用
いることに起因する問題を解決し、所望の特性を有する
IG−FETを形成可能とすることを目的とする。
An object of the present invention is to solve the problems caused by using a gate electrode having a polycide structure as described above, and to make it possible to form an IG-FET having desired characteristics.

[課題を解決するための手段] 上記目的は、−導電型の半導体基板と、該半導体基板上
に形成された炭化珪素(SiC)層から成るゲート電極
と、該ゲート電極と半導体基板との間に介在する絶縁層
と、該ゲート電極の両側に表出する該半導体基板に選択
的に反対導電型の不純物を導入して形成されたソース領
域およびドレイン領域とを備えたことを特徴とする本発
明に係るIGFETによって達成される。
[Means for Solving the Problems] The above object is to - provide a conductive type semiconductor substrate, a gate electrode formed on the semiconductor substrate and a silicon carbide (SiC) layer, and a structure between the gate electrode and the semiconductor substrate; and a source region and a drain region formed by selectively introducing impurities of opposite conductivity type into the semiconductor substrate exposed on both sides of the gate electrode. This is achieved by the IGFET according to the invention.

〔作 用〕[For production]

SiCは化学的に安定であり、はとんどの酸には侵され
ない。また、その比抵抗は多結晶シリコンより低い。し
かも、 SiO□層等の絶縁層に対する付着性も優れて
いる。したがって、高密度集積回路のゲート電極として
好適な材料であり、ポリサイドのようなトランジスタ特
性にとって好ましくない不純物となる金属成分を生じる
おそれもない。
SiC is chemically stable and is not attacked by most acids. Moreover, its specific resistance is lower than that of polycrystalline silicon. Moreover, it has excellent adhesion to insulating layers such as SiO□ layers. Therefore, it is a suitable material for gate electrodes of high-density integrated circuits, and there is no fear of producing metal components such as polycide, which are impurities that are undesirable for transistor characteristics.

また、金や白金等の、化学的に安定かつ低抵抗である他
の材料に比べ低コストである長所を有する。
It also has the advantage of being lower in cost than other chemically stable and low-resistance materials such as gold and platinum.

さらに、シリコンとの仕事関数差が大きく、闇値電圧(
νth)の大きなIG−FETを得ることができる。
Furthermore, the work function difference with silicon is large, and the dark value voltage (
νth) can be obtained.

[実施例] 以下本発明の実施例を図面を参照して説明する。[Example] Embodiments of the present invention will be described below with reference to the drawings.

第1図(a)に示すように1例えばn型のシリコン基板
lに5周知のLOCO5法により分離絶縁層2を形成し
1分離絶縁層2から表出する素子領域におけるシリコン
基板1表面を熱酸化してゲート酸化膜3を形成する。
As shown in FIG. 1(a), an isolation insulating layer 2 is formed on, for example, an n-type silicon substrate 1 by the well-known LOCO method, and the surface of the silicon substrate 1 in the element region exposed from the isolation insulating layer 2 is heated. A gate oxide film 3 is formed by oxidation.

次いで、第1図(b)に示すように、シリコン基板1表
面金体に、約1000人の厚さを有するSiC膜4を形
成する。SiC膜4の形成は1例えば、トリクロルシラ
ン(SiHCh)とプロパン(C3HI)を原料ガスと
して1周知のCVD法により行えばよい。その形成条件
の例は、 5iHChとC,H6,および、キャリヤガ
スである水素(H2)の流量を、それぞれ、 700S
CCM40SCCM、 7000SCCM、基板温度を
1000″C1全ガス圧を200Paとする。
Next, as shown in FIG. 1(b), a SiC film 4 having a thickness of about 1000 nm is formed on the metal surface of the silicon substrate 1. Then, as shown in FIG. The SiC film 4 may be formed by, for example, a well-known CVD method using trichlorosilane (SiHCh) and propane (C3HI) as source gases. An example of the formation conditions is as follows: The flow rates of 5iHCh, C, H6, and carrier gas hydrogen (H2) are 700S, respectively.
CCM40SCCM, 7000SCCM, substrate temperature 1000''C1 total gas pressure 200Pa.

次いで1周知のりソゲラフ技術を用いて、第1図(C)
に示すように、 SiC膜4上に、ゲート電極に対応す
るレジストマスク5を形成し、レジストマスク5から表
出するSiC膜4に対して、三弗化窒素(NFI)をエ
ツチングガスとするプラズマエツチングを施す。その結
果、第1図(d)に示すように。
Next, using the well-known glue sogelaf technique, Figure 1 (C)
As shown in the figure, a resist mask 5 corresponding to the gate electrode is formed on the SiC film 4, and the SiC film 4 exposed from the resist mask 5 is etched with plasma using nitrogen trifluoride (NFI) as an etching gas. Apply etching. As a result, as shown in FIG. 1(d).

SiCpから成るゲート電極41が形成される。上記エ
ツチングにおいて、レジストマスク5から表出する領域
におけるゲート酸化膜3もエツチングされ、シリコン基
板1が表出する。
A gate electrode 41 made of SiCp is formed. In the above etching, the gate oxide film 3 in the region exposed from the resist mask 5 is also etched, and the silicon substrate 1 is exposed.

ここで、レジストマスク5を除去し、さらに従来と同様
に、硝酸水溶液を用いてシリコン基1の表面を処理する
。この処理においてSiC膜4は溶解せず、したがって
、シリコン基板1表面に不純物として吸着することがな
い。
Here, the resist mask 5 is removed, and the surface of the silicon base 1 is further treated with a nitric acid aqueous solution as in the conventional method. In this treatment, the SiC film 4 is not dissolved, and therefore is not adsorbed as an impurity on the surface of the silicon substrate 1.

次いで、シリコン基板Iの表出面を熱酸化して。Next, the exposed surface of the silicon substrate I is thermally oxidized.

第1図(e)に示すように、酸化膜32を形成したのち
ゲート電極41および分離絶縁層2をマスクとして。
As shown in FIG. 1(e), after forming the oxide film 32, the gate electrode 41 and the isolation insulating layer 2 are used as a mask.

素子領域におけるシリコン基板1に硼素(B)のような
P型不純物をイオン注入する。このようにしてp型のソ
ースおよびドレイン領域6が形成される。
A P-type impurity such as boron (B) is ion-implanted into the silicon substrate 1 in the element region. In this way, p-type source and drain regions 6 are formed.

次いで、再び弗酸溶液を用いて、酸化膜32を除去する
。この処理においても、 SiC膜から成るゲート電極
41は溶解せず、シリコン基板1表面に不純物として吸
着することがない。
Next, the oxide film 32 is removed again using a hydrofluoric acid solution. Even in this treatment, the gate electrode 41 made of the SiC film is not dissolved and is not adsorbed as an impurity on the surface of the silicon substrate 1.

上記ののち、第1図(f)に示すように、シリコン基板
1表面に3例えば周知のPSG (t!4珪酸ガラス)
から戒る層間絶縁層7を形成する。そして、ソースおよ
びドレイン領域6上の層間絶縁層7にコンタクトホール
71を形成したのち、眉間絶縁層7上に、コンタクトホ
ール71を通じてソースおよびドレイン領域6に接続さ
れる配線8を形成して本発明に係る半導体装置が完成す
る。
After the above, as shown in FIG.
An interlayer insulating layer 7 is then formed. Then, after forming a contact hole 71 in the interlayer insulating layer 7 on the source and drain region 6, a wiring 8 connected to the source and drain region 6 through the contact hole 71 is formed on the glabella insulating layer 7. A semiconductor device according to the above is completed.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、ポリサイド構造を用いた場合における
ような処理溶液に溶解したポリサイド構成金属に起因す
る不純物によるトランジスタ特性の劣化が防止される。
According to the present invention, deterioration of transistor characteristics due to impurities caused by polycide constituent metals dissolved in a processing solution, which occurs when a polycide structure is used, is prevented.

また、ポリサイド構造のゲート電極とシリコン基板との
組合せに比べ、SiCゲート電極とシリコン基板の組合
せの方が仕事関数の差が大きく、 IG−FETの閾値
電圧(Vth)が大きい。
Furthermore, compared to the combination of a polycide-structured gate electrode and a silicon substrate, the combination of a SiC gate electrode and a silicon substrate has a larger difference in work function, and the threshold voltage (Vth) of the IG-FET is larger.

その結果、闇値電圧(Vth)調整のためにゲート電極
直下の領域に対して行われる選択的イオン注入(チャネ
ルドープ)の工程を省略可能とする効果も得られる。
As a result, it is possible to omit the process of selective ion implantation (channel doping) performed on the region immediately below the gate electrode for adjusting the dark voltage (Vth).

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例の工程における要部断面図で
ある。 図において。 1はシリコン基板、  2は分離絶縁層3はゲート酸化
膜、  4はSiC膜。 5はレジストマスク。 6はソースおよびドレイン領域。 7は層間絶縁層、32は酸化膜 41はゲート電極、71はコンタクトホールである。 准 図
FIG. 1 is a sectional view of a main part in a process of an embodiment of the present invention. In fig. 1 is a silicon substrate, 2 is an isolation insulating layer 3 which is a gate oxide film, and 4 is a SiC film. 5 is a resist mask. 6 is a source and drain region. 7 is an interlayer insulating layer, 32 is an oxide film 41 as a gate electrode, and 71 is a contact hole. Associate figure

Claims (1)

【特許請求の範囲】 一導電型の半導体基板と、 該半導体基板上に形成された炭化珪素層から成るゲート
電極と、 該ゲート電極と半導体基板との間に介在する絶縁層と、 該ゲート電極の両側に表出する該半導体基板に選択的に
反対導電型の不純物を導入して形成されたソース領域お
よびドレイン領域 とを備えたことを特徴とする絶縁ゲート型電界効果トラ
ンジスタ。
[Scope of Claims] A semiconductor substrate of one conductivity type, a gate electrode made of a silicon carbide layer formed on the semiconductor substrate, an insulating layer interposed between the gate electrode and the semiconductor substrate, and the gate electrode. 1. An insulated gate field effect transistor comprising a source region and a drain region formed by selectively introducing impurities of opposite conductivity type into the semiconductor substrate exposed on both sides of the semiconductor substrate.
JP1700990A 1990-01-26 1990-01-26 Insulated gate type field effect transistor Pending JPH03222367A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1700990A JPH03222367A (en) 1990-01-26 1990-01-26 Insulated gate type field effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1700990A JPH03222367A (en) 1990-01-26 1990-01-26 Insulated gate type field effect transistor

Publications (1)

Publication Number Publication Date
JPH03222367A true JPH03222367A (en) 1991-10-01

Family

ID=11932006

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1700990A Pending JPH03222367A (en) 1990-01-26 1990-01-26 Insulated gate type field effect transistor

Country Status (1)

Country Link
JP (1) JPH03222367A (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393999A (en) * 1993-02-22 1995-02-28 Texas Instruments Incorporated SiC power MOSFET device structure
US5801401A (en) * 1997-01-29 1998-09-01 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US5886368A (en) * 1997-07-29 1999-03-23 Micron Technology, Inc. Transistor with silicon oxycarbide gate and methods of fabrication and use
US5926740A (en) * 1997-10-27 1999-07-20 Micron Technology, Inc. Graded anti-reflective coating for IC lithography
US6031263A (en) * 1997-07-29 2000-02-29 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
EP1018769A2 (en) * 1998-12-03 2000-07-12 Lucent Technologies Inc. Semiconductor device with increased gate insulator lifetime
US6140181A (en) * 1997-11-13 2000-10-31 Micron Technology, Inc. Memory using insulator traps
US6504224B1 (en) 1998-02-25 2003-01-07 Micron Technology, Inc. Methods and structures for metal interconnections in integrated circuits
US6541859B1 (en) 1998-02-25 2003-04-01 Micron Technology, Inc. Methods and structures for silver interconnections in integrated circuits
US6573169B2 (en) 1998-02-27 2003-06-03 Micron Technology, Inc. Highly conductive composite polysilicon gate for CMOS integrated circuits
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6835638B1 (en) * 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
US7196929B1 (en) * 1997-07-29 2007-03-27 Micron Technology Inc Method for operating a memory device having an amorphous silicon carbide gate insulator
JP2009514233A (en) * 2005-10-28 2009-04-02 ディーエスエム ソリューションズ,インコーポレイテッド Integrated circuits using complementary junction field effect transistors and MOS transistors in silicon and silicon alloys
US7879674B2 (en) 2005-02-23 2011-02-01 Micron Technology, Inc. Germanium-silicon-carbide floating gates in memories

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5393999A (en) * 1993-02-22 1995-02-28 Texas Instruments Incorporated SiC power MOSFET device structure
US6166401A (en) * 1997-01-29 2000-12-26 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US5989958A (en) * 1997-01-29 1999-11-23 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US5801401A (en) * 1997-01-29 1998-09-01 Micron Technology, Inc. Flash memory with microcrystalline silicon carbide film floating gate
US6031263A (en) * 1997-07-29 2000-02-29 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US6309907B1 (en) 1997-07-29 2001-10-30 Micron Technology, Inc. Method of fabricating transistor with silicon oxycarbide gate
US7196929B1 (en) * 1997-07-29 2007-03-27 Micron Technology Inc Method for operating a memory device having an amorphous silicon carbide gate insulator
US6731531B1 (en) 1997-07-29 2004-05-04 Micron Technology, Inc. Carburized silicon gate insulators for integrated circuits
US6307775B1 (en) 1997-07-29 2001-10-23 Micron Technology, Inc. Deaprom and transistor with gallium nitride or gallium aluminum nitride gate
US6249020B1 (en) 1997-07-29 2001-06-19 Micron Technology, Inc. DEAPROM and transistor with gallium nitride or gallium aluminum nitride gate
US5886368A (en) * 1997-07-29 1999-03-23 Micron Technology, Inc. Transistor with silicon oxycarbide gate and methods of fabrication and use
US6835638B1 (en) * 1997-07-29 2004-12-28 Micron Technology, Inc. Silicon carbide gate transistor and fabrication process
US5926740A (en) * 1997-10-27 1999-07-20 Micron Technology, Inc. Graded anti-reflective coating for IC lithography
US6246606B1 (en) 1997-11-13 2001-06-12 Micron Technology, Inc. Memory using insulator traps
US6232643B1 (en) 1997-11-13 2001-05-15 Micron Technology, Inc. Memory using insulator traps
US6351411B2 (en) 1997-11-13 2002-02-26 Micron Technology, Inc. Memory using insulator traps
US6140181A (en) * 1997-11-13 2000-10-31 Micron Technology, Inc. Memory using insulator traps
US6545314B2 (en) 1997-11-13 2003-04-08 Micron Technology, Inc. Memory using insulator traps
US6541859B1 (en) 1998-02-25 2003-04-01 Micron Technology, Inc. Methods and structures for silver interconnections in integrated circuits
US6504224B1 (en) 1998-02-25 2003-01-07 Micron Technology, Inc. Methods and structures for metal interconnections in integrated circuits
US6573169B2 (en) 1998-02-27 2003-06-03 Micron Technology, Inc. Highly conductive composite polysilicon gate for CMOS integrated circuits
US6531751B1 (en) 1998-12-03 2003-03-11 Agere Systems Inc. Semiconductor device with increased gate insulator lifetime
EP1018769A3 (en) * 1998-12-03 2000-12-27 Lucent Technologies Inc. Semiconductor device with increased gate insulator lifetime
EP1018769A2 (en) * 1998-12-03 2000-07-12 Lucent Technologies Inc. Semiconductor device with increased gate insulator lifetime
US7879674B2 (en) 2005-02-23 2011-02-01 Micron Technology, Inc. Germanium-silicon-carbide floating gates in memories
US8330202B2 (en) 2005-02-23 2012-12-11 Micron Technology, Inc. Germanium-silicon-carbide floating gates in memories
JP2009514233A (en) * 2005-10-28 2009-04-02 ディーエスエム ソリューションズ,インコーポレイテッド Integrated circuits using complementary junction field effect transistors and MOS transistors in silicon and silicon alloys

Similar Documents

Publication Publication Date Title
US5776822A (en) Method for fabricating semiconductor device having titanium silicide film
KR900007905B1 (en) Semiconductor device
TWI453912B (en) Electronic device including a transistor structure having an active region adjacent to a stressor layer and a process for forming the electronic device
JPH03222367A (en) Insulated gate type field effect transistor
US4901134A (en) Semiconductor device and manufacturing method thereof
JPH0638496B2 (en) Semiconductor device
US6228728B1 (en) Method of fabricating semiconductor device
WO2005083795A8 (en) Method for manufacturing semiconductor device and plasma oxidation method
KR100339873B1 (en) Semiconductor device having an improved wiring structure and manufacturing method thereof
JPH04154162A (en) Manufacture of mos-type semiconductor device
JP2621327B2 (en) Method for manufacturing semiconductor device
JPH0661482A (en) Mos-type transistor and its manufacture
JP2616034B2 (en) Semiconductor integrated circuit device
KR100203903B1 (en) Method of manufacturing semiconductor device
JPS5814750B2 (en) Manufacturing method of semiconductor device
JP2874885B2 (en) Semiconductor device and manufacturing method thereof
JPH053750B2 (en)
KR980012277A (en) Manufacturing Method of Semiconductor Device
JPH05326938A (en) Thin film transistor and manufacture thereof
JPS61110462A (en) Semiconductor device and manufacture thereof
JPH07283323A (en) Manufacture of semiconductor device
JP2001110912A (en) Manufacturing method of semiconductor device
JPS5882572A (en) Manufacture of semiconductor device
JPH05226590A (en) Semiconductor device and manufacture thereof
JPH11121397A (en) Manufacture of semiconductor device