JPS6180862A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6180862A
JPS6180862A JP20270984A JP20270984A JPS6180862A JP S6180862 A JPS6180862 A JP S6180862A JP 20270984 A JP20270984 A JP 20270984A JP 20270984 A JP20270984 A JP 20270984A JP S6180862 A JPS6180862 A JP S6180862A
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
silicon layer
semiconductor device
substrate
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP20270984A
Other languages
Japanese (ja)
Other versions
JPH0527975B2 (en
Inventor
Takeo Maeda
前田 健夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP20270984A priority Critical patent/JPS6180862A/en
Priority to US06/780,071 priority patent/US4663825A/en
Publication of JPS6180862A publication Critical patent/JPS6180862A/en
Priority to US07/047,146 priority patent/US4769337A/en
Publication of JPH0527975B2 publication Critical patent/JPH0527975B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66575Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28512Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System
    • H01L21/28525Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising elements of Group IV of the Periodic System the conductive layers comprising semiconducting material

Abstract

PURPOSE:To obtain a semiconductor device in the structure, wherein the wirings consisting of the second polycrystalline silicon layer for the source and the drain can be favorably ohmic-connected through the source and drain regions even when a low-temperature process to be accompanied by shallowing is applied, by a method wherein an impurity is ion-implanted in the surface of the substrate, the natural oxide films on the interfaces between the substrate and the first polycrystalline silicon layer are made to deteriorate or are broken, the first and second polycrystalline silicon layers are patterned and the wirings for the source and the drain are formed. CONSTITUTION:A first polycrystalline silicon layer 10 is deposited on an SiO2 film, 8, which is formed by a CVD method and has contact holes 9 opened thereon, and after that, phosphorus is ion-implanted in the surface of a substrate 1 through parts of the polycrystalline silicon layer 10, which are being deposited in the contact holes 9, to break the natural oxide films on the interfaces between the substrate 1 and the first polycrystalline silicon layer 10. A second polycrystalline silicon layer 11 is deposited and after the second polycrystalline silicon layer 11 is made into a wiring material layer of the purposive thickness, these polycrystalline silicon layer 10 and 11 are patterned. By this way, wirings 12 and 13, which are favorably ohmic-connected through the n<+> type source region 6 and the contact hole 9 and through the n<+> type drain region 7 and the contact hole 9 without performing a high-temperature thermal treatment and consists of the polycrystalline silicon layer 11, can be formed.

Description

【発明の詳細な説明】 〔発明の技(付分野〕 本発明は、半導体装置の製造方法に関し、特にMIS型
半導体装置のソース、ドレイン領域と多結晶シリコンか
らなる配線との接続工程を改良した方法に係わる。
[Detailed Description of the Invention] [Techniques of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular, to an improved process for connecting the source and drain regions of an MIS type semiconductor device to wiring made of polycrystalline silicon. It concerns the method.

〔発明の技術的背景〕[Technical background of the invention]

最近、半導体装置の高集積化の目的から多層配線技術が
多く採用され、それに伴ってソース、ドレイン領域と接
続する配線を多結晶シリコンにより形成したM OS型
半導体装置が開発されている。
Recently, multilayer wiring technology has been widely adopted for the purpose of increasing the degree of integration of semiconductor devices, and MOS type semiconductor devices in which wiring connecting source and drain regions are formed of polycrystalline silicon have been developed.

こうした半導体装置(例えばnチャンネルMO8型半導
体装置)は、従来、次のような方法によって製造されて
いる。
Such semiconductor devices (for example, n-channel MO8 type semiconductor devices) have conventionally been manufactured by the following method.

まず、p型シリコン基板の主面に素子分離領域としての
フィールド酸化膜を形成した後、熱酸化処理を施してフ
ィールド酸化膜で分離された基板の島領域にゲート醒化
膜を形成する。つづいて、全面にゲート電極材料膜であ
る多結晶シリコン膜を堆積した後、該多結晶シリコン膜
をパターニングしてゲート電極を形成する。ひきつづき
、前記フールド酸化膜及びゲート電極をマスクとしてn
型不純物、例えばリンを基板の島領域にイオン注入し、
活性化してn+型のソース、ドレイン領域を形成する。
First, a field oxide film is formed as an element isolation region on the main surface of a p-type silicon substrate, and then thermal oxidation is performed to form a gate oxidation film on the island region of the substrate separated by the field oxide film. Subsequently, after depositing a polycrystalline silicon film as a gate electrode material film over the entire surface, the polycrystalline silicon film is patterned to form a gate electrode. Subsequently, using the field oxide film and gate electrode as a mask,
ion implantation of a type impurity, e.g. phosphorus, into the island region of the substrate;
Activation forms n+ type source and drain regions.

更に、全面に層間絶縁膜であるCvD−3i021Aを
堆積し、前記ソース、ドレイン領域に対応するCVD−
5i02膜にコンタクトホールを開口した後、全面に多
結晶シリコン膜を堆積する。次いで、多結晶シリコン膜
にリンの拡散又はイオン注入を行なった後、950℃以
上の熱処理を施してコンタクトホール内のn+型ソース
・ドレイン領域と多結晶シリ0ンとの界面に生    
1成された自然酸化膜を熱的に破壊してそれらをオーミ
ック接続する。この後、該多結晶シリコン膜をパターニ
ングしてソース、ドレインの配線を形成する。
Furthermore, CvD-3i021A, which is an interlayer insulating film, is deposited on the entire surface, and CVD-3i021A is deposited on the entire surface, and CVD-3i021A is deposited on the entire surface.
After opening a contact hole in the 5i02 film, a polycrystalline silicon film is deposited on the entire surface. Next, after phosphorus is diffused or ion-implanted into the polycrystalline silicon film, heat treatment is performed at a temperature of 950°C or higher to form a layer at the interface between the n+ type source/drain region and the polycrystalline silicon in the contact hole.
1) The formed natural oxide film is thermally destroyed to establish an ohmic connection between them. Thereafter, the polycrystalline silicon film is patterned to form source and drain wiring.

〔背景技術の問題点〕[Problems with background technology]

ところで、M OS型半導体装置においては、集積度を
向上する目的でソース、ドレイン領域がシャロー化され
、これに伴ってソース、ドレイン領域の形成時の活性化
のための熱処理湿度が低温側に抑えられる傾向にある。
By the way, in MOS type semiconductor devices, the source and drain regions are made shallow in order to improve the degree of integration, and as a result, the humidity of the heat treatment for activation during the formation of the source and drain regions is kept to a low temperature side. There is a tendency to

このため、従来のような高温熱処理の適用は困難となり
、その結果ソース、ドレインiI[と多結晶シリコンと
の界面に生成された自然a化膜を充分に破壊できなくな
り、それら領域と多結晶シリコンからなる配線との間か
非抵抗接触となる。
For this reason, it becomes difficult to apply conventional high-temperature heat treatment, and as a result, it becomes impossible to sufficiently destroy the natural aluminium film formed at the interface between the source and drain iI and polycrystalline silicon, and these regions and polycrystalline silicon There is a non-resistance contact between the wire and the wire.

〔発明の目的〕[Purpose of the invention]

本発明は、シャロー化に伴う低(品プロセスを適用した
場合でもソース、トレイン領域と多結晶シリコンからな
る配線とを良好にオーミック接続し得る高集積度で高速
動作が可能な半導体装置の製造方法を提供しようとする
ものである。
The present invention provides a method for manufacturing a semiconductor device capable of high-integration and high-speed operation, which can provide good ohmic connection between the source and train regions and wiring made of polycrystalline silicon even when a low-performance process is applied due to shallow processing. This is what we are trying to provide.

(発明の概要〕 本発明は、第1導電型の半導体基板主面に素子分離領域
を選択的に形成する工程と、この素子分離領域で分離さ
れた基板の島領域にゲート絶縁膜を介して多結晶シリコ
ンからなるゲート電極を形成する工程と、前記素子分離
vA域及びゲート電tffiをマスクとして第2導電型
の不純物を前記島領域にドーピングして第2導電型のソ
ース、ドレイン領域形成する工程と、このゲート電極を
含む全面に層間絶縁膜を形成する工程と、前記ソース、
ドレイン領域に対応する前記層間絶縁膜にコンタクトホ
ールを開口する工程と、前記層間絶縁膜上に薄い第1の
多結晶シリコン層を堆積し、不純物を少なくとも前記コ
ンタクトホール内の多結晶シリコン層部分を通して基板
表面にイオン注入して基板と多結晶シリコン層の界面の
自然酸化膜を劣化乃至破壊する工程と、全面に第2の多
結晶シリコン層を堆積した後、前記第1及び第2の多結
晶シリコン層をパターニングしてソース、ドレインの配
線を形成する工程とを具備したことを待機とするもので
ある。かかる本発明方法によれば、既述の如くシャロー
化に伴う低温プロセスを適用した場合でもソース、ドレ
イン領域と多結晶シリコンからなる配線とを良好にオー
ミック接続できる。
(Summary of the Invention) The present invention includes a step of selectively forming an element isolation region on the main surface of a semiconductor substrate of a first conductivity type, and forming an island region of the substrate separated by the element isolation region via a gate insulating film. A step of forming a gate electrode made of polycrystalline silicon, and doping impurities of a second conductivity type into the island region using the element isolation vA region and gate electric potential tffi as a mask to form source and drain regions of a second conductivity type. a step of forming an interlayer insulating film over the entire surface including the gate electrode;
a step of opening a contact hole in the interlayer insulating film corresponding to the drain region, depositing a thin first polycrystalline silicon layer on the interlayer insulating film, and introducing impurities through at least a portion of the polycrystalline silicon layer in the contact hole; After a step of implanting ions into the substrate surface to degrade or destroy the natural oxide film at the interface between the substrate and the polycrystalline silicon layer, and depositing a second polycrystalline silicon layer on the entire surface, the first and second polycrystalline silicon layers are removed. The process includes a step of patterning the silicon layer to form source and drain wiring. According to the method of the present invention, as described above, even when a low-temperature process associated with shallowing is applied, a good ohmic connection can be made between the source and drain regions and the wiring made of polycrystalline silicon.

しかも、前記イオン注入に際して低い加速電圧で第1の
多結晶シリコン層とソース、ドレイン領域との界面の自
然酸化膜を破壊して良好なオーミック接続を実現できる
と共に、ソース、ドレイン領域を所期目的の浅い接合深
さにでき、かつ接合リークを防止できる。従って、高集
積度で高速動作が可能な半導体装置を得ることができる
Moreover, during the ion implantation, the natural oxide film at the interface between the first polycrystalline silicon layer and the source and drain regions can be destroyed by using a low acceleration voltage to realize good ohmic connections, and the source and drain regions can be connected to the desired purpose. This allows for a shallow bonding depth and prevents bonding leaks. Therefore, it is possible to obtain a semiconductor device with a high degree of integration and capable of high-speed operation.

上記第1の多結晶シリコン層の厚さは、100〜100
0人の範囲にすることが望ましい。この理由は、その厚
さを100人未満にすると、ソース、ドレイン領域との
良好なオーミック接続を実現することが困難となる。一
方、該多結晶シリコン層の厚さがi ooo人を越える
と、イオンを高加速電圧でイオン注入し1qる高価なイ
オン注入装置を必要とするばかりか、不純物が導電性を
与えるリンやボロン等の場合、イオン注入した不純物の
2度プロファイルが浅いソース、ドレイン領域の接合に
まで伸び、該ソース、トレイン領域の接合深さが所期目
的の深さより深くなり、素子の微細化を妨げたり、或い
は不純物が4電性を付与しないAr等を使用した場合、
浅いソース、ドレイン領域の接合への欠陥の導入等によ
り接合リークを招く恐れが生じる。また、第2の多結晶
シリコン層の厚さは、第1の多結晶シリコン層との総和
が200QÅ以上になるよう設定すればよい。
The thickness of the first polycrystalline silicon layer is 100 to 100
It is desirable to set the number to 0 people. The reason for this is that if the thickness is less than 100, it becomes difficult to realize good ohmic connection with the source and drain regions. On the other hand, if the thickness of the polycrystalline silicon layer exceeds IoOO people, not only will an expensive ion implantation device for implanting 1q ions at a high acceleration voltage be required, but also impurities such as phosphorus or boron that provide conductivity will be needed. In such cases, the 2-degree profile of the ion-implanted impurity extends to the shallow junction of the source and drain regions, and the junction depth of the source and drain regions becomes deeper than the intended depth, impeding device miniaturization. , or when impurities such as Ar are used, which do not impart tetraelectricity,
There is a risk that junction leakage may occur due to the introduction of defects into the junctions of the shallow source and drain regions. Further, the thickness of the second polycrystalline silicon layer may be set so that the total thickness of the second polycrystalline silicon layer and the first polycrystalline silicon layer is 200QÅ or more.

上記不純物としては、例えばP、As、B、BF2 、
 S i及びArの少なくとも1種を使用できる。特に
、導電性を与えない3iやArはn+型及びp“型の両
方のソース、ドレイン領域と多結晶シリコンとのオーミ
ック接続に適用できる。
Examples of the above impurities include P, As, B, BF2,
At least one of Si and Ar can be used. In particular, 3i and Ar, which do not provide conductivity, can be applied to ohmic connections between both n+ type and p'' type source and drain regions and polycrystalline silicon.

上記不純物をソース、ドレイン領域と第1の多結晶シリ
コン層との界面にイオン注入する際には、ソース、ドレ
イン領域と多結晶シリコンとの間に生成された自然酸化
膜を破壊して良好なオーミック接続を達成する観点から
、前記界面における不純物のイオン注入量がlX101
・6m“・〜1×1    1×1017on”の範囲
に設定することが望ましい。
When ion-implanting the above impurities into the interface between the source and drain regions and the first polycrystalline silicon layer, the natural oxide film formed between the source and drain regions and the polycrystalline silicon is destroyed and a good From the viewpoint of achieving ohmic connection, the amount of impurity ions implanted at the interface is lX101
・It is desirable to set it in the range of 6 m ".~1×1 1×1017 on".

なお、不純物のイオン注入後に前記自然酸化膜をより確
実に破壊し、低抵抗化するために、950′C以下の温
度で熱処理を施してもよい。
Note that after the impurity ion implantation, heat treatment may be performed at a temperature of 950'C or lower in order to more reliably destroy the natural oxide film and lower the resistance.

また、上記第1及び第2の多結晶シリコン層をパターニ
ングする前に、配線の低抵抗化を目的として該第2の多
結晶シリコン苦土に金属や金属シリサイドの膜を被覆し
てもよい。かかる金属としては、例えばモリブデン、タ
ングステン、チタン、タンタル、白金等を、金属シリサ
イドとしては、洞えばモリブデンシリサイド、タングス
テンシリサイド、チタンシリサイド、タンタルシリサイ
ド、白金シリサイド等を夫々挙げることができる。
Furthermore, before patterning the first and second polycrystalline silicon layers, the second polycrystalline silicon layer may be coated with a film of metal or metal silicide for the purpose of lowering the resistance of the wiring. Examples of such metals include molybdenum, tungsten, titanium, tantalum, and platinum, and examples of metal silicides include molybdenum silicide, tungsten silicide, titanium silicide, tantalum silicide, and platinum silicide.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の実施例を第1図(a)〜(g)を参照し
て詳細に説明する。
Embodiments of the present invention will be described in detail below with reference to FIGS. 1(a) to 1(g).

まず、比抵抗1〜10Ω” cm、面方位(100)の
ρ型シリコン基i反1の主面にボロンのイオン注入技術
及び選択醇化技術により素子分離領域としての厚さ40
00人のフィールド配化膜2及び該フィールド酸化t+
!J 2下の基板表面のp型反転防止唐3を夫々形成し
たく第1図(a)図示)。っづいて、ドライ酸素雰囲気
中て熱酸化処理を施してフィールド酸化膜2で分離され
た基板1の島領域表面に厚さ250人のゲート酸化膜4
を成長させた後、全面に厚さ3500人の多結晶シリコ
ン膜を堆積し、POC23の雰囲気下で多結晶シリコン
膜にリン拡散を行ない該多結晶シリコン膜を低抵抗化さ
せ、更にフAットエッチング技術により多結晶シリコン
膜をパターニングしてゲート電極5を形成した。この後
、フィールド酸化膜2及びゲート電極5をマスクとして
n型不純物、例えば砒素を加速電圧40keV、ドーズ
但 5x 1015cm”の条件でイオン注入を行ない、活
性化処理を徳してn+型のソース、ドレイン領域6.7
を前記島@域に形成した(同図(b)図示)。
First, the main surface of a ρ-type silicon substrate with a specific resistance of 1 to 10 Ω" cm and a plane orientation of (100) was formed to a thickness of 40 Ω as an element isolation region by boron ion implantation technology and selective solubilization technology.
00 field oxide film 2 and the field oxidation t+
! It is desired to form a p-type anti-inversion layer 3 on the substrate surface below J2 (as shown in FIG. 1(a)). Next, a gate oxide film 4 with a thickness of 250 nm is formed on the surface of the island region of the substrate 1 separated by the field oxide film 2 by thermal oxidation treatment in a dry oxygen atmosphere.
After growing, a polycrystalline silicon film with a thickness of 3,500 μm was deposited on the entire surface, and phosphorus was diffused into the polycrystalline silicon film in an atmosphere of POC23 to lower the resistance of the polycrystalline silicon film, and further flat etching was performed. A gate electrode 5 was formed by patterning the polycrystalline silicon film using a technique. Thereafter, using the field oxide film 2 and the gate electrode 5 as a mask, ions of an n-type impurity, such as arsenic, are implanted at an acceleration voltage of 40 keV and a dose of 5 x 1015 cm. Drain region 6.7
was formed in the island @ area (as shown in FIG. 2(b)).

次いで、全面に厚さ3000人のCVD−8iO2膜8
を堆積した後、前記ソース、ドレイン領1戎6.7に対
応t6cVD−3i○zllQ8にコンタクトホール9
を開口した(同図(C)図示)。
Next, a CVD-8iO2 film 8 with a thickness of 3000 was applied to the entire surface.
After depositing contact holes 9 in t6cVD-3i○zllQ8 corresponding to the source and drain regions 1 and 6.7.
was opened (as shown in the same figure (C)).

つづいて、全面に厚さ400人の第1の多結晶シリコン
層10を堆積した後、全面にリンを加速電圧40keV
、ドーズ吊l X 1×1017 cm−’の条件でイ
オン注入したく同図(d)図示)。この時、コンタクト
ホール9内のソース、ドレイン領域6.7と第1の多結
晶シリコン層10との界面には5X10  cl’の濃
度のリンが注入され、それら界面の自然ni化股が!I
I!l壊された。ひきつづき、全面に厚さ1600人の
第2の多結晶シリコン層11を堆積した後、リンを加速
電圧40keV、ドーズff1IX1×1017ca+
”の条件でイオン注入した(同図(e)図示)。この後
、第1及び第2の多結晶シリコン層10.11をフオッ
トエッチング技術によりパターニングして前記ソース、
ドレイン領域6.7とコンタクトホール9を通して接続
されたソース、トレインの配線12.13を形成した(
同図(f)図示)。
Subsequently, after depositing a first polycrystalline silicon layer 10 with a thickness of 400 nm over the entire surface, phosphorus was applied over the entire surface at an accelerating voltage of 40 keV.
, the ion implantation was performed under the condition of a dose of 1 x 1017 cm-' (as shown in Fig. 4(d)). At this time, phosphorus with a concentration of 5×10 Cl' is injected into the interface between the source and drain regions 6.7 and the first polycrystalline silicon layer 10 in the contact hole 9, and the natural nickel formation at these interfaces is formed! I
I! l It was destroyed. Subsequently, after depositing a second polycrystalline silicon layer 11 with a thickness of 1600 on the entire surface, phosphorus was heated at an acceleration voltage of 40 keV and a dose of ff1IX1×1017ca+.
Ion implantation was carried out under the following conditions (as shown in FIG. 2(e)). Thereafter, the first and second polycrystalline silicon layers 10 and 11 were patterned by photo-etching technology to form the source and
Source and train wirings 12 and 13 connected to the drain region 6.7 through the contact hole 9 were formed (
Figure (f) shown).

次いで、全面に保319としてのCVD−3i02膜1
4を堆積した後、900℃の熱処理を施した(同図(Q
)図示)、、この後、常法に従ってCVD−8i021
11144C]:zタクトホール(図示せず)を開口し
、AQ膜の蒸着、パターニングにより前記ソース、ドレ
インの配置1112.13とコンタクトホールを通して
接続するへ2配線を形成してnチャンネルMO8半導体
装置を製造した。
Next, a CVD-3i02 film 1 as a coating 319 is applied to the entire surface.
After depositing 4, heat treatment was performed at 900℃ (see figure (Q)
), , After this, CVD-8i021 according to the usual method.
11144C]: A z tact hole (not shown) is opened, and an AQ film is deposited and patterned to form two wirings connected to the source and drain arrangement 1112.13 through the contact hole to form an n-channel MO8 semiconductor device. Manufactured.

しかして、本発明によればコンタクトホール9が開口さ
れたCVD−8i02膜8上に薄い第1のの多結晶シリ
コンWAioを堆積した後、リンを少なくとも前記コン
タクトホール9内の多結晶シリコン層10部分を通して
基板1表面にイオン注入することによって、基板1と第
1の多結晶シリコン層10の界面の自然酸化膜を破壊で
きる。その結果、該第1の多結晶シリコン層10上に、
更に第2の多結晶シリコン層11を堆積して目的とする
厚さの配線材料層とした後、これら第1及び第2の多結
晶シリコン層10.11をパターニングすることにより
、高温熱処理(950℃以上)を施さずに、n・型のソ
ース、ドレイン領域6、   17とコンタクトへホー
ル9を通して良好にオーミック接続さ札た多結晶シリコ
ンからなる配線12.13を形成できる。
According to the present invention, after depositing a thin first polycrystalline silicon WAio on the CVD-8i02 film 8 in which the contact hole 9 has been opened, phosphorus is added to at least the polycrystalline silicon layer 10 in the contact hole 9. By implanting ions into the surface of the substrate 1 through the portion, the natural oxide film at the interface between the substrate 1 and the first polycrystalline silicon layer 10 can be destroyed. As a result, on the first polycrystalline silicon layer 10,
Furthermore, after depositing a second polycrystalline silicon layer 11 to obtain a wiring material layer with a desired thickness, the first and second polycrystalline silicon layers 10 and 11 are patterned to undergo high-temperature heat treatment (950°C). Wires 12 and 13 made of polycrystalline silicon with good ohmic connection can be formed through the holes 9 to the n-type source and drain regions 6 and 17 and the contacts without applying any heat (over 10°C).

事実1本実施例の半導体装置において、ゲート電極5に
閾値電圧以上の電圧を印加し、かつドレイン領域7にO
〜IOVの電圧を印加した時のトレイン、ソース領域7
.6間の電流1osを調べたところ、第2図に示すV−
1特性図を得た。また、本実施例のようにコンタクトホ
ール内の配線となる多結晶シリコン模と基板の界面にリ
ンのイオン注入を行なわない以外、実施例と同様な方法
により製造されたnチャンネルMO8半導体装置につい
て、同様にドレイン、ソースfr4域間の電流1osを
調ぺたところ、第3図に示すV−I特性図を(qた。こ
の第2図及び第3図より明らかな如く、本実施例で製造
されたMO8半導体装置は、ドレイン領域への電圧印加
がなされると、電流がリニアに流れる。これに対し、従
来のMO8O8半導体装置、トレイン領域への印加電圧
が6v以上にならなければ電流が流れない。これは、ド
レイン、ソース領域と多結晶シリコンからなる配線との
コンタクト部に自然酸化膜が存在し、6V以上の電圧を
印加した時、該自然配化膜が電圧破壊されて電流が流れ
るからである。
Fact 1 In the semiconductor device of this embodiment, a voltage equal to or higher than the threshold voltage is applied to the gate electrode 5, and O2 is applied to the drain region 7.
Train and source region 7 when applying a voltage of ~IOV
.. When we investigated the current 1os between 6 and 6, we found that V-
1 characteristic diagram was obtained. Further, regarding an n-channel MO8 semiconductor device manufactured by the same method as in the example except that phosphorus ion implantation was not performed at the interface between the polycrystalline silicon pattern and the substrate, which will be the wiring in the contact hole, as in this example, Similarly, when the current 1os between the drain and source fr4 regions was investigated, the V-I characteristic diagram shown in Fig. 3 was obtained (q).As is clear from Figs. In the conventional MO8O8 semiconductor device, current flows linearly when voltage is applied to the drain region.On the other hand, in the conventional MO8O8 semiconductor device, current does not flow unless the voltage applied to the train region exceeds 6V. This is because a natural oxide film exists in the contact area between the drain and source regions and the wiring made of polycrystalline silicon, and when a voltage of 6V or more is applied, the natural oxide film is destroyed by the voltage and current flows. It is.

また、上述したようにコンタクトホール9が開口された
CVD−8i02膜8上に薄い第1のの多結晶シリコン
層10を堆積した後、リンを少なくとも前記コンタクト
ホール9内の多結晶シリコン層10部分を通して基板1
表面にイオン注入することによって、低い加速電圧で基
板1と第1の多結晶シリコン層10の界面の自然配化膜
を破壊できる。その結果、自然酸化膜を破壊するための
イオン注入において、ソース、ドレイン領域i域6.7
の接合が所期目的の深さより伸びることなく、浅いソー
ス・ドレイン領域を確保できる。なお、リンの代わりに
SiやArをイオン注入して第1の多結晶シリコン層と
ソース、ドレイン領域との界面に生成された自然酸化膜
を破壊する場合は、低い加速電圧でイオン注入できるた
め、ソース、トレイン領域の接合への欠陥の発生を防止
でき、接合リークを阻止できる。
Further, after depositing a thin first polycrystalline silicon layer 10 on the CVD-8i02 film 8 in which the contact hole 9 has been opened as described above, phosphorus is added to at least the portion of the polycrystalline silicon layer 10 in the contact hole 9. Through board 1
By implanting ions into the surface, the naturally aligned film at the interface between the substrate 1 and the first polycrystalline silicon layer 10 can be destroyed with a low acceleration voltage. As a result, in the ion implantation to destroy the natural oxide film, the source and drain region i region 6.7
Shallow source/drain regions can be secured without the junction extending beyond the intended depth. Note that when ion-implanting Si or Ar instead of phosphorus to destroy the natural oxide film formed at the interface between the first polycrystalline silicon layer and the source and drain regions, the ions can be implanted at a low acceleration voltage. , the occurrence of defects in the junctions of the source and train regions can be prevented, and junction leakage can be prevented.

従って、高集積度で、高速動作が可能なnチャンネルM
oS半導体装置をiけることができる。
Therefore, n-channel M with high integration and high speed operation is possible.
OS semiconductor devices can be installed.

なお、上記実施例では、nチャンネルMO8半導体の製
造に適用した例について説明したが、pチャンネルMO
8半導体装置及び相mζMO8半導体装胃の製造にも同
様に適用できる。この場合、pチャンネルMO8半導体
装置を製造する際には、第1の多結晶シリコン層を通し
て基板にイオン注入する不純物としては、ボロン等のp
型不純物を使用することが必要である。また、相補型M
O8半導体装置を製造する際には、各トランジスタのソ
ース、ドレイン領域と同一導電型の不純物を使用するか
、もしくは3iやArを使用することが必要である。
In addition, in the above embodiment, an example was explained in which it was applied to the manufacture of an n-channel MO8 semiconductor, but a p-channel MO8 semiconductor
The present invention is similarly applicable to the production of 8 semiconductor devices and phase mζ MO8 semiconductor packages. In this case, when manufacturing a p-channel MO8 semiconductor device, impurities such as boron are ion-implanted into the substrate through the first polycrystalline silicon layer.
It is necessary to use type impurities. Also, complementary type M
When manufacturing an O8 semiconductor device, it is necessary to use impurities of the same conductivity type as the source and drain regions of each transistor, or to use 3i or Ar.

上記実施例では、多結晶シリコンからなる配線をソース
、ドレイン領域と接続する場合について説明したが、基
板バイアスを与えるための該基板と同一導電型の拡散領
域との接続にも同様に適用できる。
In the above embodiment, a case has been described in which wiring made of polycrystalline silicon is connected to source and drain regions, but the invention can be similarly applied to connection to a diffusion region of the same conductivity type as the substrate for applying a substrate bias.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く、本発明によればシャロー化に伴う低
温プロセスを適用した場合でもソース、ドレイン領域と
多結晶シリコンからなる配線とを良好にオーミック接続
し得る高集積度で高速動作が可能な半導体装置製造方法
を提供できる。
As detailed above, according to the present invention, even when applying a low-temperature process associated with shallowing, it is possible to perform high-speed operation with a high degree of integration that allows good ohmic connection between the source and drain regions and wiring made of polycrystalline silicon. A semiconductor device manufacturing method can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)〜(Q)は本発明の実施例におけるnチャ
ンネルMO8半導体ルーの製造工程を示す断面図、第2
図は本実施例のnチャンネルM、O8半導体装置におけ
るVo−1osの関係を示す特性図、第3図は従来のn
チャンネルMO8半導体装置におけるVo−Insの関
係を示す特性図である。 1・・・p型シリコン基板、2・・・フィールド酸化膜
、4・・・ゲート酸化膜、5・・・ゲート電極、6・・
・n4″型ソース領域、7・・・n1型ドレイン領域、
8・−・CVD−8i 02 III、 9・・・コン
タクトホール、10・・・第1の多結晶シリコン層、1
1・・・第2の多結晶シリコン層、12・・・多結晶シ
リコンからなるソース     1配線、13・・・多
結晶シリコンからなるドレイン配線。 第2図 ドレイン上方(V) 第3図 )−シイシ生、FL(V)
1(a) to 1(Q) are cross-sectional views showing the manufacturing process of an n-channel MO8 semiconductor loop in an embodiment of the present invention;
The figure is a characteristic diagram showing the relationship between Vo-1os in the n-channel M and O8 semiconductor device of this embodiment, and FIG.
FIG. 3 is a characteristic diagram showing the Vo-Ins relationship in a channel MO8 semiconductor device. DESCRIPTION OF SYMBOLS 1... P-type silicon substrate, 2... Field oxide film, 4... Gate oxide film, 5... Gate electrode, 6...
- n4'' type source region, 7...n1 type drain region,
8...CVD-8i 02 III, 9... Contact hole, 10... First polycrystalline silicon layer, 1
1... Second polycrystalline silicon layer, 12... Source 1 wiring made of polycrystalline silicon, 13... Drain wiring made of polycrystalline silicon. Fig. 2 Above the drain (V) Fig. 3) - Shiishi raw, FL (V)

Claims (6)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板主面に素子分離領域を選
択的に形成する工程と、この素子分離領域で分離された
基板の島領域にゲート絶縁膜を介して多結晶シリコンか
らなるゲート電極を形成する工程と、前記素子分離領域
及びゲート電極をマスクとして第2導電型の不純物を前
記島領域にドーピングして第2導電型のソース、ドレイ
ン領域形成する工程と、このゲート電極を含む全面に層
間絶縁膜を形成する工程と、前記ソース、ドレイン領域
に対応する前記層間絶縁膜にコンタクトホールを開口す
る工程と、前記層間絶縁膜上に薄い第1の多結晶シリコ
ン層を堆積し、不純物を少なくとも前記コンタクトホー
ル内の多結晶シリコン層部分を通して基板表面にイオン
注入して基板と多結晶シリコン層の界面の自然酸化膜を
劣化乃至破壊する工程と、全面に第2の多結晶シリコン
層を堆積した後、前記第1及び第2の多結晶シリコン層
をパターニングしてソース、ドレインの配線を形成する
工程とを具備したことを特徴とする半導体装置の製造方
法。
(1) A step of selectively forming an element isolation region on the main surface of a semiconductor substrate of a first conductivity type, and a gate made of polycrystalline silicon placed in an island region of the substrate separated by this element isolation region via a gate insulating film. a step of forming an electrode; a step of doping impurities of a second conductivity type into the island region using the element isolation region and the gate electrode as a mask to form source and drain regions of the second conductivity type; forming an interlayer insulating film over the entire surface; opening contact holes in the interlayer insulating film corresponding to the source and drain regions; depositing a thin first polycrystalline silicon layer on the interlayer insulating film; a step of implanting impurity ions into the substrate surface through at least a portion of the polycrystalline silicon layer in the contact hole to degrade or destroy a natural oxide film at the interface between the substrate and the polycrystalline silicon layer; and a step of depositing a second polycrystalline silicon layer on the entire surface. 1. A method of manufacturing a semiconductor device, comprising the step of: depositing the first and second polycrystalline silicon layers, and then patterning the first and second polycrystalline silicon layers to form source and drain wiring.
(2)第1の多結晶シリコン層の厚さが100〜100
0Åであることを特徴とする特許請求の範囲第1項記載
の半導体装置の製造方法。
(2) The thickness of the first polycrystalline silicon layer is 100 to 100
2. The method of manufacturing a semiconductor device according to claim 1, wherein the thickness is 0 Å.
(3)不純物としてP、As、B、BF_2、Si及び
Arの少なくとも1種を用いることを特徴とする特許請
求の範囲第1項記載の半導体装置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein at least one of P, As, B, BF_2, Si, and Ar is used as an impurity.
(4)不純物を半導体基板と第1の多結晶シリコン層と
の界面にイオン注入する際、該界面における不純物の注
入量が1×10^1^7cm^−^3〜1×10^2^
1cm^−^3の範囲に設定することを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
(4) When ion-implanting impurities into the interface between the semiconductor substrate and the first polycrystalline silicon layer, the amount of impurity implanted at the interface is 1 x 10^1^7 cm^-^3 to 1 x 10^2^
2. The method of manufacturing a semiconductor device according to claim 1, wherein the distance is set within a range of 1 cm^-^3.
(5)第1及び第2のの多結晶シリコン層の膜厚がパタ
ーニングする前に該第2の多結晶シリコン層上に金属膜
又は金属シリサイド膜を被覆することを特徴とする特許
請求の範囲第1項記載の半導体装置の製造方法。
(5) A claim characterized in that the second polycrystalline silicon layer is coated with a metal film or a metal silicide film before the film thickness of the first and second polycrystalline silicon layers is patterned. 2. A method for manufacturing a semiconductor device according to item 1.
(6)不純物のイオン注入の後、熱処理を施すことを特
徴とする特許請求の範囲第1項記載の半導体装置の製造
方法。
(6) The method for manufacturing a semiconductor device according to claim 1, wherein a heat treatment is performed after ion implantation of impurities.
JP20270984A 1984-09-27 1984-09-27 Manufacture of semiconductor device Granted JPS6180862A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP20270984A JPS6180862A (en) 1984-09-27 1984-09-27 Manufacture of semiconductor device
US06/780,071 US4663825A (en) 1984-09-27 1985-09-25 Method of manufacturing semiconductor device
US07/047,146 US4769337A (en) 1984-09-27 1987-05-08 Method of forming selective polysilicon wiring layer to source, drain and emitter regions by implantation through polysilicon layer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20270984A JPS6180862A (en) 1984-09-27 1984-09-27 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS6180862A true JPS6180862A (en) 1986-04-24
JPH0527975B2 JPH0527975B2 (en) 1993-04-22

Family

ID=16461852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20270984A Granted JPS6180862A (en) 1984-09-27 1984-09-27 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6180862A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222125A (en) * 1985-03-27 1986-10-02 Rohm Co Ltd Manufacture of semiconductor device
JPS6316671A (en) * 1986-07-08 1988-01-23 Nec Corp Manufacture of silicide gate semiconductor device
KR100475727B1 (en) * 1997-07-01 2005-07-21 삼성전자주식회사 Manufacturing method of semiconductor device with low contact resistance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61222125A (en) * 1985-03-27 1986-10-02 Rohm Co Ltd Manufacture of semiconductor device
JPS6316671A (en) * 1986-07-08 1988-01-23 Nec Corp Manufacture of silicide gate semiconductor device
KR100475727B1 (en) * 1997-07-01 2005-07-21 삼성전자주식회사 Manufacturing method of semiconductor device with low contact resistance

Also Published As

Publication number Publication date
JPH0527975B2 (en) 1993-04-22

Similar Documents

Publication Publication Date Title
US4392150A (en) MOS Integrated circuit having refractory metal or metal silicide interconnect layer
US4663825A (en) Method of manufacturing semiconductor device
JPS6072272A (en) Manufacture of semiconductor device
JPH0750276A (en) Method for manufacture of low-resistance contact in junction between regions of different conductivity types
JPS607775A (en) Semiconductor device and manufacture thereof
US5443994A (en) Method of fabricating a semiconductor device having a borosilicate glass spacer
JPS6180862A (en) Manufacture of semiconductor device
JPH0831931A (en) Semiconductor device and its manufacture
JP3156001B2 (en) Method for manufacturing semiconductor device
JP2567832B2 (en) Method for manufacturing semiconductor device
JPS59208772A (en) Manufacture of semiconductor device
JP2001308322A (en) Method of manufacturing semiconductor integrated circuit device
JPH05183117A (en) Semiconductor device and manufacture thereof
JPH02203565A (en) Semiconductor device and its manufacture
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH053750B2 (en)
JPS61251163A (en) Manufacture of bi-mis integrated circuit
JPH0544182B2 (en)
JP3331671B2 (en) Semiconductor device and manufacturing method thereof
JPH01217907A (en) Manufacture of semiconductor device
JPH03204968A (en) Semiconductor device and manufacture thereof
JPS61158181A (en) Manufacture of mis-type semiconductor device
JPS63301556A (en) Bi-cmos semiconductor device
JPH0527243B2 (en)
JPS6212124A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term