JPS61158181A - Manufacture of mis-type semiconductor device - Google Patents

Manufacture of mis-type semiconductor device

Info

Publication number
JPS61158181A
JPS61158181A JP59279316A JP27931684A JPS61158181A JP S61158181 A JPS61158181 A JP S61158181A JP 59279316 A JP59279316 A JP 59279316A JP 27931684 A JP27931684 A JP 27931684A JP S61158181 A JPS61158181 A JP S61158181A
Authority
JP
Japan
Prior art keywords
layer
insulating film
semiconductor
semiconductor device
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP59279316A
Other languages
Japanese (ja)
Inventor
Yoshitaka Sasaki
芳高 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP59279316A priority Critical patent/JPS61158181A/en
Publication of JPS61158181A publication Critical patent/JPS61158181A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To realize a semiconductor device with its ON resistance lower and switching speed higher by a method wherein the width of a channel region is narrowed. CONSTITUTION:On a low-temperature N-layer 2 covering a semiconductor substrate N<+>-layer 1, an SiO2 insulating films 5a, 5b, polycrystalline silicon layer 6 for electrodes, CVD-SiO2 layer 5C are formed by deposition, in that order. A photoresist 7 is formed thereon, wherewith the polycrystalline silicon layer 6 is patterned, which is followed by the implantation of P<+>-type impurity ions. A process follows wherein the photoresist 7 is removed, heating is accomplished for the formation of a P<+>-type layer 3b, and then low-temperature P-type impurity ions 4a are implanted. The pattern of the CVD-SiO2 layer 5C is removed, and thermal diffusion is accomplished for the formation of a P-layer 4b for a channel region. After this, a source N<+>-type region is formed by means of ion implantation, a CVD-SiO2 layer 5d is deposited, heat treatment is accomplished and, finally, a contact hole is provided for the construction of an Al electrode 9.

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は半導体装置、特にMIS型半導体装置の製造方
法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, particularly an MIS type semiconductor device.

[発明の技術的背景とその問題点] MIS型半導体装置のうち、特にMOS  FET(絶
縁ゲート型電界効果トランジスタ)は低耐圧、低電力用
デバイスとして良く知られていたが、最近では高耐圧、
大電力設計が可能となり、現在ではパワーデバイスとし
ても使用されるようになった。
[Technical background of the invention and its problems] Among MIS type semiconductor devices, MOS FETs (insulated gate field effect transistors) in particular have been well known as low voltage and low power devices, but recently, high voltage and low power devices have been used.
It has become possible to design high-power devices and is now used as a power device.

次に、従来の高耐圧パワーMO8FETとして知らレテ
イるDSA (旧rfusi口on 5elf −A 
1i17nleint )構造のFET (以下D−M
O8FETと称する)の製造方法について第2図を参照
して説明する。
Next, we will introduce the conventional high-voltage power MO8FET known as Retei DSA (formerly RFUS-5ELF-A).
1i17nleint) structure FET (hereinafter referred to as D-M
A method of manufacturing the O8FET will be described with reference to FIG.

まず、n+半導体基板1上にn型半導体[12を形成し
、選択的にP+層3を形成し、その表面にゲート酸化膜
5aを例えば1000^の厚みに形成する(第3図(a
))。続いてゲート電極となる多結晶シリコンパターン
6aを例えば6000^の厚さで形成しパターンが形成
されていない部分を開口窓として、ここにn型不純物、
例えばボロンをイオンインプラし拡散処理を行うことに
より開口部の下方にp型半導体層4を形成する。このp
型半導体層4がチャンネル領域となる部分である。(第
3図(b))。次に、前記開口部の中間部にフォトプロ
セスによりレジスト膜7を形成し、これら多結晶シリコ
ンパターン6aとレジスト膜7が形成されていない部分
の酸化115aをエツチングにより除去する(第3図(
C))。次に、イオンインプラによりn型不純物、例え
ばリン又は砒素を形成した後拡散を行うと、p型子ヤン
ネル領域上にn+型半導体1!18が形成される。その
優、前記マスクパターンを除去することによって第3図
(d)の構造が得られる。そのlCVD法にてPSGW
A5Gを例えば8000^の厚さで形成する(第3図(
e))。次に、前記p+梨型ソース領域上部分を異方性
のエツチングを行うことにより酸化膜5a及びPSGl
15cを除去して開口部を形成する。その後、アルミ電
極9を形成して第3図(f)のごとき構造を得る。
First, an n-type semiconductor [12] is formed on an n+ semiconductor substrate 1, a P+ layer 3 is selectively formed, and a gate oxide film 5a is formed to a thickness of, for example, 1000^ on the surface thereof (see Fig. 3(a).
)). Next, a polycrystalline silicon pattern 6a that will become a gate electrode is formed to a thickness of, for example, 6000^, and the part where the pattern is not formed is used as an opening window, and an n-type impurity,
For example, a p-type semiconductor layer 4 is formed below the opening by ion implanting boron and performing a diffusion process. This p
This is a portion where the type semiconductor layer 4 becomes a channel region. (Figure 3(b)). Next, a resist film 7 is formed in the middle part of the opening by a photo process, and the polycrystalline silicon pattern 6a and the oxidized portion 115a where the resist film 7 is not formed are removed by etching (see FIG. 3).
C)). Next, by forming an n-type impurity, such as phosphorus or arsenic, by ion implantation and then performing diffusion, an n + -type semiconductor 1!18 is formed on the p-type channel region. Furthermore, by removing the mask pattern, the structure shown in FIG. 3(d) is obtained. PSGW using the CVD method
For example, A5G is formed with a thickness of 8000^ (see Fig. 3).
e)). Next, by performing anisotropic etching on the upper part of the p+ pear-shaped source region, the oxide film 5a and PSGl are etched.
15c is removed to form an opening. Thereafter, an aluminum electrode 9 is formed to obtain a structure as shown in FIG. 3(f).

このように、従来のMIS型半型半導体装量一開口部を
用いてp型チャンネル領域の拡散とn+型ソース領域の
拡散を行っていたため閾値がばらつくという問題があっ
た。これは通常拡散は横方向に行くしたがって、濃度が
低くなってくるが、そこにさらに、n+型層が拡散され
るため先のp型拡散層の濃度の低い部分をチャンネル領
域として使用せざるを得ないことによる。このため従来
はpチャンネル層を深く例えば4〜5μmに作りnI層
を1μmと狭く形成し濃度に影響されないようにしてい
た。このようにチャンネル幅を狭くできないということ
はgmを大きくとれないということになり、gmを大き
くとれないのでON抵抗・を低くできないこととスイッ
チングスピードを向上できないという大きな問題点につ
ながる。
As described above, since the p-type channel region and the n+ type source region were diffused using one opening of the conventional MIS type half-type semiconductor device, there was a problem that the threshold value varied. This is because diffusion normally goes in the lateral direction, resulting in a lower concentration, but since the n+ type layer is further diffused there, the lower concentration part of the previous p type diffusion layer must be used as the channel region. Depends on what you don't get. For this reason, in the past, the p-channel layer was formed deep, for example, 4 to 5 .mu.m, and the nI layer was formed as narrow as 1 .mu.m, so as not to be affected by the concentration. The fact that the channel width cannot be narrowed means that the gm cannot be made large, which leads to the big problem that the ON resistance cannot be lowered and the switching speed cannot be improved.

[発明の目的] 本発明は、前記事情に鑑みてなされたものでありMIS
型半導体装置のチャンネル領域の幅を狭くすることによ
ってON抵抗が低く、かつ4、スイッチングスピードの
向上が図れる半導体装置の製造方法を提供することを目
的とする。
[Object of the invention] The present invention has been made in view of the above circumstances, and the present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can reduce the ON resistance and improve the switching speed by narrowing the width of the channel region of the semiconductor device.

[発明の概要J 本発明は前記目的を達成するために、第1導電型の導体
基板の主面に第1の絶縁膜を介して半導体又は導電体層
を形成する工程と、その上に第2の絶縁膜を形成する工
程と、該第2の絶縁膜に自動的に開口部が形成されるよ
うに選択的にパターニングする工程と、該第2の絶縁膜
パターンの一部をマスクに前記半導体又は導電体層を選
択的にパターニングした後前記第1導電型半導体基板に
第1導電型とは逆導電型の第1半導体装置を上記第2の
絶縁膜あるいは半導体又は導電体層をマスクに形成する
工程と、前記第2の絶縁膜パターンの開口部から半導体
又は導電体層を通してイオン注入を行い、前記第1導電
型半導体基板中に第1導電型とは逆の第2半導体層を形
成する工程と、少なくとも第1半導体層と、第2半導体
層は前記第1の絶縁膜直下の半導体基板の主面において
電気的に接続されてる工程とを含むことを特徴と“ケる
ものである。
[Summary of the Invention J In order to achieve the above object, the present invention includes a step of forming a semiconductor or conductor layer on the main surface of a conductor substrate of a first conductivity type via a first insulating film, and a step of forming a semiconductor or conductor layer on the main surface of a conductor substrate of a first conductivity type. a step of selectively patterning the second insulating film so that an opening is automatically formed; and a step of patterning the second insulating film using a part of the second insulating film pattern as a mask. After selectively patterning the semiconductor or conductor layer, a first semiconductor device of a conductivity type opposite to the first conductivity type is placed on the first conductivity type semiconductor substrate using the second insulating film or the semiconductor or conductor layer as a mask. forming a second semiconductor layer of the opposite conductivity type to the first conductivity type in the first conductivity type semiconductor substrate by performing ion implantation through the semiconductor or conductor layer from the opening of the second insulating film pattern; and a step in which at least the first semiconductor layer and the second semiconductor layer are electrically connected on the main surface of the semiconductor substrate directly under the first insulating film. .

[発明の実施例] 本発明の実施例を第1図<a)〜(CI)に示す。[Embodiments of the invention] Examples of the present invention are shown in FIGS. 1<a) to (CI).

まず、半導体基板n+層層上上これよりも低濃度の0層
2を有するnオンn+基板上に約4000八程度の5i
O25を形成し、選択的にパターニングする。続いてゲ
ート5102となる熱酸化15aを約1000へ形成し
、その上にゲート電極用多結晶シリコン6を約3000
A堆積させ、さらにその上にCVD法にて形成したcv
o−si025Gを約6000A程度堆積させる(第1
図(a))。
First, on an n-on n+ substrate having a 0 layer 2 with a lower concentration than this on an n+ layer of a semiconductor substrate, about 4000 8 5i
Form O25 and selectively pattern. Next, thermal oxidation 15a that will become the gate 5102 is formed to a thickness of approximately 1000 mm, and polycrystalline silicon 6 for the gate electrode is formed thereon to a thickness of approximately 3000 mm.
A deposited and further formed on top of it by CVD method.
Deposit approximately 6000A of o-si025G (first
Figure (a)).

次に、フォトエツチング技術により前記CvD−8’1
025Cを選択的にパターニングする(第1図(b))
。続いてフォトエツチング技術によりフォトレジストア
を所望のパターン上に残し、CVD  5i025Gと
共にエツチングマスクにし、多結晶シリコン6をパター
ニング侵、P+不純物イオンインプラ例えばボロンイオ
ン3aを6X 10 ” tya−”のドーズ量で20
0KeV程度の加速エネルギーにて打ち込む(第1図(
C))。続いてフォトレジストを除去侵、例えば120
0℃程度の温度において拡散を施し、P”13bを形成
する。その後チャネル領域を形成するため低濃度のP型
不純物イオン4a、例えばボロンイオンを1 X 10
14cR−”のドーズ量と、150KeVの加速エネル
ギーにて打ち込む(第1図(d))。
Next, the CvD-8'1
Selectively patterning 025C (Fig. 1(b))
. Next, the photoresist is left on the desired pattern using photoetching technology, used as an etching mask with CVD 5i025G, patterning is carried out on polycrystalline silicon 6, and P+ impurity ion implantation, for example boron ions 3a, is carried out at a dose of 6X 10 "tya-". 20 in
It is implanted with an acceleration energy of about 0 KeV (Fig. 1 (
C)). The photoresist is then removed by a etchant, e.g.
Diffusion is performed at a temperature of about 0° C. to form P” 13b. After that, in order to form a channel region, low concentration P type impurity ions 4a, such as boron ions, are added at 1×10
Implantation was performed at a dose of 14 cR-'' and an acceleration energy of 150 KeV (FIG. 1(d)).

この際、ボロンイオンは絶縁1!*50開口部直下の多
結晶シリコンを通過し、n型シリコン基板2へ到達し、
ここにチャネルp型層4aを形成する。
At this time, boron ions are insulating! *50 Passes through the polycrystalline silicon directly under the opening and reaches the n-type silicon substrate 2,
A channel p-type layer 4a is formed here.

次に、CVD−3i 025Cパターンを選択的にエツ
チングした後、熱拡散にてチャネル領域の1層4bを形
成する(第1図(e))。その侵、ソースn“領域8を
イオンインプラで形成し、再1CVD−8i 025G
を約8000A程度堆積後、熱処理を施す(第1図(f
))。最後にコンタクトホールを形成し、AI電極9を
形成して第1図(g)の構造を得る。
Next, after selectively etching the CVD-3i 025C pattern, one layer 4b of the channel region is formed by thermal diffusion (FIG. 1(e)). After that, the source n" region 8 is formed by ion implantation, and then the 1CVD-8i 025G
After depositing about 8000A, heat treatment is performed (see Fig. 1(f)
)). Finally, a contact hole is formed and an AI electrode 9 is formed to obtain the structure shown in FIG. 1(g).

尚、本実施例中に挙げられているCVD−3i025C
,PSG又は5i3Naあるいはアルミナ膜等の絶縁膜
でも良い。また、ゲート電極材料として多結晶シリコン
6を用いたが、何らこの材料にこだわる必要はなく、例
えば、MO,N+。
In addition, CVD-3i025C mentioned in this example
, PSG, 5i3Na, or an alumina film. Further, although polycrystalline silicon 6 was used as the gate electrode material, there is no need to be particular about this material; for example, MO, N+.

W、Ti、Ta等の^融点金属、あるいはモリブデンシ
リサイド、ニッケルシリサイド、ダンクステンシリサイ
ド、白金シリサイド等の金属シリサイド等でも良い。
Melting point metals such as W, Ti, Ta, etc., or metal silicides such as molybdenum silicide, nickel silicide, danksten silicide, platinum silicide, etc. may be used.

本実施例はゲート電極材料である多結晶シリコン層を通
してイオン注入を施し、チャネル領域を形成するため、
チャネル領域の濃度勾配がなく、そのためゲート閾値電
圧vthの一定した素子が形成できる所に最大の特徴が
ある。次に、挙げる第2実施例は上記特徴を生かし、か
つ、多結晶シリコン層を厚くすることによってゲート配
線抵抗をも低くすることを特徴として実施例である。
In this example, ions are implanted through the polycrystalline silicon layer that is the gate electrode material to form the channel region.
The greatest feature is that there is no concentration gradient in the channel region, and therefore an element with a constant gate threshold voltage vth can be formed. Next, the second embodiment to be described is an embodiment that takes advantage of the above characteristics and also lowers the gate wiring resistance by increasing the thickness of the polycrystalline silicon layer.

[第2実施例] その他の実施例を第2図(a)〜(f)に示す。[Second example] Other embodiments are shown in FIGS. 2(a) to 2(f).

まず、n+層1と0層2を有する半導体基板で該基板上
にゲート酸化15aを約1000^、どの上にゲート電
極の多結晶シリコン6を約8000へ、さらに、この上
に絶縁膜、例えば5i3N45Cを約300OA堆積し
、始めに5i3Naをフォトエツチング技術により選択
的にエツチングパターンを形成し、同じエツチングマス
クを用いてその下の多結晶シリコンを約400OAと途
中まで異方性エツチングする(第2図(a))。
First, on a semiconductor substrate having an n+ layer 1 and an 0 layer 2, a gate oxide layer 15a is formed on the substrate to a thickness of about 1,000 yen, a gate electrode of polycrystalline silicon 6 is formed on the substrate to a thickness of about 8,000 yen, and an insulating film, e.g. Approximately 300 OA of 5i3N45C is deposited, first a selective etching pattern is formed on 5i3Na by photo-etching, and the polycrystalline silicon underneath is anisotropically etched halfway to approximately 400 OA using the same etching mask (second Figure (a)).

尚、異方性エツチングは一般的なドライエツチングであ
るリアクティブイオンエツチングで行った。
Incidentally, the anisotropic etching was performed by reactive ion etching, which is a general dry etching.

続いてフォトエツチング技術によってフォトレジスト7
を形成し、P+型不純物イオン3aをイオン注入する(
第2図(b))。次に、フォトシスト7aを除去し、拡
散にてP+層3bを形成し、P型不純物イオン4aを前
記凹部の多結晶シリコン6の溝部のみ通過させるよう、
例えばボロン等の不純物イオン等を約200〜300K
eV等の加速エネルギーにてイオン注入する(第2図(
C))。次に、拡散を施し、チャネル領域P暦4bを形
成後再度フォトエツチング技術によりフォトレジストパ
ターン7bを形成する。次に、ソース領域を形成すやた
めn++不純物イオン8a例えば燐を6X10”011
4のドーズ」で約100KeVの加速エネルギーにて打
ち込む(第2図(d))。
Next, photoresist 7 was formed using photoetching technology.
is formed, and P+ type impurity ions 3a are ion-implanted (
Figure 2(b)). Next, the photocyst 7a is removed, and a P+ layer 3b is formed by diffusion, so that the P-type impurity ions 4a are allowed to pass through only the groove of the polycrystalline silicon 6 in the recess.
For example, impurity ions such as boron are heated to about 200 to 300K.
Ion implantation is performed with acceleration energy such as eV (Figure 2 (
C)). Next, diffusion is performed to form a channel region P pattern 4b, and then a photoresist pattern 7b is formed again by photoetching technique. Next, to form a source region, n++ impurity ions 8a, for example, phosphorus, are added to 6X10"011
It is implanted with an acceleration energy of approximately 100 KeV at a dose of 4 (Fig. 2(d)).

この時、31P+のイオンを100KeVの加速エネル
ギーにてイオン注入したとすると、3i中の31p“の
プロジェクションレンジは約1000へである。つまり
最高濃度のピーク値が1000八程度ゆえ、多結晶シリ
コンの凹部の溝を31p+イオンは通過しない。次に、
熱酸化FJ5eを50OA形成し、CVD115dを約
6000^堆積し、熱処理を施して、ソースn+領14
8bを形成する(第2図(e))。最後にコンタクトホ
ールを形成し、AIN極9を形成して第2図(f)の構
造を得る。
At this time, if 31P+ ions are implanted with an acceleration energy of 100 KeV, the projection range of 31p" in 3i is about 1000. In other words, since the peak value of the highest concentration is about 1000, polycrystalline silicon 31p+ ions do not pass through the groove of the recess.Next,
50 OA of thermally oxidized FJ5e is formed, approximately 6000 OA of CVD 115d is deposited, and heat treatment is performed to form the source n+ region 14.
8b (Fig. 2(e)). Finally, a contact hole is formed and an AIN pole 9 is formed to obtain the structure shown in FIG. 2(f).

[発明の効果コ 以上詳述した本発明によれば、チャンネルとソース領域
との間の距離を正確に形成でき、かつ表面濃度が一定な
チャンネル領域が形成でき、また、チャンネル幅を狭く
でき、拡散の原理に基づく不純物m度の不均一が生じて
も影響されないから、閾値のバラツキを防止でき、かつ
9mを大きくとれ、オン抵抗が小さくなり、スイッチン
グスピードの向上も図れる半導体装置を提供できる。
[Effects of the Invention] According to the present invention detailed above, the distance between the channel and the source region can be formed accurately, a channel region with a constant surface concentration can be formed, and the channel width can be narrowed. Since it is not affected even if non-uniformity of impurity m degree occurs due to the principle of diffusion, it is possible to provide a semiconductor device that can prevent variations in the threshold value, can increase the length of 9 m, has a small on-resistance, and can improve the switching speed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(a)乃至(a)は本発明の一実施例を工程順に
示す断面図であり、第2図(a)乃至(f>は本発明の
他の実施例を工程順に示す断面図であり、第3図(a)
乃至(f)は従来の製造方法を工程順に示す断面図であ
る。 1・・・n+型半導体基板、2・・・n型半導体層、3
・・・酸化膜、4・・・多結晶シリコン層、5・・・n
型半導体層、6・・・窒化膜、7・・・n1型半導体装
置 第3図 (f) 手続補正書 昭和60年2月7日 2、発明の名称 MTS型半導体装置の製造方法 3、補正をする者 事件どの関係   特許出願人 5、補正命令の日付   自 発 6、補正の対象 明amの発明の詳細な説明及び図面の簡単な説明の欄 7、補正の内容 (1)  明りIm第4頁第5行目の「フォトプロセス
」を「フォトエツチングプロセス」に訂正する。 (2)同第12頁第7行目〜第10行目までの記載文を
削除し、そこに下記文章を挿入する。 記 「1・・・・・・0+型型半体層、 2・・・・・・n
型半導体基板、3b・・・・・・p拡散層、 58〜5
G・・・・・・絶縁膜、6・・・・・・多結晶シリコン
、 8・・・・・・ソースn+層、9・・・・・・アル
ミ電極。」
FIGS. 1(a) to (a) are cross-sectional views showing one embodiment of the present invention in the order of steps, and FIGS. 2(a) to (f) are cross-sectional views showing another embodiment of the present invention in the order of steps. and Fig. 3(a)
7(f) are cross-sectional views showing the conventional manufacturing method in the order of steps. 1... n+ type semiconductor substrate, 2... n type semiconductor layer, 3
...Oxide film, 4...Polycrystalline silicon layer, 5...n
type semiconductor layer, 6... Nitride film, 7... N1 type semiconductor device Figure 3 (f) Procedural amendment February 7, 1985 2. Title of invention Method for manufacturing MTS type semiconductor device 3. Amendment Patent applicant 5. Date of amendment order. 6. Detailed description of the invention and brief description of the drawings to be amended. 7. Contents of the amendment (1). 4. "Photo process" in the 5th line of the page is corrected to "photo etching process." (2) Delete the sentences from lines 7 to 10 on page 12, and insert the following sentences in their place. Note: 1...0+ type half layer, 2...n
type semiconductor substrate, 3b...p diffusion layer, 58-5
G: Insulating film, 6: Polycrystalline silicon, 8: Source n+ layer, 9: Aluminum electrode. ”

Claims (4)

【特許請求の範囲】[Claims] (1)第1導電型の半導体基板の主面に第1の絶縁膜を
介して半導体又は導電体層を形成する工程と、その上に
第2の絶縁膜を形成する工程と、該第2の絶縁膜を選択
的にパターンニングする工程と、該第2の絶縁膜パター
ンの一部をマスクに前記半導体又は導電体層を選択的に
パターニングした後前記第1導電型半導体基板に第1導
電型とは逆導電型の第1半導体装置を上記第2の絶縁膜
あるいは半導体又は導電体層をマスクに形成する工程と
、前記第2の絶縁膜パターンの他方の開口部から半導体
又は導電体層を通してイオン注入を行い、前記第1導電
型半導体基板中に第1導電型とは逆の第2半導体層を形
成する工程と、少なくとも第1半導体層と、第2半導体
層は前記第1の絶縁膜直下の半導体基板の主面において
電気的に接続されてる工程とを含むことを特徴とするM
IS型半導体装置の製造方法。
(1) A step of forming a semiconductor or conductor layer on the main surface of a semiconductor substrate of a first conductivity type via a first insulating film, a step of forming a second insulating film thereon, and a step of forming a second insulating film thereon; selectively patterning the insulating film of the first conductive type semiconductor substrate after selectively patterning the semiconductor or conductive layer using a part of the second insulating film pattern as a mask; forming a first semiconductor device of a conductivity type opposite to that of the mold using the second insulating film or the semiconductor or conductor layer as a mask; and forming the semiconductor or conductor layer from the other opening of the second insulating film pattern. forming a second semiconductor layer opposite to the first conductivity type in the first conductivity type semiconductor substrate by performing ion implantation through the first conductivity type semiconductor substrate; M characterized in that it includes a step of electrically connecting on the main surface of the semiconductor substrate directly under the film.
A method for manufacturing an IS type semiconductor device.
(2)第1絶縁膜上に形成された半導体層は、多結晶シ
リコンである特許請求の範囲第1項記載のMIS型半導
体装置の製造方法。
(2) The method for manufacturing an MIS type semiconductor device according to claim 1, wherein the semiconductor layer formed on the first insulating film is polycrystalline silicon.
(3)上記多結晶シリコンパターンの一部に凹部を形成
する工程と、該多結晶シリコン層の凹部を通してイオン
注入で前記第1絶縁膜直下の半導体基板に、該基板とは
逆導電型の第2半導体層を形成する工程とを含むことを
特徴とする特許請求の範囲第1項又は第2項記載のMI
S型半導体装置の製造方法。
(3) forming a recess in a part of the polycrystalline silicon pattern; and implanting ions into the semiconductor substrate immediately below the first insulating film through the recess of the polycrystalline silicon layer; MI according to claim 1 or 2, characterized in that the MI includes the step of forming two semiconductor layers.
A method for manufacturing an S-type semiconductor device.
(4)前記半導体基板をドレイン、第1絶縁膜をゲート
絶縁膜、半導体層をゲート電極、第2半導体層をチャネ
ル領域とするMOS型半導体装置を製造するものである
特許請求の範囲第1項乃至第3項のいずれか1項に記載
のMIS型半導体装置の製造方法。
(4) A MOS type semiconductor device is manufactured in which the semiconductor substrate is used as a drain, the first insulating film is used as a gate insulating film, the semiconductor layer is used as a gate electrode, and the second semiconductor layer is used as a channel region. The method for manufacturing an MIS semiconductor device according to any one of items 3 to 3.
JP59279316A 1984-12-28 1984-12-28 Manufacture of mis-type semiconductor device Pending JPS61158181A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59279316A JPS61158181A (en) 1984-12-28 1984-12-28 Manufacture of mis-type semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59279316A JPS61158181A (en) 1984-12-28 1984-12-28 Manufacture of mis-type semiconductor device

Publications (1)

Publication Number Publication Date
JPS61158181A true JPS61158181A (en) 1986-07-17

Family

ID=17609468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59279316A Pending JPS61158181A (en) 1984-12-28 1984-12-28 Manufacture of mis-type semiconductor device

Country Status (1)

Country Link
JP (1) JPS61158181A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931353A1 (en) * 1996-10-25 1999-07-28 Siliconix Incorporated Threshold adjust in vertical dmos transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0931353A1 (en) * 1996-10-25 1999-07-28 Siliconix Incorporated Threshold adjust in vertical dmos transistor
EP0931353A4 (en) * 1996-10-25 1999-08-11

Similar Documents

Publication Publication Date Title
US5849616A (en) Method of manufacturing a semiconductor device
US5599724A (en) FET having part of active region formed in semiconductor layer in through hole formed in gate electrode and method for manufacturing the same
JPH0523055B2 (en)
JPH06318697A (en) Dmos structure and preparation thereof
US4985746A (en) Semiconductor device and method of production
EP0187260B1 (en) Process for fabricating a semiconductor integrated circuit device having misfets
US6078079A (en) Semiconductor device and method of manufacturing the same
JPH04305978A (en) Mos semiconductor device for electric power and manufacture thereof
JPH0945905A (en) Semiconductor device and its manufacture
JPH04218925A (en) Semiconductor device and manufacture thereof
JPS61158181A (en) Manufacture of mis-type semiconductor device
JPS6225457A (en) Manufacture of vertical semiconductor device
KR100415191B1 (en) Method for fabricating asymmetric cmos transistor
JPS6276665A (en) Complementary semiconductor device
JP2001308322A (en) Method of manufacturing semiconductor integrated circuit device
JPS6180862A (en) Manufacture of semiconductor device
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPS59214263A (en) Double diffusion type insulated gate field-effect transistor
JPH02254729A (en) Manufacture of semiconductor device
JPH022170A (en) Manufacture of insulated gate type field effect transistor
KR940010919B1 (en) Manufacturing method of ldd type mosfet
JPS59138363A (en) Semiconductor device and manufacture thereof
JPH09232444A (en) Semiconductor integrated circuit device and its manufacture
KR940004258B1 (en) Manufacturing method of soi structure device
JPS63114173A (en) Semiconductor device and manufacture thereof