JPS61224435A - Semiconductor device - Google Patents

Semiconductor device

Info

Publication number
JPS61224435A
JPS61224435A JP6521885A JP6521885A JPS61224435A JP S61224435 A JPS61224435 A JP S61224435A JP 6521885 A JP6521885 A JP 6521885A JP 6521885 A JP6521885 A JP 6521885A JP S61224435 A JPS61224435 A JP S61224435A
Authority
JP
Japan
Prior art keywords
layer
titanium
melting point
point metal
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6521885A
Other languages
Japanese (ja)
Other versions
JPH061774B2 (en
Inventor
Yuichi Mikata
見方 裕一
Toshiro Usami
俊郎 宇佐美
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP60065218A priority Critical patent/JPH061774B2/en
Publication of JPS61224435A publication Critical patent/JPS61224435A/en
Publication of JPH061774B2 publication Critical patent/JPH061774B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Electrodes Of Semiconductors (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

PURPOSE:To suppress the reaction of the high-melting point metal layer with the silicon layer or the atmosphere gas by a method wherein the high-melting point metal CONSTITUTION:N-type inversion preventing layers 33 are formed in parts of the surface of a substrate 31, which are located under field oxide films 32, a thermal oxidation.

Description

【発明の詳細な説明】 [発明の技術分野〕 本発明は半導体装置に係り、特に絶縁ゲート電界効果型
トランジスタの電極配線部を改良した半導体装置に関す
る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a semiconductor device, and more particularly to a semiconductor device in which an electrode wiring portion of an insulated gate field effect transistor is improved.

[発明の技術的背景及びその問題点] 従来、絶縁ゲート電界効果型トランジスタ(以下、MO
Sトランジスタという。)は次のような工程により製造
されている。
[Technical background of the invention and its problems] Conventionally, insulated gate field effect transistors (hereinafter referred to as MO
It is called an S transistor. ) is manufactured by the following process.

先ず、第2図(’a)に面方位(100)のn型シリコ
ン基板11上にフィールド酸化膜12を形成すると共に
、該フィールド酸化[112下の基板11表面にn型反
転防止層13を形成する。続いて、同図(b)に示すよ
うに、熱酸化処理を施して前記フィールド酸化膜12で
分離された基板11の島領域(素子領域)上に厚さ10
0〜500人のゲート酸化膜14を形成する。引き続き
、全面のn型不純物をドープした多結晶シリコン躾を堆
積し、バターニングしてゲート電極15を形成した後、
該ゲート電極15及びフィールド酸化膜12をマスクと
してp型不純物、例えばボロンをイオン注入し、活性化
して前記基板11の島領域に互いに分離されたp+型の
ソース領域16及びドレイン領域17を形成する。
First, as shown in FIG. 2('a), a field oxide film 12 is formed on an n-type silicon substrate 11 with a plane orientation (100), and an n-type inversion prevention layer 13 is formed on the surface of the substrate 11 under the field oxidation film 112. Form. Subsequently, as shown in FIG. 2B, a thermal oxidation process is performed to form a layer with a thickness of 10 mm on the island region (device region) of the substrate 11 separated by the field oxide film 12.
0 to 500 gate oxide films 14 are formed. Subsequently, after depositing polycrystalline silicon doped with n-type impurities over the entire surface and patterning to form the gate electrode 15,
Using the gate electrode 15 and field oxide film 12 as a mask, a p-type impurity, such as boron, is ion-implanted and activated to form a p+-type source region 16 and drain region 17 separated from each other in the island region of the substrate 11. .

次いで、同図(C)に示すように、 CVD−3i02膜18を堆積した後、コンタクトホー
ル19の開孔、A1の蒸着、バターニングにより前記ソ
ース、ドレイン領域16.11とコンタクトホール19
を通して接続するA1配線20.21を形成してMoS
トランジスタを製造する。
Next, as shown in FIG. 1C, after depositing a CVD-3i02 film 18, forming a contact hole 19, depositing A1, and buttering, the source and drain regions 16, 11 and the contact hole 19 are formed.
Form A1 wiring 20 and 21 to connect through the MoS
Manufacture transistors.

上述した方法によれば、ゲート電極15を多結晶シリコ
ンにより形成することによって、該ゲート電極15をマ
スクとしてp+型のソース、ドレイン領域16.11を
ゲート電極15に対して自己整合的に形成でき、しかも
ゲート電極15の形成工程後に活性化のための高温熱処
理を採用できる特徴を有する。
According to the method described above, by forming the gate electrode 15 from polycrystalline silicon, the p+ type source and drain regions 16.11 can be formed in self-alignment with the gate electrode 15 using the gate electrode 15 as a mask. Moreover, it has the feature that high temperature heat treatment for activation can be applied after the step of forming the gate electrode 15.

しかしながら、多結晶シリコン躾は高濃度の不純物をド
ープしても比抵抗が10°3Ωα程度しか下がらず、微
細な素子では高速動作が制限される。
However, even when polycrystalline silicon is doped with impurities at a high concentration, the resistivity decreases by only about 10°3Ωα, which limits high-speed operation in fine devices.

また、素子の集積度が上るに伴ってソース、ドレインの
拡散層の深さが浅くなり、この浅い接合形成によって拡
散層の抵抗が高くなる。こうしたことは、トランジスタ
の寄生抵抗を増大させ、トランジスタ特性に開く影響を
与える。
Furthermore, as the degree of integration of elements increases, the depth of the source and drain diffusion layers becomes shallower, and the resistance of the diffusion layers increases due to the formation of shallower junctions. These things increase the parasitic resistance of the transistor and have a wide impact on the transistor characteristics.

このようなことから、ゲート電極を多結晶シリコン膜の
代りに金属又は金属珪化物を用いたり、又はゲート電極
を多結晶シリコン膜と該多結晶シリコン膜の上に積層し
た金属珪化物との二重構造により形成したりすることが
行われている。
For this reason, it is possible to use a metal or metal silicide instead of a polycrystalline silicon film for the gate electrode, or to use a combination of a polycrystalline silicon film and a metal silicide layered on the polycrystalline silicon film for the gate electrode. Formation using a layered structure is also practiced.

金属を直接用いる場合は、金属とシリコンあるいは層間
絶縁膜が熱工程により反応を起こすことが多く、その後
の工程を低温で行なわなければならず、用途が限定され
てしまう場合が多い。従って、現在では金属珪化物を使
用することが多い。
When metal is used directly, the metal and silicon or interlayer insulating film often react with each other during a thermal process, and subsequent processes must be performed at low temperatures, which often limits applications. Therefore, metal silicides are now often used.

金属珪化物としては、Pt、Ti、Mo5W。Examples of metal silicides include Pt, Ti, and Mo5W.

T8等の珪化物が用いられており、特にチタン珪化物は
抵抗が低いために有望である。
Silicides such as T8 are used, and titanium silicides are particularly promising because of their low resistance.

上述したソース、ドレイン領域上及びゲート電極上への
金属珪化物の形成方法としては、例えば特開昭57−9
9775号明細書に記載された方法が知られている。即
ち、先ず、ゲート電極が形成されたシリコン基板上にS
iO2膜を堆積し、ソース、ドレイン領域及びゲート電
極に対応するSiO2膜部分を選択的に除去した後、全
面に金属膜を堆積する。続いて、所定の温度にて熱処理
を施し、ソース、ドレイン領域上及びゲート電極上のみ
で金属珪化物形成反応を起こさせた後、未反応の金属膜
を選択的にエツチング除去してソース、ドレイン領域上
及びゲート電極上に金属珪化物を形成する。
As a method for forming metal silicide on the source and drain regions and the gate electrode mentioned above, for example, Japanese Patent Laid-Open No. 57-9
The method described in US Pat. No. 9,775 is known. That is, first, S is deposited on a silicon substrate on which a gate electrode is formed.
After depositing an iO2 film and selectively removing portions of the SiO2 film corresponding to the source, drain regions and gate electrodes, a metal film is deposited over the entire surface. Next, heat treatment is performed at a predetermined temperature to cause a metal silicide formation reaction only on the source and drain regions and the gate electrode, and then the unreacted metal film is selectively etched away to form the source and drain regions. A metal silicide is formed on the region and on the gate electrode.

しかしながら、かかる方法によりチタン珪化物を形成し
ようとすると、以下に示すような問題があった。
However, when attempting to form titanium silicide by such a method, there are problems as shown below.

通常、金属珪化物を形成する方法としては、生産性等を
考慮して不活性ガス中での熱処理が採用される。この場
合、チタンは真空中でのゲッタ材料として用いられるこ
とからもわかるように、反応性の高い物質であるため、
不活性ガス中の酸素と反応し、酸化膜を形成する。この
場合、通常の拡散炉を用いると、酸素のリークをなくす
ことが雌しい。従って、熱処理中にチタンが酸化物とな
り、チタン珪化物を制御性よく形成することが困難とな
る。その結果、チタン珪化物の面抵抗も数Ω/口から数
にΩ/口とばらつき、LSIの歩留り低下を招くことに
なる。
Usually, as a method for forming a metal silicide, heat treatment in an inert gas is adopted in consideration of productivity and the like. In this case, titanium is a highly reactive substance, as can be seen from the fact that it is used as a getter material in a vacuum.
Reacts with oxygen in inert gas to form an oxide film. In this case, it is best to use a normal diffusion furnace to eliminate oxygen leakage. Therefore, titanium becomes an oxide during heat treatment, making it difficult to form titanium silicide with good controllability. As a result, the sheet resistance of titanium silicide varies from several Ω/hole to several Ω/hole, resulting in a decrease in the yield of LSI.

[発明の目的] 本発明は上記実情に鑑みてなされたもので、その目的は
、高融点金属又は高融点金属珪化物からなり、かつ低シ
ート抵抗で、雰囲気ガス等との反応を起こすことなく安
定して形成可能な電□極配線構造を有する半導体装置を
提供することにある。
[Object of the Invention] The present invention has been made in view of the above circumstances, and its purpose is to provide a material that is made of a high melting point metal or a high melting point metal silicide, has low sheet resistance, and does not react with atmospheric gas, etc. An object of the present invention is to provide a semiconductor device having an electrode wiring structure that can be stably formed.

[発明の概要] 本発明は、例えば半導体基板上にMoSトランジスタが
形成された半導体装置に於いて、前記半導体基板の主面
上に設けられたソース、ドレイン領域上、又はゲート電
極あるいは配線に用いる非単結晶シリコン層上に第1の
窒化チタニウム層を配設し、この第1の窒化チタニウム
層上に高融点金属層を配置するものである。さらに、こ
の高融点金属層上には第2の窒化チタニウム層を配置す
ると共に、この高融点金属層の側面部に絶縁層を配置し
、第2の窒化チタニウム層上に保護膜を配置するもので
ある。
[Summary of the Invention] The present invention is applicable to a semiconductor device in which a MoS transistor is formed on a semiconductor substrate, for example, and is used on a source or drain region provided on the main surface of the semiconductor substrate, or on a gate electrode or wiring. A first titanium nitride layer is disposed on the non-single crystal silicon layer, and a refractory metal layer is disposed on the first titanium nitride layer. Further, a second titanium nitride layer is disposed on the high melting point metal layer, an insulating layer is disposed on the side surface of the high melting point metal layer, and a protective film is disposed on the second titanium nitride layer. It is.

このような構造であれば、活性な高融点金属が窒化チタ
ニウム層及び絶縁層で覆われているので、高融点金属と
、シリコンまたは雰囲気ガスとの反応を押えることがで
きる。
With such a structure, since the active high melting point metal is covered with the titanium nitride layer and the insulating layer, the reaction between the high melting point metal and silicon or atmospheric gas can be suppressed.

[発明の実施例] 以下、図面を参照して本発明の一実施例を説明する。先
ず、第1図(a)に示すように面方位(100)のn型
シリコン基板31上にフィールド酸化膜32を形成する
と共に、該フィールド酸化膜32下の基板31表面にn
型反転防止層33を形成する。
[Embodiment of the Invention] Hereinafter, an embodiment of the present invention will be described with reference to the drawings. First, as shown in FIG. 1(a), a field oxide film 32 is formed on an n-type silicon substrate 31 with a plane orientation (100), and an n-type film is formed on the surface of the substrate 31 under the field oxide film 32.
A mold reversal prevention layer 33 is formed.

続いて、熱酸化処理を施して、前記フィールド酸化1I
32で分離された基板31の島領域(素子領域)上に厚
さ100〜500人のゲート酸化膜34を形成する。引
続き、同図(b)に示すように、全面にn型不純物をド
ープした多結晶シリコン膜35を堆積し、次に例えばチ
タンターゲーットを窒素雰囲気中でスパッタリングし、
窒化チタニウム層36を200人形成する。次いで、ア
ルゴン雰囲気中でスパッタリングを行ない、チタニウム
層37を2000人堆積する。続いて、再び窒化チタニ
ウム層38を200人堆積し、その後n+不純物をドー
ピングした非単結晶シリコン膜39を堆積する。
Subsequently, thermal oxidation treatment is performed to form the field oxidation 1I.
A gate oxide film 34 having a thickness of 100 to 500 wafers is formed on the island region (device region) of the substrate 31 separated by the gate oxide film 32 . Subsequently, as shown in FIG. 2B, a polycrystalline silicon film 35 doped with n-type impurities is deposited on the entire surface, and then, for example, a titanium target is sputtered in a nitrogen atmosphere.
A titanium nitride layer 36 is formed by 200 people. Next, 2000 titanium layers 37 are deposited by sputtering in an argon atmosphere. Subsequently, 200 layers of titanium nitride layer 38 are deposited again, and then a non-single crystal silicon film 39 doped with n+ impurities is deposited.

その後、バターニングを行ない、ゲート電極40を形成
した後、該ゲート電極40及びフィールド酸化膜32を
マスクとしてn型不純物、例えばボロンをイオン注入し
、p+のソース領域41及びドレイン領域42を形成す
る。
After that, patterning is performed to form a gate electrode 40, and then an n-type impurity, such as boron, is ion-implanted using the gate electrode 40 and field oxide film 32 as a mask to form a p+ source region 41 and a drain region 42. .

次に、同図(C)に示すように、プラズマCVD (C
hemical Vapour Deposition
 )により9iQ243を堆積し、続いてCVD−8i
0244を堆積した後、コンタクトホール45の開孔、
A1の蒸着、パターニングによりソース、ドレイン領域
41.42とコンタクトホール45を通して接続するA
1配線46.47を形成してMOSトランジスタを製造
する。
Next, as shown in the same figure (C), plasma CVD (C
chemical vapor deposition
) followed by CVD-8i
After depositing 0244, the contact hole 45 is opened,
A is connected to the source and drain regions 41 and 42 through the contact hole 45 by vapor deposition and patterning of A1.
One wiring 46 and 47 are formed to manufacture a MOS transistor.

上記MOSトランジスタにあっては、活性なチタニウム
層37を窒化チタニウム層36.38及び5102膜4
3で被覆しているので、チタニウムとシリコンの反応、
チタニウムと酸素等のガス雰囲気との反応を抑えること
が可能となり、チタニウムをゲート電極として用いるこ
とができる。このため、チタニウム層3γの厚さが40
00人の場合、シート抵抗は4Ω/口と多結晶シリコン
を用いた場合の約20分の−となる。このため、例えば
メモリのワード線として用いた場合、素子の高速化を実
現することができる。
In the above MOS transistor, the active titanium layer 37 is replaced by a titanium nitride layer 36, 38 and a 5102 film 4.
3, so the reaction between titanium and silicon,
It becomes possible to suppress the reaction between titanium and a gas atmosphere such as oxygen, and titanium can be used as a gate electrode. Therefore, the thickness of the titanium layer 3γ is 40
In the case of 00 people, the sheet resistance is 4Ω/mouth, which is about 20 times lower than that when polycrystalline silicon is used. Therefore, when used as a word line of a memory, for example, it is possible to realize an increase in the speed of the element.

また、例えばチタニウムj137を1000人とした場
合でも、シート抵抗は多結晶シリコン膜の場合に比べて
約5分の−で、より平坦な構造を実現できるものである
For example, even when titanium J137 is made of 1000 layers, the sheet resistance is about 5 times lower than that of a polycrystalline silicon film, and a flatter structure can be realized.

尚、上記実施例に於いては、高融点金属としてチタニウ
ムを用いて説明したが、これに限定するものではなく、
タングステン、モリブデン、ジルコニウム、タンタル等
、さらにこれらの珪化物を使用してもよい。また、上記
実施例に於いては、本発明をゲート電極の構造に適用し
た例について説明したが、配線部に適用するようにして
もよいことは勿論である。
Although titanium was used as the high melting point metal in the above embodiments, the invention is not limited to this.
Tungsten, molybdenum, zirconium, tantalum, etc., and silicides thereof may also be used. Further, in the above embodiments, an example in which the present invention is applied to the structure of a gate electrode has been described, but it goes without saying that the present invention may also be applied to a wiring portion.

′[発明の効果] 以上のように本発明によれば、高融点金属又は高融点金
属珪化物からなり、かつシリコンや雰囲気ガスとの反応
を起こすことのない安定した低シート抵抗の電極及び配
線構造を形成することができる。
' [Effects of the Invention] As described above, according to the present invention, stable low sheet resistance electrodes and wiring that are made of a refractory metal or a refractory metal silicide and that do not react with silicon or atmospheric gas can be obtained. structure can be formed.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の一実施例に係る半導体装置の製造工程
を示す断面図、第2図は従来の半導体装置の製造工程を
示す断面図である。 31・・・n型シリコン基板、34・・・ゲート酸化膜
、35・・・多結晶シリコン膜、36・・・窒化チタニ
ウム層、37・・・チタニウム層、38・・・窒化チタ
ニウム層、39・・・非単結晶シリコン膜、40・・・
ゲート電極、41・・・ソース領域、42・・・ドレイ
ン領域。 出願人代理人 弁理士 鈴 江 武 彦第1図 第2図
FIG. 1 is a sectional view showing the manufacturing process of a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view showing the manufacturing process of a conventional semiconductor device. 31... N-type silicon substrate, 34... Gate oxide film, 35... Polycrystalline silicon film, 36... Titanium nitride layer, 37... Titanium layer, 38... Titanium nitride layer, 39 ...Non-single crystal silicon film, 40...
Gate electrode, 41...source region, 42...drain region. Applicant's representative Patent attorney Takehiko Suzue Figure 1 Figure 2

Claims (4)

【特許請求の範囲】[Claims] (1)半導体基板の一主面上に絶縁膜を介して設けられ
た非単結晶シリコン層と、この非単結晶シリコン層上に
設けられた第1の窒化チタニウム層と、この第1の窒化
チタニウム層上に設けられた高融点金属を含む層と、こ
の高融点金属を含む層の側面部を覆う絶縁層と、前記高
融点金属を含む層上に設けられた第2の窒化チタニウム
層と、この第2の窒化チタニウム層上に設けられた保護
膜とを具備したことを特徴とする半導体装置。
(1) A non-single crystal silicon layer provided on one main surface of a semiconductor substrate via an insulating film, a first titanium nitride layer provided on this non-single crystal silicon layer, and a first titanium nitride layer provided on the non-single crystal silicon layer, and a layer containing a high melting point metal provided on the titanium layer; an insulating layer covering a side surface of the layer containing the high melting point metal; and a second titanium nitride layer provided on the layer containing the high melting point metal. , and a protective film provided on the second titanium nitride layer.
(2)前記高融点金属は、チタニウム、タングステン、
モリブデン、ジルコニウム、タンタルのうちのいずれか
一種、又は混合物である特許請求の範囲第1項記載の半
導体装置。
(2) The high melting point metal is titanium, tungsten,
The semiconductor device according to claim 1, which is any one of molybdenum, zirconium, and tantalum, or a mixture thereof.
(3)前記保護膜は非単結晶シリコンで形成された特許
請求の範囲第1項又は第2項いずれか記載の半導体装置
(3) The semiconductor device according to claim 1 or 2, wherein the protective film is formed of non-monocrystalline silicon.
(4)前記保護膜は酸化シリコンで形成された特許請求
の範囲第1項又は第2項いずれか記載の半導体装置。
(4) The semiconductor device according to claim 1 or 2, wherein the protective film is made of silicon oxide.
JP60065218A 1985-03-29 1985-03-29 Semiconductor device Expired - Lifetime JPH061774B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60065218A JPH061774B2 (en) 1985-03-29 1985-03-29 Semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60065218A JPH061774B2 (en) 1985-03-29 1985-03-29 Semiconductor device

Publications (2)

Publication Number Publication Date
JPS61224435A true JPS61224435A (en) 1986-10-06
JPH061774B2 JPH061774B2 (en) 1994-01-05

Family

ID=13280549

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60065218A Expired - Lifetime JPH061774B2 (en) 1985-03-29 1985-03-29 Semiconductor device

Country Status (1)

Country Link
JP (1) JPH061774B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174371A (en) * 1987-01-13 1988-07-18 Nec Corp Field-effect transistor
JPS63244861A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture of same
US5231053A (en) * 1990-12-27 1993-07-27 Intel Corporation Process of forming a tri-layer titanium coating for an aluminum layer of a semiconductor device
US5350711A (en) * 1993-06-25 1994-09-27 Hall John H Method of fabricating high temperature refractory metal nitride contact and interconnect structure
US6607979B1 (en) 1999-09-30 2003-08-19 Nec Corporation Semiconductor device and method of producing the same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507430A (en) * 1973-05-18 1975-01-25
JPS5679450A (en) * 1979-11-30 1981-06-30 Mitsubishi Electric Corp Electrode and wiring of semiconductor device
JPS5835919A (en) * 1981-08-28 1983-03-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of metal-semiconductor junction electrode
JPS58101454A (en) * 1981-12-12 1983-06-16 Nippon Telegr & Teleph Corp <Ntt> Electrode for semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS507430A (en) * 1973-05-18 1975-01-25
JPS5679450A (en) * 1979-11-30 1981-06-30 Mitsubishi Electric Corp Electrode and wiring of semiconductor device
JPS5835919A (en) * 1981-08-28 1983-03-02 Nippon Telegr & Teleph Corp <Ntt> Manufacture of metal-semiconductor junction electrode
JPS58101454A (en) * 1981-12-12 1983-06-16 Nippon Telegr & Teleph Corp <Ntt> Electrode for semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63174371A (en) * 1987-01-13 1988-07-18 Nec Corp Field-effect transistor
JPS63244861A (en) * 1987-03-31 1988-10-12 Toshiba Corp Semiconductor device and manufacture of same
US5231053A (en) * 1990-12-27 1993-07-27 Intel Corporation Process of forming a tri-layer titanium coating for an aluminum layer of a semiconductor device
US5350711A (en) * 1993-06-25 1994-09-27 Hall John H Method of fabricating high temperature refractory metal nitride contact and interconnect structure
US6607979B1 (en) 1999-09-30 2003-08-19 Nec Corporation Semiconductor device and method of producing the same

Also Published As

Publication number Publication date
JPH061774B2 (en) 1994-01-05

Similar Documents

Publication Publication Date Title
US4954867A (en) Semiconductor device with silicon oxynitride over refractory metal gate electrode in LDD structure
JP3305301B2 (en) Method for forming electrode structure and method for manufacturing semiconductor device
JPH0794731A (en) Semiconductor device and its manufacturing method
JPS61224435A (en) Semiconductor device
JP2740722B2 (en) Semiconductor device and manufacturing method thereof
JPH06204170A (en) Semiconductor device and its manufacture
JPS60123060A (en) Semiconductor device
JPH0616556B2 (en) Semiconductor device
JP3247099B2 (en) Method for forming electrode structure and method for manufacturing semiconductor device
JPS62114231A (en) Semiconductor device
JPH04266031A (en) Manufacture of semiconductor device
JPH053750B2 (en)
JP3095452B2 (en) Method for manufacturing semiconductor device
JPS6161463A (en) Semiconductor integrated circuit element and manufacture thereof
JPS63281424A (en) Formation of polycide electrode
JPS59177926A (en) Manufacture of semiconductor device
JPH10189605A (en) Semiconductor element having tungsten nitrified sidewalls formed on both sides of tungsten region and constituting thereof
JPH05136398A (en) Manufacture of semiconductor device
JPH07183515A (en) Manufacture of semiconductor device
JP3238804B2 (en) Method for manufacturing semiconductor device
JP2857170B2 (en) Method for manufacturing semiconductor device
JPH06349771A (en) Manufacture of semiconductor integrated circuit device and semiconductor integrated circuit device
JPS61135156A (en) Semiconductor device and manufacture thereof
KR100897248B1 (en) Method for forming gate-electrode in semiconductor device
JPH0349230A (en) Semiconductor device and manufacture thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term