JPS6043865A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS6043865A
JPS6043865A JP15265183A JP15265183A JPS6043865A JP S6043865 A JPS6043865 A JP S6043865A JP 15265183 A JP15265183 A JP 15265183A JP 15265183 A JP15265183 A JP 15265183A JP S6043865 A JPS6043865 A JP S6043865A
Authority
JP
Japan
Prior art keywords
electrode
gate electrode
source
material layer
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP15265183A
Other languages
Japanese (ja)
Inventor
Homare Matsumura
松村 誉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP15265183A priority Critical patent/JPS6043865A/en
Publication of JPS6043865A publication Critical patent/JPS6043865A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To relax an electric field between source and drain regions by forming impurity layers as using an electrode-material layer pattern, a side surface thereof has a fan-shaped tapered section, as a mask, and to improve element characteristics by finely controlling the width of low concentration sections in the source and drain regions in the vicinity of a gate electrode. CONSTITUTION:A gate-electrode material layer pattern 25', a side surface thereof has a fan-shaped tapered section 27, is formed, and arsenic is implanted to the surface of an island region 23 to form deep impurity layers 281, 291 in high concentration. Only the tapered section 27 of the electrode material layer 25' is removed, a gate electrode 30 is shaped, and an exposed SiO2 film 26' and insulating films 24 are removed. Arsenic is implanted to the surface of the island region 23 again, shallow impurity layers 282, 292 in low concentration are formed near the electrode 30, an N type source region 31 consisting of the impurity layers 281, 282 and an N type drain region 32 consisting of the impurity layers 291, 292 are formed, and an MOS type transistor is manufactured through a normal method.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は、半導体装置の製造方法の改良に関する。[Detailed description of the invention] [Technical field of invention] The present invention relates to an improvement in a method for manufacturing a semiconductor device.

〔発明の技術的背景とその問題点〕[Technical background of the invention and its problems]

周知の如く、半導体装置例えばチャネル長1μm前後の
MOS LSIは、縮小側に従って開発されつつあるが
、周辺装置との整合をとるためにその電源電圧を低下す
ることは困難である。そのため、微細なMOS LSI
ではソース、ドレイン領域間の電界が非常に大きくシシ
、種々の問題が生じてくる。
As is well known, semiconductor devices, such as MOS LSIs with a channel length of about 1 μm, are being developed on the downsizing side, but it is difficult to lower their power supply voltage in order to match with peripheral devices. Therefore, fine MOS LSI
In this case, the electric field between the source and drain regions is extremely large, causing various problems.

このようなことから、最近、ソース、ドレイン領域間の
電界を緩和すべく新しい構造のMO8型半導体装置が提
案されている(例えば、D@s1gnand Char
acteristics of the Lightl
y Doped Draln−8ource(LDD)
 In5ulated Gate Field−Eff
ect TranslstoroIEEETRANSA
CTIONS ON ELECTRON DEVICE
、 VOL、 ED−27A8 AUGUST 198
0 ptas9)。かかる半導体装置では、ゲート電極
近傍のソース、ドレイン領域は不純物濃度が低く、その
他のソース、ドレイン領域は不純物濃度が高くなってお
り、これによりソース、ドレイン領域間の電界を緩和す
ることができる。
For this reason, recently, MO8 type semiconductor devices with a new structure have been proposed in order to alleviate the electric field between the source and drain regions (for example, D@s1gnand Char
acteristics of the Lightl
y Doped Draln-8source (LDD)
In5lated Gate Field-Eff
ect TranslstoroIEEEETRANSA
CTIONS ON ELECTRON DEVICE
, VOL, ED-27A8 AUGUST 198
0ptas9). In such a semiconductor device, the source and drain regions near the gate electrode have a low impurity concentration, and the other source and drain regions have a high impurity concentration, thereby making it possible to alleviate the electric field between the source and drain regions.

従来、N−チャネルMO8型)ランジヌタは、例えば第
1図(8)〜(d) K示すように製造されている。
Conventionally, an N-channel MO8 type lung nut has been manufactured, for example, as shown in FIGS. 1(8) to 1(d)K.

まず、P型の半導体基板1表面に常法により素子分離領
域2を形成した後、この素子分離領域2で囲まれた島領
域3上にケ゛−ト絶縁膜4を介してダート電極5を形成
する。つづいて、このケ゛−ト電極5をマスクとして島
領域3表面にn型不純物をイオン注入し、低濃度で浅い
第1の不純物層61+71を形成する(第1図(、)図
示)。次に、全面にS s O2膜8を堆積させる(第
1図(b)図示)。次いで、このS iO2膜8を例え
ばRIE (反応性イオンエツチング)により異方性エ
ツチング除去し、前記ゲート絶縁膜4及びゲート電極5
の側壁にのみ5IO2膜8′を残存させる℃幣〒静勅咽
オ→、更に、この残存5tO2膜8′及びゲート電極5
をマスクとして前記島領域3表面に再度n型不純物をイ
オン注入し、高濃度で−深い第2の不純物層62+72
を形成する。この結果、一方の第1.、第2の不純物層
616!からN型のソース領域9が形成され、他方の第
1、第2の不純物層71+71からN型のドレイン領域
10が形成される(第1図(c)図示)。
First, an element isolation region 2 is formed on the surface of a P-type semiconductor substrate 1 by a conventional method, and then a dirt electrode 5 is formed on an island region 3 surrounded by this element isolation region 2 via a gate insulating film 4. do. Next, using this gate electrode 5 as a mask, n-type impurity ions are implanted into the surface of the island region 3 to form a shallow first impurity layer 61+71 with a low concentration (as shown in FIG. 1(a)). Next, an S s O2 film 8 is deposited on the entire surface (as shown in FIG. 1(b)). Next, this SiO2 film 8 is removed by anisotropic etching, for example, by RIE (reactive ion etching), and the gate insulating film 4 and gate electrode 5 are removed.
The remaining 5tO2 film 8' and the gate electrode 5
Using as a mask, n-type impurity ions are again implanted into the surface of the island region 3 to form a high concentration and -deep second impurity layer 62+72.
form. As a result, one of the first. , second impurity layer 616! An N-type source region 9 is formed from the first and second impurity layers 71+71, and an N-type drain region 10 is formed from the other first and second impurity layers 71+71 (as shown in FIG. 1(c)).

以下、常法によp1全面に層間絶縁膜1ノを形成した後
、前記ソース、ドレイン領域9,1゜の夫々の一部に対
応する層間絶縁811部分にコンタクトホール12,1
2を開孔し、層間絶縁膜11土にコンタクトホール12
,12を介して前記ソース、ドレイン領域9 、 J 
OK夫々接続する取出し電極13.13を形成してN−
チャネルMO8型トランジスタを製造する(第1図(d
)図示)・ しかしながら、こうしたLDD構造のMO8型トランジ
スタの製造方法によれは、次に示す欠点を有する。
After forming an interlayer insulating film 1 on the entire surface of p1 by a conventional method, contact holes 12 and 1 are formed in the interlayer insulating film 811 corresponding to parts of the source and drain regions 9 and 1°, respectively.
2, and a contact hole 12 is formed in the interlayer insulating film 11.
, 12 through the source and drain regions 9, J
OK, form the extraction electrodes 13 and 13 to be connected respectively and N-
Manufacture a channel MO8 type transistor (Fig. 1(d)
) However, this method of manufacturing an MO8 type transistor having an LDD structure has the following drawbacks.

■ ダート電極5近傍のソース、ドレイン領域9 、1
0.即ち第1の不純物層61+61は低濃度となってい
るため、抵抗が高く々す、コンタ゛クタンヌの低下を生
じる。
■ Source and drain regions 9 and 1 near the dirt electrode 5
0. That is, since the first impurity layer 61+61 has a low concentration, the resistance tends to be high, resulting in a decrease in contact.

■ 第1の不純物層61.71の幅は、第1図(c)の
残存5lo2膜8′の状態で決まり、その残存量は5I
0211臭8が堆積する膜厚に大きく依存するとともに
、RIEによるエツチング時件に依存する。従って、第
1の不純物層6I 、7Hの幅を正確K 1lrIJ御
するととrrJ因離で、素子特性のバラツキを生じる。
■ The width of the first impurity layer 61.71 is determined by the state of the remaining 5lo2 film 8' in FIG. 1(c), and the remaining amount is 5I
It depends largely on the film thickness in which the 0211 odor 8 is deposited, and also on the etching time conditions by RIE. Therefore, if the widths of the first impurity layers 6I and 7H are precisely controlled by K1lrIJ, variations in device characteristics will occur due to rrJ.

■ RIE Kよるエツチング時にソース、ドレイン領
域9.10カ1に出しているため、そ!しらの領域9,
1oの表面にダメージ層が形成され、素子特性が劣化す
る。
■ Because it is exposed to the source and drain regions 9.10 and 1 during RIE K etching, it is! Shirano area 9,
A damaged layer is formed on the surface of 1o, deteriorating the device characteristics.

〔発甲jの目的〕[Purpose of armoring]

本夕へ明は上記事情に鑑かてなされ/ξもので、ソース
、ドレイン領域間の電界を緩和できるとともに、ケ゛−
ト電極近傍のソース、ドレイン領域の低濃度部分の幅を
微釉I K 1ltlJ却しがっソース、ドレイン領域
表面にダメージ層が形成されるのを回避して素子特性を
良好にし得る半導体装置の製造方法を提供することを目
的とするものである。
The proposal for this evening was made in view of the above circumstances, and it is possible to alleviate the electric field between the source and drain regions, and also to
The width of the low-concentration part of the source and drain regions near the electrode is slightly glazed to prevent the formation of a damaged layer on the surface of the source and drain regions, thereby improving the device characteristics of the semiconductor device. The purpose is to provide a manufacturing method.

〔発明の概要〕[Summary of the invention]

本発明は、素子分離領域で囲まれた半導体基板の島領域
上に絶縁膜を形成した後、全面に電極材料層を形成し、
この電極側斜層上にマスク材を形成し、このマスク材を
用いて前記電極材料層をエツチング除去して側面に下爪
が9のテーパ部を有する電極材料層ノリーンを形成し、
このパターンをマスクとして前記基板の島・領域表面に
@1の不純物層を形成し、前記マスク利を用いて前記電
極材料層・リーンのテーパ部を除去しケ゛〜ト電極ケ形
成し、前記マスク利もしくはゲート電極を用いて前記島
領域表面に第2の不純物層を形成するこ゛とによって、
既述した目的を達成することを骨子とするものである。
In the present invention, after forming an insulating film on an island region of a semiconductor substrate surrounded by an element isolation region, an electrode material layer is formed on the entire surface,
forming a mask material on this electrode side diagonal layer, etching and removing the electrode material layer using this mask material to form an electrode material layer Noreen having a tapered portion with a lower claw of 9 on the side surface;
Using this pattern as a mask, an impurity layer @1 is formed on the surface of the island/region of the substrate, and the tapered portion of the electrode material layer is removed using the mask to form a gate electrode. By forming a second impurity layer on the surface of the island region using a gate electrode,
The main objective is to achieve the objectives mentioned above.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をN−チャネルMO8型トランジスタの製
造に適用した場合について第2図(!L)〜(e)を参
照して説明する。
Hereinafter, a case in which the present invention is applied to the manufacture of an N-channel MO8 type transistor will be described with reference to FIGS. 2(!L) to (e).

〔l) まず、P型の半導体基体としてのsi基板21
表面に常法により素子分離領域としてのフィールド領域
22を形成した後、このフィールド領域22で囲まれた
島領域23上に一部がダート絶縁膜となる絶縁膜24を
形成した。つづいて、全面K例えは多結晶シリコンから
力るゲート電極材料層25.5102膜26を順次形成
した(第2図(、)図示)。次いで、写真蝕刻技術を用
いてこのS’+ 02膜26を後記ダート電極に対応し
た形状に選択的にエツチング除去し、マスク拐としての
S r 02膜・ぞターン26′を形成した。更に、前
記S s O2膜・ぐターン26′ををマスクとして前
記ゲート電極胴材層2’5にテーパエツチングを施した
。このテーパエツチングは、具体的には、プラズマエツ
チング技術により基板2ノが載置された試料台を電界方
向に対して傾けることにより行なった。その結果、側面
に下床がりのチー/4部27を有するグー)!極材材層
パターン25′を形成した。しかる後、このノぞターン
25′をマスクして前記島領域23表面にn型不純物例
えば砒素を加速電圧60 ksV、ドーズ量3 X 1
0 7cm”でイオン注入し、高濃度で深い第1の不純
物層281.29. を形成した(第2図(b)図示)
6 〔11〕 次に、前記SiO2膜・臂ターン26′をマ
スクとして前記電極材料層パターン25′のチー・9部
27のみをRIEによυ選択的にエツチング除去し、ダ
ート電極30を形成した(第2図(、)図示)。
[l) First, the Si substrate 21 as a P-type semiconductor substrate
After forming a field region 22 as an element isolation region on the surface by a conventional method, an insulating film 24 having a part as a dirt insulating film was formed on an island region 23 surrounded by this field region 22. Subsequently, gate electrode material layers 25 and 5102 films 26 made of polycrystalline silicon were successively formed on the entire surface (as shown in FIG. 2(a)). Next, this S'+02 film 26 was selectively etched away using a photolithographic technique in a shape corresponding to a dirt electrode described later, to form an Sr02 film groove 26' as a mask strip. Further, taper etching was performed on the gate electrode body layer 2'5 using the S s O2 film/gutter 26' as a mask. Specifically, this taper etching was performed by tilting the sample stage on which the substrate 2 was placed with respect to the direction of the electric field using plasma etching technology. As a result, the side has a lower floor Qi/4 part 27)! A polar material layer pattern 25' was formed. Thereafter, this nozzle turn 25' is masked and an n-type impurity such as arsenic is applied to the surface of the island region 23 at an accelerating voltage of 60 ksV and a dose of 3 x 1.
A deep first impurity layer 281.29. with a high concentration was formed by ion implantation at a depth of 0.7 cm (as shown in FIG. 2(b)).
6 [11] Next, using the SiO2 film/arm turn 26' as a mask, only the Q/9 portion 27 of the electrode material layer pattern 25' was selectively etched away by RIE to form a dart electrode 30. (Illustrated in Figure 2(,)).

つづいて、露出する前記5IO2膜・9ターン26′及
び絶縁膜24を選択的に除去した。なお、残存した絶縁
膜24′はダート絶縁膜となる。次いで、ゲート電極3
0をマスクとして前記島領域23表面に再度砒素を加速
電圧30keV、ドーズ量1×10 /cm2でイオン
注入し、ケ゛−ト電極31近傍に低濃度で浅い12の不
純物層2B2.29゜を形成した。乙の結果、第1、第
2の不純物層281.28gからなるN型のソース領域
3ノが形成され、かつ第1、第2の不純物層282゜2
9怠からN型のドレイン領域32が形成された(第2図
(d)図示)。以下、常法により、全面に層間絶縁膜3
4を形成した後、前記ソース、ドレイン領域31.32
の夫々の一部に対応する層間絶縁膜33部分にコンタク
トホール34゜34を開孔し、眉間絶縁膜33上にコン
タクトホール34.34を介して前記ソース、ドレイン
領域31.32に夫々接続する取出し電極35.35を
形成してLDD構造のN−チャネルMO8型トランジス
タを製造した(第2図(、)図示)。
Subsequently, the exposed 5IO2 film/9 turns 26' and the insulating film 24 were selectively removed. Note that the remaining insulating film 24' becomes a dirt insulating film. Next, gate electrode 3
0 as a mask, arsenic is again implanted into the surface of the island region 23 at an acceleration voltage of 30 keV and a dose of 1×10 /cm 2 to form 12 low concentration and shallow impurity layers 2B2.29° near the gate electrode 31. did. As a result of (B), an N-type source region 3 consisting of the first and second impurity layers 281.28g is formed, and the first and second impurity layers 282.28g are formed.
From this step, an N-type drain region 32 was formed (as shown in FIG. 2(d)). Thereafter, the interlayer insulating film 3 is coated on the entire surface by a conventional method.
After forming the source and drain regions 31 and 32
A contact hole 34.34 is opened in a portion of the interlayer insulating film 33 corresponding to a part of each of the contact holes 34.34 and connected to the source and drain regions 31.32 through the contact holes 34.34 on the glabella insulating film 33, respectively. Extracting electrodes 35 and 35 were formed to manufacture an N-channel MO8 type transistor with an LDD structure (as shown in FIG. 2(, )).

しかして、本発明によれば、ダート電極30近傍のンー
7、ドレイン領域31.32の不純物一度を低く、かつ
その他のソース、ドレイン領域31 、3−2の不純物
濃度を高くしたLDD構造と々っているため、ソース、
ドレイン領域31.32間の′電界を緩和することがで
きる。
According to the present invention, the LDD structure has a low impurity concentration in the drain regions 31 and 31 near the dirt electrode 30, and a high impurity concentration in the other source and drain regions 31 and 3-2. Source,
The electric field between the drain regions 31 and 32 can be relaxed.

また、5IO2膜ノやターン26′をマスクとしてゲー
ト電極材料層25にプラズマエツチング技術によりテー
パエツチングを施してテーパ部27を有するケ゛−ト電
極材料層ノ!ターン25′を形成するため、該パターン
25′を制御性よく形成でき、該・やターン25′をマ
スクとして第1の不純物層281,293 を自己整合
的に形成できる。
Further, taper etching is performed on the gate electrode material layer 25 by plasma etching technology using the 5IO2 film and the turn 26' as a mask to form a gate electrode material layer having a tapered portion 27. Since the turn 25' is formed, the pattern 25' can be formed with good controllability, and the first impurity layers 281 and 293 can be formed in a self-aligned manner using the turn 25' as a mask.

一方、次工程で5102膜パターン26′をマスクとし
てゲート電極材料層パターン25′をエツチング除去し
て自己整合的にゲート電極3oを形成でき、更に該ダー
ト電極30をマスクとして第2の不純物層2B2,29
.を自己整合的に形成できる。従って、ゲート電極3o
近傍のソース、ドレイン領域31.32の低濃度部分の
幅を微細に制御性よく形成でき、もってコンダクタンス
の低下を極めて小さく抑えられるとともに、素子特性の
バラツキを小さくできる。
On the other hand, in the next step, the gate electrode material layer pattern 25' can be etched away using the 5102 film pattern 26' as a mask to form the gate electrode 3o in a self-aligned manner, and the second impurity layer 2B2 can be formed using the dirt electrode 30 as a mask. ,29
.. can be formed in a self-consistent manner. Therefore, the gate electrode 3o
The width of the low concentration portions of the nearby source and drain regions 31 and 32 can be formed finely and with good controllability, thereby suppressing a decrease in conductance to an extremely small level and reducing variations in device characteristics.

更に、ダート電極材料層パターン25′をRIEにより
エツチング除去してダート電極3oを形成する際、基板
21の島領域23土に絶縁膜24が形成されているため
、島領域23表面にダメージ層が形成されることがなく
、素子特性のバラツキを小さくできる。
Further, when removing the dirt electrode material layer pattern 25' by RIE to form the dirt electrode 3o, since the insulating film 24 is formed on the island region 23 of the substrate 21, a damaged layer is formed on the surface of the island region 23. This eliminates the need for formation of oxides, thereby reducing variations in device characteristics.

なお、上記実施例では、ケ゛−ト電極の駒材として多結
晶シリコンを用いたが、これに限らず、例えばMo、W
等の高融点金属からなる化合物を用いてもよい。
In the above embodiment, polycrystalline silicon was used as the piece material of the gate electrode, but the material is not limited to this, and for example, Mo, W, etc.
Compounds made of high melting point metals such as

また、上記実施例では、半導体基体としてsi基板を用
いたが、これに限らず、例えばサファイア青の絶縁性基
板上に半導体層を形成したものを用いてもよい。
Further, in the above embodiments, an Si substrate is used as the semiconductor substrate, but the present invention is not limited to this, and, for example, a sapphire blue insulating substrate on which a semiconductor layer is formed may be used.

更に、上記実施例では、N−チャネルMO8型トランジ
スタに適用した場合について述べたが、これに限らす、
P−チャネルMO8型トランジスタあるいは6MO8型
トランジスタ等にも同様に適用できる。
Furthermore, in the above embodiment, the case where the present invention is applied to an N-channel MO8 type transistor is described, but the present invention is not limited to this.
The present invention can be similarly applied to a P-channel MO8 type transistor or a 6MO8 type transistor.

〔づら明の効果〕[Effect of Zura Akira]

以上詳述した如く本発明によれは、ソース、ドレイン領
域間の電界を緩和できるとともに、ダート電極近傍のソ
ース、ドレイン領域の低濃度部分の幅を微細に制御等し
て素子特性を良好にし得るN−チャネルMO3型トラン
ジスタ等の半導体装置の製造方法を提供できるものであ
る。
As detailed above, according to the present invention, the electric field between the source and drain regions can be relaxed, and the width of the low concentration portion of the source and drain regions near the dirt electrode can be finely controlled, thereby improving device characteristics. A method for manufacturing a semiconductor device such as an N-channel MO3 type transistor can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(、)〜(d)は従来のN−チャネルMO8型ト
ランジヌタの製造方法を工程順に示す断面図、第2図(
、)〜(、)は本発明の一実施例に係るN−チャネルM
O8型トランジスタの製造方法を工程順に示す断面図で
ある。 21・・・St基板(半導体基体)、22・・・フィー
ルド領域(素子分離領域)、23・・・島領域、24・
・・絶縁膜、24′・・・ゲート絶縁膜(残存絶縁膜)
、25・・ゲート電極胴材層、25′・・・り゛−ト電
極材料層ノ4ターン、26・・・SiO2膜、26′・
・・sto2g−+ターン(マスク材)、27・・・チ
ー・ヤ部、281.28m+291.291・・・不純
物層、3o・・・ダート電極、31・・・ソース領域、
32・・・ドレイン電極、33・・・層間絶縁膜、34
・・・コンタクトホール、35・・・取出し電極。 出願人代理人 弁理士 鈴 江 武 彦第2図 第2図
FIGS. 1(a) to (d) are cross-sectional views showing the conventional N-channel MO8 type transistor manufacturing method in order of process, and FIG.
, ) to (, ) are N-channel M according to an embodiment of the present invention.
FIG. 3 is a cross-sectional view showing a method for manufacturing an O8 type transistor in order of steps. 21... St substrate (semiconductor base), 22... field region (element isolation region), 23... island region, 24...
... Insulating film, 24'... Gate insulating film (remaining insulating film)
, 25... Gate electrode body material layer, 25'... 4 turns of straight electrode material layer, 26... SiO2 film, 26'...
... sto2g-+turn (mask material), 27... Chee-ya part, 281.28m+291.291... impurity layer, 3o... dirt electrode, 31... source region,
32... Drain electrode, 33... Interlayer insulating film, 34
...Contact hole, 35...Extraction electrode. Applicant's agent Patent attorney Takehiko Suzue Figure 2 Figure 2

Claims (1)

【特許請求の範囲】[Claims] 半導体基体表面に素子分離領域を形成する工程と、この
素子分離領域で囲まれた前記基体の島領域上に絶縁膜を
形成した後、全面にゲート電極材料層を形成する工程と
、このゲート電極材料層上にマスク材を形成する工程と
、このマスク材を用いて前記ダート電極材料層をエツチ
ング除去し、側面に下床がりのチー・9部を有するゲー
ト電極材料/fj ハターンを形成する工程と、この・
・ター夛り−クとして前記基体の島領域表面に第1の不
純物層を形成する工程と、前記マスク材を用いて前記ゲ
ート電極材料層・ンターンのテーパ部を除去しゲート電
極を形成する工程と、前記マスク材もしくはゲート電極
を用いて前記島領域表面に第2の不純物層を形成する場
とを具備することを特徴とする半導体装−“の製造方法
a step of forming an element isolation region on the surface of a semiconductor substrate; a step of forming an insulating film on the island region of the substrate surrounded by the element isolation region; and a step of forming a gate electrode material layer on the entire surface; A step of forming a mask material on the material layer, and a step of etching and removing the dirt electrode material layer using this mask material to form a gate electrode material/fj pattern having a bottom-hanging chi-9 part on the side surface. And this...
・A step of forming a first impurity layer on the surface of the island region of the substrate as a tar-rep; and a step of removing the tapered portion of the gate electrode material layer/turn using the mask material to form a gate electrode. and forming a second impurity layer on the surface of the island region using the mask material or the gate electrode.
JP15265183A 1983-08-22 1983-08-22 Manufacture of semiconductor device Pending JPS6043865A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP15265183A JPS6043865A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP15265183A JPS6043865A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS6043865A true JPS6043865A (en) 1985-03-08

Family

ID=15545078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP15265183A Pending JPS6043865A (en) 1983-08-22 1983-08-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS6043865A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251490A (en) * 1988-03-31 1989-10-06 Shin Etsu Chem Co Ltd Vibrationproofing rubber material and damping material for optical disk device
JPH0534266U (en) * 1991-10-09 1993-05-07 三菱自動車工業株式会社 Door outside handle device
US6489402B2 (en) 1998-07-31 2002-12-03 Yamauchi Corporation Vibration insulator from partially crosslinked butyl rubber

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01251490A (en) * 1988-03-31 1989-10-06 Shin Etsu Chem Co Ltd Vibrationproofing rubber material and damping material for optical disk device
JPH0565956B2 (en) * 1988-03-31 1993-09-20 Shinetsu Chem Ind Co
JPH0534266U (en) * 1991-10-09 1993-05-07 三菱自動車工業株式会社 Door outside handle device
US6489402B2 (en) 1998-07-31 2002-12-03 Yamauchi Corporation Vibration insulator from partially crosslinked butyl rubber

Similar Documents

Publication Publication Date Title
JPS59138379A (en) Manufacture of semiconductor device
JPS6016456A (en) Semiconductor device
JPH0348459A (en) Semiconductor device and manufacture thereof
JPS63219152A (en) Manufacture of mos integrated circuit
DE102004057764A1 (en) A technique of fabricating a substrate having crystalline semiconductor regions with different properties disposed over a crystalline bulk substrate
JPS6043865A (en) Manufacture of semiconductor device
JPH021173A (en) Mis field-effect transistor
JPH03214740A (en) Manufacture of vertical type mos field effect transistor
JPH0612826B2 (en) Method of manufacturing thin film transistor
JPS61154172A (en) Manufacture of semiconductor device
JPS60128668A (en) Manufacture of semiconductor device
JPH023270A (en) Manufacture of hct semiconductor device
JPH0481327B2 (en)
JPS60226169A (en) Manufacture of semiconductor device
JP3141520B2 (en) Method for manufacturing nonvolatile memory element
JPS61256670A (en) Insulated gate field effect transistor
JPS6052593B2 (en) Manufacturing method of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPH0193171A (en) Semiconductor device and manufacture thereof
JPS62224078A (en) Manufacture of semiconductor device
JPH04174525A (en) Manufacture of semiconductor device
JPS58131773A (en) Semiconductor device and its manufacture
JPS5931229B2 (en) Method for manufacturing MOS type semiconductor integrated circuit
JPH01278768A (en) Semiconductor device having depth extension parts of source and drain and its manufacture
JPS63160277A (en) Manufacture of semiconductor element