JPS60133755A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60133755A
JPS60133755A JP24137783A JP24137783A JPS60133755A JP S60133755 A JPS60133755 A JP S60133755A JP 24137783 A JP24137783 A JP 24137783A JP 24137783 A JP24137783 A JP 24137783A JP S60133755 A JPS60133755 A JP S60133755A
Authority
JP
Japan
Prior art keywords
oxide film
electrode
mask
film
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24137783A
Other languages
Japanese (ja)
Inventor
Homare Matsumura
松村 誉
Satoru Maeda
哲 前田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24137783A priority Critical patent/JPS60133755A/en
Publication of JPS60133755A publication Critical patent/JPS60133755A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To improve the accuracy of the width of a low concentration impurity layer by a method wherein an oxide film is formed by low-temperature thermal oxidation to a low-concentration-doped semiconductor substrate and a gate electrode made of high-concentration-doped polycrystalline Si, thus making the gate electrode as a mask. CONSTITUTION:A field oxide film 22 is formed on the Si substrate 21. Next, a thermal oxide film 23 is formed on the surface of an element region on the substrate 21. Then, a high-concentration-doped polycrystalline Si film 24 is deposited. The film 24 is formed by etching into the gate electrode 25 trapezoidal in cross-section. Low concentration impurity layers 271 and 272 are formed with the electrode 25 and the oxide film 22 as a mask. Oxide films 28 and 29 are formed by low-temperature thermal oxidation. At this time, a thick oxide film 29 is formed on the electrode 25. Finally, high concentration impurity layers 301 and 302 are formed with the electrode 25 and the oxide film 22 as a mask.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、許しくはドレイ
ン領域の構造を改良したMoS型半導体装置の製造方法
に係る。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a MoS type semiconductor device in which the structure of a drain region is improved.

〔発明の技術的背景〕[Technical background of the invention]

周知の如り、MoS型半導体装置(%にLSI )にお
いては急速の微細化技術が確立され、これに伴なって高
性能化、高集積化が達成されてきた。近年ではチャンネ
ル長1μm前記のMO8LSIが開発されつつある。こ
うした微細なMoS型半導体装置では、ソース、ドレイ
ン領域間の電界が非常に大きくなり、この高電界中で生
成される多量の電子−正孔に起因する問題が生じている
。その一つに、ダート絶縁膜中に注入された電荷による
しきい値電圧(vth)の変動があり、更に半導体基板
中に注入される電荷が原因となるドレイン電流の異状な
増加がある。
As is well known, rapid miniaturization technology has been established in MoS type semiconductor devices (particularly LSI), and along with this, higher performance and higher integration have been achieved. In recent years, MO8LSIs with a channel length of 1 μm are being developed. In such minute MoS type semiconductor devices, the electric field between the source and drain regions becomes extremely large, and problems arise due to the large amount of electrons and holes generated in this high electric field. One of these is a fluctuation in threshold voltage (vth) due to charges injected into the dirt insulating film, and an abnormal increase in drain current caused by charges injected into the semiconductor substrate.

このようなことから、従来、励畏示す方法により製造さ
れたソース、ドレイン領域間の高電界を緩和した構造の
MO8fi半導体装置(nチャンネルMO8)う/ジス
タ)が提案されている。
For this reason, an MO8fi semiconductor device (n-channel MO8) has been proposed that is manufactured by an excitation method and has a structure in which the high electric field between the source and drain regions is alleviated.

次にこれを第1図を参照して説明する。Next, this will be explained with reference to FIG.

まず、p型シリコン基板1にフィールド酸化膜2を形成
した後、フィールド酸化膜2で分離された島状の素子領
域表面に熱酸化膜を形成した後、全面に例えばリンドー
ゾ多結晶シリコン膜を堆積する。つづいて、多結晶シリ
コン膜をt’?ターニングしてダート電極3を形成し、
更にff−)電極3をマスクとして熱酸化膜を選択的に
エツチングしてダート酸化膜4を形成した後、ダート電
極3をマスクとしてn型不純物を素子領域にイオン注入
して低濃度のn型不純物層51t5mを形成する(第1
図(4)図示)。
First, a field oxide film 2 is formed on a p-type silicon substrate 1, and then a thermal oxide film is formed on the surface of the island-shaped element regions separated by the field oxide film 2. After that, a lindozo polycrystalline silicon film, for example, is deposited on the entire surface. do. Next, the polycrystalline silicon film is t'? turning to form a dart electrode 3;
Furthermore, after ff-) selectively etching the thermal oxide film using the electrode 3 as a mask to form a dirt oxide film 4, using the dirt electrode 3 as a mask, n-type impurities are ion-implanted into the element region to form a low-concentration n-type impurity. Form an impurity layer 51t5m (first
Figure (4) (illustrated).

次いで、第1図(B)に示す如く全面にマスク材料とし
てのCVD −Sin、膜6を堆積する。つづいて、 
CVD −810,膜6を反応性イオンエツチングを行
なってダート電極3及びダート酸化膜4の側壁にCVD
 −8101を残存させて壁体7を形成する(第1図(
0図示)。ひきつづき、ダート電極3及び壁体7をマス
クとしてn型不純物を素子領域にイオン注入して高濃度
のn 型不純物層8158mを形成する。こうした工程
により、r−卜電極3近傍に位置するn型不純物層51
と同電極3から遠ざかる部分に位置する高濃度の計型不
純物層81 とからなるソース領域9、並びに同電極3
近傍に位置する低濃度のn型不純物層52と同電極3か
ら遠ざかる部分に位置する高濃度の層型不純物層8□と
からなるドレイン領域1Oが形成される(第1図(D)
図示)。
Next, as shown in FIG. 1(B), a film 6 of CVD-Sin as a mask material is deposited on the entire surface. Continuing,
CVD-810, the film 6 is subjected to reactive ion etching, and the side walls of the dirt electrode 3 and dirt oxide film 4 are coated with CVD.
-8101 remains to form the wall 7 (Fig. 1 (
0 shown). Subsequently, using the dirt electrode 3 and wall 7 as a mask, n-type impurity ions are implanted into the element region to form a highly concentrated n-type impurity layer 8158m. Through these steps, the n-type impurity layer 51 located near the r-electrode 3
and a highly concentrated meter-shaped impurity layer 81 located in a portion far from the electrode 3, and the electrode 3.
A drain region 1O is formed, which consists of a low concentration n-type impurity layer 52 located nearby and a high concentration layered impurity layer 8 □ located away from the electrode 3 (FIG. 1(D)).
(Illustrated).

次いで、壁体7を除去し、全面に層間絶縁膜11を堆積
した後、コンタクトホール12・−の開孔、ソース、ド
レインの取出しAノ配線13゜14の形成を行なってn
チャンネルMO8)ランジスタを製造する(第1図(E
)図示)。
Next, after removing the wall 7 and depositing an interlayer insulating film 11 on the entire surface, contact holes 12 and - and source and drain lead-out wirings 13 and 14 are formed.
Channel MO8) Manufacture transistors (Figure 1 (E)
).

〔背景技術の問題点〕[Problems with background technology]

上述した従来方法により造られたMOS )ランジスタ
ではダート電極3近傍にソース、ドレイン領域9,10
の一部を構成する低濃度のn型不純物層51.5□が形
成されるが、これら不純物層5Lp52は抵抗が太きい
ため、コンダクタンスの低下をもたらす。かかるn型不
純物層51952の長さはダート電極3同囲の壁体70
幅によって決定される。しかしながら、該壁体7の幅は
CVD −Sin、膜6の膜厚と反応性イオンエツチン
グの条件とに大きく依存するため、該壁体7の幅を精密
にコントロールすることが難しく、ひいてはn型不純物
層51,5.の幅をコントロールすることが困離となり
、素子特性のバラツキを生じる。また、壁体7の形成を
反応性イオンエツチングによって行なうため、その形成
時にソース、ドレイン領域の大部分を構成するシリコン
基板表面がイオンにより損傷を受け、素子特性を著しく
劣化させる。
In the MOS transistor manufactured by the conventional method described above, source and drain regions 9 and 10 are located near the dirt electrode 3.
A low concentration n-type impurity layer 51.5□ constituting a part of is formed, but these impurity layers 5Lp52 have a large resistance, resulting in a decrease in conductance. The length of the n-type impurity layer 51952 is the same as the wall 70 surrounding the dart electrode 3.
Determined by width. However, since the width of the wall 7 largely depends on the thickness of the CVD-Sin film 6 and the conditions of reactive ion etching, it is difficult to precisely control the width of the wall 7, and even the n-type Impurity layer 51,5. It becomes difficult to control the width of the semiconductor device, resulting in variations in device characteristics. Furthermore, since the wall 7 is formed by reactive ion etching, the surface of the silicon substrate constituting most of the source and drain regions is damaged by ions during its formation, significantly degrading device characteristics.

〔発明の目的〕[Purpose of the invention]

本発明はソース、ドレイン領域の一部を構成する低濃度
の不純物層の幅を精度よ(制御できると共に、半導体基
板表面のイオンによる損傷を解消した高性能の半導体装
置の製造方法を提供しようとするものである。
The present invention aims to provide a method for manufacturing a high-performance semiconductor device in which the width of a low-concentration impurity layer constituting a part of the source and drain regions can be precisely controlled and damage caused by ions on the surface of a semiconductor substrate can be eliminated. It is something to do.

〔発明の概要〕[Summary of the invention]

本発明は低濃度ドープ半導体基板と高濃度ドープ多結晶
シリコンとを低温熱酸化すると、該5− 多結晶シリコンに基板に比べて格段に厚い酸化膜が形成
されることを利用し、半導体基板の素子領域にダート絶
縁膜を介して高濃度ドープ多結晶シリコンからなる断面
台形状のダート電極を形成し、このr−)電極をマスク
として不純物を前記素子領域にイオン注入して低濃度の
不純物層を形成した後、低温熱酸化を施してダート電極
周囲に基板表面に比べて十分に厚い酸化膜を形成し、ひ
きつづき周囲に酸化膜が形成されたf−)電極をマスク
として不純物を前記素子領域にイオン注入して高濃度の
不純物層を形成することによって、既述した効果を有す
る半導体装置を製造することを骨子とするものである。
The present invention utilizes the fact that when a lightly doped semiconductor substrate and a highly doped polycrystalline silicon are thermally oxidized at low temperature, an oxide film is formed on the polycrystalline silicon that is much thicker than that on the substrate. A dirt electrode made of highly doped polycrystalline silicon and having a trapezoidal cross section is formed in the element region through a dirt insulating film, and using this r-) electrode as a mask, impurity ions are implanted into the element region to form a lightly doped impurity layer. After forming, low-temperature thermal oxidation is performed to form an oxide film that is sufficiently thicker than the substrate surface around the dirt electrode, and then impurities are removed from the element region using the f-) electrode with the oxide film formed around it as a mask. The main idea is to manufacture a semiconductor device having the above-mentioned effects by forming a highly concentrated impurity layer by ion implantation.

〔発明の実施例〕[Embodiments of the invention]

次に、本発明をnチャンネルMO8)ランジスタの製造
に適用した例について第2図(4)〜第2図(ト)を参
照して説明する。
Next, an example in which the present invention is applied to the manufacture of an n-channel MO8) transistor will be described with reference to FIGS. 2(4) to 2(g).

中 まず、p型シリコン基板21に選択酸化法等により
フィールド酸化膜(素子分離領域)6一 22を形成し、熱酸化を施してフィールド酸化膜22で
分離された基板21の叛状の素子領域表面上に300〜
500Xの熱酸化膜23を形成した後、全面に厚さ50
001前後の多量のリンをドープした多結晶シリコン膜
24を堆積し7’c(第2図囚図示)。
First, a field oxide film (element isolation region) 6 - 22 is formed on the p-type silicon substrate 21 by selective oxidation method or the like, and thermal oxidation is performed to form a diagonal element region of the substrate 21 separated by the field oxide film 22. 300~ on the surface
After forming a thermal oxide film 23 of 500X, a thickness of 50X is formed on the entire surface.
A polycrystalline silicon film 24 doped with a large amount of phosphorus (approximately 0.001) is deposited 7'c (as shown in FIG. 2).

(1i)次いで、多結晶シリコン膜24をプラズマエツ
チングを用いたフォトエツチング技術によりノfターニ
ングして断面が台形状のダート電極25を形成した後、
このダート電極25をマスクとして熱酸化膜23を選択
的にエツチングしてダート酸化膜26を形成した。つづ
いて、ダート電極25及びフィールド酸化膜22をマス
クとしてn型不純物、例えばリンを加速電圧25 K@
’V% ドース量2X10”7cm” (7)条件で前
記基板21の素子領域にイオン注入した後、熱処理して
活性化した。その結果、素子領域に低温度のn型不純物
層271,27.が形成された。
(1i) Next, the polycrystalline silicon film 24 is subjected to nof turning by a photoetching technique using plasma etching to form a dart electrode 25 having a trapezoidal cross section.
Using the dirt electrode 25 as a mask, the thermal oxide film 23 was selectively etched to form a dirt oxide film 26. Next, using the dirt electrode 25 and the field oxide film 22 as a mask, an n-type impurity such as phosphorus is applied at an accelerating voltage of 25 K@
After ions were implanted into the element region of the substrate 21 under the following conditions: 'V% dose: 2×10''7 cm'', the ions were activated by heat treatment. As a result, low temperature n-type impurity layers 271, 27 . was formed.

また、ダート電極25が断面台形状をなすだめ、n型不
純物層271,21.はダート電極25下の素子領域に
一部延出して形成された(第2図(B)図示)。
Further, since the dart electrode 25 has a trapezoidal cross section, the n-type impurity layers 271, 21 . was formed to partially extend into the element region under the dart electrode 25 (as shown in FIG. 2(B)).

■ 次いで、水素を含む850℃以下(例えば800℃
)の低温熱酸化を施した。この時、第3図の酸化温度と
酸化膜厚の関係を示す特性図の如く多量のリンドープ多
結晶シリコン(図中の曲線a)に形成された酸化膜は低
濃度ドープシリコン基板(図中の曲線b)のそれに比べ
て著しく厚くなる。その結果、第2図(C)に示す如く
露出した基板21表面に厚さ約400Xの酸化膜28が
、リンドープ多結晶シリコンからなるダート電極25周
囲に厚さ約2000Xの酸化膜29が、夫々形成された
。つづいて、周囲に厚い酸化膜29が形成されたダート
電極25及びフィールド酸化膜22をマスクとしてn型
不純物、例えば砒素を加速電圧40 K@vsドーズ量
3 X 10 ” 7cm”の条件で素子領域にイオン
注入し、熱処理を施して活性化して高濃度のn+型不純
物層301,301を形成した。こうした工程により、
C−)電極25近傍に位置する低濃度のn型不純物層2
71と同電極25から遠ざかる部分に位置する高濃度の
n 型不純物層31)l とからなるソース領域31、
並びに同電極25近傍に位置する低線度のn型不純物層
27sと同電極25から遠ざかる部分に位置する高濃度
の計型不純物層308とからなるドレイン領域32、が
夫々形成された(第2図(ハ)図示)。
■ Next, heat containing hydrogen at 850°C or lower (e.g. 800°C
) was subjected to low temperature thermal oxidation. At this time, as shown in the characteristic diagram showing the relationship between oxidation temperature and oxide film thickness in Figure 3, an oxide film formed on a large amount of phosphorous-doped polycrystalline silicon (curve a in the diagram) is formed on a lightly doped silicon substrate (curve a in the diagram). It is significantly thicker than that of curve b). As a result, as shown in FIG. 2(C), an oxide film 28 with a thickness of about 400X is formed on the exposed surface of the substrate 21, and an oxide film 29 with a thickness of about 2000X is formed around the dirt electrode 25 made of phosphorus-doped polycrystalline silicon. Been formed. Next, using the dirt electrode 25 and the field oxide film 22 around which the thick oxide film 29 is formed as a mask, an n-type impurity, for example, arsenic, is applied to the element region at an accelerating voltage of 40 K@vs. Ions were implanted into the substrate and activated by heat treatment to form highly concentrated n+ type impurity layers 301, 301. Through these processes,
C-) Low concentration n-type impurity layer 2 located near the electrode 25
71 and a highly concentrated n-type impurity layer 31) located in a portion far from the electrode 25,
In addition, drain regions 32 each consisting of a low linearity n-type impurity layer 27s located near the electrode 25 and a high-concentration meter-shaped impurity layer 308 located away from the electrode 25 were formed (second Figure (c) (Illustrated).

Qψ 次いで、全面にCVD −sto、膜S3を堆積
した後、コンタクトホール34・・・を開孔し、ソース
、ドレインの取出しA!配線35.36を形成孔てnチ
ャンネルMO8)ランジスタを製造しfcc第2図(ト
)図示)。
Qψ Next, after depositing the CVD-sto film S3 on the entire surface, contact holes 34... are opened to take out the source and drain A! An n-channel MO8) transistor is manufactured by forming wirings 35 and 36 in the holes (as shown in FIG. 2(G)).

しかして、本発明によれば高濃度の層型不純物層so1
 、so、の形成を、厚い酸化膜29が周囲に形成され
たダート電極25をマスクとして行なうため、抵抗値の
高い低濃度のn型不純物層271.27.の幅を精度よ
くコントロールでき、ひいては安定な電気的性能を有す
るMOS )ランジスタを得ることができる。
According to the present invention, the highly concentrated layered impurity layer so1
, so are formed using the dirt electrode 25 around which the thick oxide film 29 is formed as a mask, the low concentration n-type impurity layers 271, 27 . The width of the MOS transistor can be controlled with high accuracy, and as a result, a MOS transistor with stable electrical performance can be obtained.

9− また、従来法の如く壁体を?−)電極周囲に残存させる
ための反応性イオンエツチングt= −切株用しないの
で、ソース、ドレイン領域31゜32表面のイオンによ
る損傷を回避でき、高信頼性のMOS )ランジスタを
得ることができる。
9- Also, how about a wall like the conventional method? -) Reactive ion etching to remain around the electrode t = - Since the stump is not used, damage by ions to the surfaces of the source and drain regions 31 and 32 can be avoided, and a highly reliable MOS transistor can be obtained.

更に、低温熱酸化処理によりダート電極25周囲に厚い
酸化膜29を形成すると、第2図(0に示す如くダート
電極25がやせ細って、その幅も減少してオフセット化
する恐れがある。しかしながら、第2図(B)に示す如
くダート電極25の断面が台形状となるように形成し、
低濃度のn型不純物層211,272を形成する際、そ
の一部がr−)電極25下の素子領域まで延びるように
することによって、前記r−)電極のやせ細りによるオ
フセット化を防止できる。
Furthermore, if a thick oxide film 29 is formed around the dirt electrode 25 by low-temperature thermal oxidation treatment, the dirt electrode 25 may become thinner and thinner, and its width may decrease, resulting in an offset, as shown in FIG. 2 (0). As shown in FIG. 2(B), the dart electrode 25 is formed to have a trapezoidal cross section,
When forming the low concentration n-type impurity layers 211 and 272, a portion thereof extends to the element region below the r-) electrode 25, thereby preventing offset due to thinning of the r-) electrode.

なお、本発明はnチャンネルMO8)う/ジスタの製造
のみに限らず、pチャンネルMOB )ランジスタ、相
補型MO8)ランジスタの製造等にも同様に適用できる
The present invention is not limited to the manufacture of n-channel MOB transistors, but is equally applicable to the manufacture of p-channel MOB transistors, complementary MOB transistors, and the like.

10− 〔発明の効果〕 以上詳述した如く、本発明によればソース、ドレイン領
域の一部を構成する低濃度の不純物層の幅を精度よく制
御できると共に、半導体基板のソース、ドレイン領域表
面のイオンによる損傷を解消した高性能のMOS )ラ
ンゾスタ等の半導体装置を簡単に製造し得る方法を提供
できる。
10- [Effects of the Invention] As detailed above, according to the present invention, the width of the low concentration impurity layer constituting a part of the source and drain regions can be precisely controlled, and the width of the low concentration impurity layer constituting a part of the source and drain regions can be controlled accurately. It is possible to provide a method for easily manufacturing a semiconductor device such as a high-performance MOS (Lanzostar) that eliminates damage caused by ions.

【図面の簡単な説明】[Brief explanation of drawings]

第1図囚〜(ト)は従来のnチャンネルMOS )ラン
ジスタの製造工程を示す断面図、第2図(4)〜(ト)
は本発明の実施例におけるnチャンネルMOSトランジ
スタの製造工程を示す断面図、第3図は高濃度のす/ド
ープ多結晶シリコン及び低濃度のリンドープ単結晶シリ
コン基板の酸化速度に対する酸化膜厚の関係を示す特性
図である。 21・・・p型シリコン基板、22・・・フィールド酸
化膜、25・・・ダート電極、26・・・ダート酸化膜
、211.27.・・・低濃度のn型不純物層、28・
・・薄い酸化膜、29・・・厚い酸化膜、J’l+30
2・・・高濃度のnu不純物層、31・・・ソース領域
、32・・・ドレイン領域、35.36・・・Al配線
。 出願人代理人 弁理士 鈴 江 武 彦−〈 の 味 昧 −− 一 口 N く 昧 − の υ
Figures 1-(g) are cross-sectional views showing the manufacturing process of a conventional n-channel MOS transistor, and Figures 2(4)-(g)
3 is a cross-sectional view showing the manufacturing process of an n-channel MOS transistor in an embodiment of the present invention, and FIG. 3 shows the relationship between the oxidation rate and the oxide film thickness of a highly doped polycrystalline silicon substrate and a lightly doped single crystal silicon substrate. FIG. 21...p-type silicon substrate, 22...field oxide film, 25...dirt electrode, 26...dirt oxide film, 211.27. ...Low concentration n-type impurity layer, 28.
...Thin oxide film, 29...Thick oxide film, J'l+30
2... High concentration nu impurity layer, 31... Source region, 32... Drain region, 35.36... Al wiring. Applicant's representative Patent attorney Takehiko Suzue - The taste of - The υ of one sip

Claims (1)

【特許請求の範囲】[Claims] 第1導電型の半導体基板に素子分離領域を形成する工程
と、素子分離領域で分離された半導体基板の素子領域表
面上に絶縁膜を形成した後、不純物を含む多結晶シリコ
ン膜を被着する工程と、この多結晶シリコン膜を・リー
ニングして断面が台形状のダート電極を形成する工程と
、ダート電極をマスクとして第2導電型の不純物を前記
素子領域表面にドーピングする工程と、低温熱酸化処理
を施してダート電極周囲に酸化膜を形成した後、周囲に
酸化膜が形成されたダート電極をマスクとして第2導電
型の不純物を前記素子領域にドーピングする工程とを具
備したことを特徴とする半導体装置の製造方法。
After forming an element isolation region on a semiconductor substrate of a first conductivity type and forming an insulating film on the surface of the element region of the semiconductor substrate separated by the element isolation region, a polycrystalline silicon film containing impurities is deposited. a process of leaning this polycrystalline silicon film to form a dart electrode with a trapezoidal cross section; a process of doping the surface of the element region with a second conductivity type impurity using the dirt electrode as a mask; It is characterized by comprising the step of performing oxidation treatment to form an oxide film around the dirt electrode, and then doping the element region with a second conductivity type impurity using the dirt electrode around which the oxide film is formed as a mask. A method for manufacturing a semiconductor device.
JP24137783A 1983-12-21 1983-12-21 Manufacture of semiconductor device Pending JPS60133755A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24137783A JPS60133755A (en) 1983-12-21 1983-12-21 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24137783A JPS60133755A (en) 1983-12-21 1983-12-21 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60133755A true JPS60133755A (en) 1985-07-16

Family

ID=17073375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24137783A Pending JPS60133755A (en) 1983-12-21 1983-12-21 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60133755A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166570A (en) * 1986-01-20 1987-07-23 Nec Corp Manufacture of mis type field-effect transistor
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62166570A (en) * 1986-01-20 1987-07-23 Nec Corp Manufacture of mis type field-effect transistor
US5840611A (en) * 1993-12-16 1998-11-24 Goldstar Electron Company, Ltd. Process for making a semiconductor MOS transistor

Similar Documents

Publication Publication Date Title
JPH08250728A (en) Field-effect semiconductor device and manufacturing method thereof
JPH0638496B2 (en) Semiconductor device
JPS6251216A (en) Manufacture of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
US20040169224A1 (en) Semiconductor device and manufacturing method therefor
JPS60175458A (en) Semiconductor device and manufacture thereof
JPH03227024A (en) Manufacture of semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JP2513634B2 (en) Method for manufacturing semiconductor device
JP3203903B2 (en) Semiconductor device
KR100243021B1 (en) Method for manufacturing semiconductor device
JPS6156448A (en) Manufacture of complementary semiconductor device
JPS63142865A (en) Manufacture of semiconductor device
JPH05251712A (en) Manufacture of nonvolatile semiconductor memory
JPS6043865A (en) Manufacture of semiconductor device
JPH04338650A (en) Semiconductor device and manufacture thereof
JPS60134469A (en) Manufacture of semiconductor device
JPS59136973A (en) Semiconductor device
JPH0766400A (en) Semiconductor and its manufacture
JPH0296377A (en) Manufacture of semiconductor device
JPS5935464A (en) Complementary metal-oxide semiconductor device and manufacture thereof
JPS6254959A (en) Manufacture of mis semiconductor device
JPH06314782A (en) Manufacture of semiconductor device
JPH0590574A (en) Semiconductor device
JPS6136974A (en) Manufacture of mos semiconductor device