JPS60134469A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS60134469A
JPS60134469A JP24260183A JP24260183A JPS60134469A JP S60134469 A JPS60134469 A JP S60134469A JP 24260183 A JP24260183 A JP 24260183A JP 24260183 A JP24260183 A JP 24260183A JP S60134469 A JPS60134469 A JP S60134469A
Authority
JP
Japan
Prior art keywords
film
substrate
impurity
oxide film
regions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP24260183A
Other languages
Japanese (ja)
Inventor
Kuniyoshi Yoshikawa
吉川 邦良
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP24260183A priority Critical patent/JPS60134469A/en
Publication of JPS60134469A publication Critical patent/JPS60134469A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To reduce ion implantation processes, and to simplify processes by forming a film containing an impurity to the surface of a substrate and diffusing the impurity into the film through heat treatment under predetermined conditions when an MOS transistor with a drain region in low impurity concentration is prepared. CONSTITUTION:A thick field oxide film 12 is formed to the peripheral section of a P type Si substrate 11, a thin oxide film 13 is applied on the surface of the substrate 11 surrounded by the oxide film 12, and B ions for controlling threshold voltage are implanted to the surface layer of the substrate 11 through the oxide film 13. A gate electrode 15 is formed at the centrat section of the surface of the substrate 11 through a gate insulating film 16 consisting of the film 13, and an SiO2 film 17 containing a P impurity is applied on the whole surface. The impurity in the film 17 is diffused through heat treatment for 20min at 900 deg.C in N2 gas to form N<-> type regions 18 and 19 to the surface layer section of the substrate 11 on both sides of the electrode 15. The films 17 are left only on both side surfaces of the electrode 15 as 17', and As ions are implanted to the regions 18 and 19 again to form N<+> type source and drain regions 20, 21 connected to the regions 18 and 19.

Description

【発明の詳細な説明】 〔発明の技術分野〕 本発明は半導体装置の製造方法に関し、特にLD D 
(Liahtly cloped dran+ ) f
i造を有するMOS hランジスクの製造方法に係わる
[Detailed Description of the Invention] [Technical Field of the Invention] The present invention relates to a method for manufacturing a semiconductor device, and in particular to a method for manufacturing a semiconductor device.
(Liahtly cloped dran+) f
The present invention relates to a method of manufacturing a MOS h-ran disk having an i-structure.

〔光明の技術的背理とその問題点〕[Komyo's technical contradictions and their problems]

(、n米、半導体装置例えばNヂトネル型のM OSI
−ランジスタは、第1図に示すように製造されている。
(, n America, semiconductor devices such as N ditonel type MOSI)
- The transistor is manufactured as shown in FIG.

まず、P−型のSi基板1上に熱酸化膜を形成した後、
しきい値電圧(V口)〉、ジョートチA7ネル効果抑制
のため、他どえばボロンを基板1にイオン注入してヂャ
ネル領域2を形成する。つづいて、前記熱酸化膜上にゲ
ート電極3を形成した後、このゲート電極3をマスクと
して熱酸化膜を選択的に1ツヂング除去してグー1〜絶
縁膜4を形成する。更にこのグー1〜電極3をマスクど
して基板1に例えばヒ素をイオン注入してN4型のソー
ス、ドレイン領域5.6を形成づる。以下、常法により
、層間絶縁膜、コンタク1〜ホール等を順次形成して半
導体装置を製造する。しかしながら、このようにして製
造されたI’、II OS +−ランジスタによれば、
ドレイン領域6近傍に電界が集中し、正孔−電子対が発
生するための基板電流が増大し、もって電子がグー1−
電極に注入する等の理由により1〜ランジスタ特性が不
安定となる。このようなことから、第2図に示すように
、グー1〜電極3近傍のソース、ドレイン領域5.6を
これらの領域5.6より′fAr!1の低いN型の不純
物領域7.8としたL D D lfi 造のMOS 
l−ランジスタが提案されている。かかる1〜ランジス
タによれば、グー1〜電極3近傍のソース、トレイン領
域5.6にtlr1度の低いN型の不純物領域7.8が
設けられているため、トレイン領域6近傍に(プる電界
集中を緩和することができる。しかしながら、かかる1
−ランジスタによれば、ソース、ドレイン領域5.6の
形成に際し、2回のイオン注入が必要となり、プロセス
が複雑となる。
First, after forming a thermal oxide film on a P-type Si substrate 1,
In order to suppress the channel effect, the channel region 2 is formed by implanting boron ions into the substrate 1. Subsequently, after a gate electrode 3 is formed on the thermal oxide film, the thermal oxide film is selectively removed by using the gate electrode 3 as a mask to form layers 1 to 4. Furthermore, using the mask 1 to electrode 3, ions of, for example, arsenic are implanted into the substrate 1 to form N4 type source and drain regions 5 and 6. Thereafter, an interlayer insulating film, contacts 1 to holes, etc. are sequentially formed by a conventional method to manufacture a semiconductor device. However, according to the I', II OS +- transistors manufactured in this way:
The electric field concentrates near the drain region 6, and the substrate current increases to generate hole-electron pairs, which causes the electrons to become
1~ The transistor characteristics become unstable due to reasons such as injection into the electrode. For this reason, as shown in FIG. 2, the source and drain regions 5.6 near the electrodes 1 to 3 are separated from these regions 5.6 by 'fAr! MOS with L D D lfi structure with low N type impurity region of 7.8
An l-transistor has been proposed. According to such a transistor, an N-type impurity region 7.8 with a low tlr of 1 degree is provided in the source and train regions 5.6 near the goo 1-electrode 3. Electric field concentration can be alleviated. However, such 1
- According to the transistor, two ion implantations are required to form the source and drain regions 5.6, which complicates the process.

〔発明の目的〕[Purpose of the invention]

本発明は、上記事情に鑑みてなされたもので、従来のL
DD構造の半導体装置の製造と比べてイオン注入を1回
省略してプロセスを簡略し得る半導体装置の製造方法を
提供することを目的とするものである。
The present invention has been made in view of the above circumstances, and the present invention has been made in view of the above circumstances.
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can omit one ion implantation and simplify the process compared to manufacturing a semiconductor device with a DD structure.

〔発明の概要〕[Summary of the invention]

本発明は、全面に不純物を含んだ被膜を形成した後、所
定の条件下で熱処理を施して前記被膜から半導体基板表
面に前記不純物を拡散することによって、例えは’ L
 D D tM 造のM OS l〜ランジスタのソー
ス、ドレイン領域の一部を構成する浅い不純物領域をイ
オン注入することなく形成し、イオン注入回数を1回省
略してプロセスの簡略化を図るものである。
In the present invention, after forming a film containing impurities on the entire surface, heat treatment is performed under predetermined conditions to diffuse the impurities from the film to the surface of the semiconductor substrate.
D be.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明をNヂャネル型のMOSトランジスタに適
用した場合ついて第3図(a)〜(f)を参照して説明
する。
Hereinafter, a case where the present invention is applied to an N channel type MOS transistor will be explained with reference to FIGS. 3(a) to 3(f).

まず、周知の技術により、P型のシリコン基板11上に
厚さ1.2μrnのフィールド酸化膜12を形成すると
ともに、厚さ300人の酸化11!13を形成した。つ
づいて、しきい値電圧制御のためボロンを加速電圧30
f<eV、ドーズ但2×10cm−2の条件で基板11
にイオン注入した(第3図(a)図示)。次いで、全面
にρB=30Ω/口、厚さ0.4μmの多結晶シリコン
膜(図示せず)を堆積した後、レジス(・パターン14
をマスクとして反応性ガスにて前記多結晶シリコン膜、
酸化膜13を順次エツチングし、長さ1.5μmのゲー
ト電極15、グー1〜絶縁膜16を形成した(第3図(
b)図示)。更に、レジストパターン14を除去した後
、リンを10(イ3含む厚さ0.3μmのシリコン酸化
膜(被膜)17をCVD法にて堆(iした。しかる後、
窒素ガス中で900℃、20分間熱処理を行ない、第1
のN−型の不純物領域18.19を形成したく第3図(
C)図示)。
First, by a well-known technique, a field oxide film 12 with a thickness of 1.2 μrn was formed on a P-type silicon substrate 11, and an oxide film 11!13 with a thickness of 300 μm was formed. Next, in order to control the threshold voltage, boron was accelerated at a voltage of 30
The substrate 11 was heated under the conditions of f<eV and a dose of 2×10 cm−2.
Ions were implanted into the wafer (as shown in FIG. 3(a)). Next, after depositing a polycrystalline silicon film (not shown) with ρB=30Ω/hole and a thickness of 0.4 μm on the entire surface, a resist (pattern 14
The polycrystalline silicon film is removed using a reactive gas as a mask.
The oxide film 13 was sequentially etched to form a gate electrode 15 with a length of 1.5 μm, and insulating films 1 to 16 (see FIG. 3).
b) As shown). Furthermore, after removing the resist pattern 14, a 0.3 μm thick silicon oxide film (film) 17 containing phosphorus was deposited by CVD.
Heat treatment was performed at 900°C for 20 minutes in nitrogen gas, and the first
In order to form N-type impurity regions 18 and 19 of FIG.
C) As shown).

次に、反応性エツチング法により、前記シリコン酸化膜
17を除去し、ゲ−1へ電極15の側壁にのみ該シリコ
ン酸化膜17′を残存させたく第3図(d)図示)。つ
づいて、前記グー1〜電極15及びシリコン酸化膜17
′をマスクとしてヒ素を加速電圧40 K e ’V、
ドーズ1u5X10cm’の条件で基板11に、イオン
注入した。次いで、残存するシリコン酸化膜17−をエ
ツチングした後、酸素ガス中で900℃、40分間熱処
理することにより、ρs50Ω/−1深さ=0.2μ■
の第2のN+型の不純物領域20.21を形成した。こ
の結果、一方の第1、第2の不純物領域18.20によ
りソース領域22が形成され、他方の第1、第2の不純
物領域19.21によりドレイン領域23がそれぞれ形
成されたく第3図(e)図示)。
Next, the silicon oxide film 17 is removed by a reactive etching method to leave the silicon oxide film 17' only on the side walls of the electrode 15 in the gate 1 (as shown in FIG. 3(d)). Next, the goo 1 to the electrode 15 and the silicon oxide film 17
′ as a mask, arsenic is accelerated at a voltage of 40 K e ′V,
Ions were implanted into the substrate 11 at a dose of 1u5×10cm'. Next, after etching the remaining silicon oxide film 17-, heat treatment is performed at 900°C for 40 minutes in oxygen gas, so that ρs50Ω/-1 depth=0.2μ■
A second N+ type impurity region 20.21 was formed. As a result, the source region 22 is formed by the first and second impurity regions 18.20 on one side, and the drain region 23 is formed by the first and second impurity regions 19.21 on the other side. e) As shown).

更に、全面に厚さ0.2μ711のCVD酸化膜24を
堆積した後、前記ソース、トレイン領域22.23の夫
々の一部に対応するCVD酸化膜24にコンタクトホー
ル25.25を設け、A+/′3+配f!1i26.2
6を形成してMOS l−ランジスタを製造した(第3
図(f)図示)。
Furthermore, after depositing a CVD oxide film 24 with a thickness of 0.2μ711 over the entire surface, contact holes 25.25 are formed in the CVD oxide film 24 corresponding to parts of the source and train regions 22.23, respectively, and A+/ '3 + distribution f! 1i26.2
6 was formed to manufacture a MOS l-transistor (3rd
Figure (f) shown).

しかして、本発明によれば、第3図(C)に示Jごとく
、全面にリンを含んだシリコン酸化膜17を堆積した後
、所定の条件で熱処理づ゛ることによってシリコン酸化
膜17中のリンを基板11表面に拡散し、ソース、ドレ
イン領域22.23の一部を構成する第1のN−型の不
純物領1ii 18、19を形成するため、従来のL 
D D iM造のMoSトランジスタと比べ、イオン注
入回数を1回省略することができる。従って、プロセス
を簡単にできる。また、同様の理由から、基板11表面
へのダメージを回避でき讐トランジスタ特性を向上でき
る。
According to the present invention, as shown in FIG. 3(C), after the silicon oxide film 17 containing phosphorus is deposited on the entire surface, the inside of the silicon oxide film 17 is heated under predetermined conditions. The conventional L
Compared to a D D iM MoS transistor, one ion implantation can be omitted. Therefore, the process can be simplified. Furthermore, for the same reason, damage to the surface of the substrate 11 can be avoided and the transistor characteristics can be improved.

なお、上記実施例では、不純物を含む被膜として、リン
を含んだシリコン酸化膜を用いたが、これに限定されな
い。
In the above embodiment, a silicon oxide film containing phosphorus was used as the impurity-containing film, but the present invention is not limited thereto.

上記実施例では、シリコン酸化膜の中に含まねる不純物
としてリンを、第2の不純物領域を形成づるための不純
物としてヒ素を夫々用いたが、他の不純物を用いてもよ
い。
In the above embodiment, phosphorus was used as an impurity contained in the silicon oxide film, and arsenic was used as an impurity for forming the second impurity region, but other impurities may be used.

上記実施例では、Nチャネル型のx+ o s t−ラ
ンジスタに適用した場合についてのべたが、Pチャネル
型のMo s t−ランジスタに適用しても同様な効果
が期待できる。
In the above embodiment, the case where the present invention is applied to an N-channel type x+ os t-transistor has been described, but similar effects can be expected when applied to a p-channel type most t-transistor.

〔発明の効果〕〔Effect of the invention〕

以上詳述した如く本発明によれば、イオン注入回数を1
回省略してプロセスを簡略できるとともに、特性の良い
半導体装置の製造方法を提供できるものである。
As detailed above, according to the present invention, the number of ion implantations can be reduced to 1.
The process can be simplified by omitting the steps, and a method for manufacturing a semiconductor device with good characteristics can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

一第1図は従来のNチャネル型のMOS l−ランジス
タの断面図、第2図は従来のL’ D D tN造のM
OS1−ランジスタの断面図、第3図(a)〜(f)は
本発明の一実施例に係るNチ(・ネル型のMO8l・ラ
ンジスタの製造方法を工程順に示す断面図である。 11・・・P型のシリコン基板、12・・・フィールド
酸化膜、15・・・ゲ−1・電極、1G・・・ゲ−1・
絶縁膜、17.17″・・・シリコン酸化膜、18.1
9・・・N−型の不純物領域、2O12]・・・N+型
の不純物領域、22・・・ソース領域、23由ドレイン
領域、24・・・CV D 1ffff化股、25・・
・」ンタク1〜ホール、26・・・AI/Si配線。 出願人代理人 弁理士 鈴江武彦 第3図
Figure 1 is a cross-sectional view of a conventional N-channel type MOS l-transistor, and Figure 2 is a cross-sectional view of a conventional N-channel type MOS transistor.
11. Cross-sectional views of the OS1-transistor and FIGS. 3(a) to 3(f) are cross-sectional views showing a method for manufacturing an N-channel type MO8l transistor according to an embodiment of the present invention in the order of steps. 11. ...P-type silicon substrate, 12...Field oxide film, 15...Ge-1 electrode, 1G...Ge-1
Insulating film, 17.17″...Silicon oxide film, 18.1
9... N- type impurity region, 2O12]... N+ type impurity region, 22... Source region, 23 Drain region, 24... CV D 1ffff conversion, 25...
・"Ntak 1~Hall, 26...AI/Si wiring. Applicant's agent Patent attorney Takehiko Suzue Figure 3

Claims (2)

【特許請求の範囲】[Claims] (1)第1)#電型の半導体基板上に絶縁膜を介してグ
ー1〜電極を形成する工程と、全面に第2導電型の不純
物を含んだ被膜を形成する■稈と、熱処理を施して前記
被膜から半導体基板表面に前記不純物を拡散する工程と
、前記被!19jを反応性エツチングにより除去しグー
1〜電極の側壁にのみ該被膜を残存させる工程と、前記
ゲート電極及び残存する被膜をマスクとして前記第2の
不純物より不純物II度の大きい第2導電型の不純物を
前記基板に導入づ゛る工程とを具備することを特徴とづ
る半導体装置の製造方法。
(1) Step 1: Forming electrodes on the # conductivity type semiconductor substrate via an insulating film, forming a film containing impurities of the second conductivity type on the entire surface, and heat treatment. a step of diffusing the impurity from the coating onto the surface of the semiconductor substrate; 19j by reactive etching to leave the film only on the side walls of the electrodes; and using the gate electrode and the remaining film as a mask, a second conductivity type with a higher degree of impurity II than the second impurity is removed. 1. A method for manufacturing a semiconductor device, comprising the step of introducing impurities into the substrate.
(2)第21#電型の不純物としてリンもしくはヒ素を
用いることを特徴とする特許請求の範囲第1項記載の半
導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that phosphorus or arsenic is used as the impurity of the 21st #electrode type.
JP24260183A 1983-12-22 1983-12-22 Manufacture of semiconductor device Pending JPS60134469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP24260183A JPS60134469A (en) 1983-12-22 1983-12-22 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP24260183A JPS60134469A (en) 1983-12-22 1983-12-22 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS60134469A true JPS60134469A (en) 1985-07-17

Family

ID=17091468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP24260183A Pending JPS60134469A (en) 1983-12-22 1983-12-22 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS60134469A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102071A (en) * 1980-12-17 1982-06-24 Toshiba Corp Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57102071A (en) * 1980-12-17 1982-06-24 Toshiba Corp Manufacture of semiconductor device

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5898203A (en) * 1909-12-11 1999-04-27 Kabushiki Kaisha Toshiba Semiconductor device having solid phase diffusion sources
US5434440A (en) * 1992-05-29 1995-07-18 Kabushiki Kaisha Toshiba Semiconductor device and method of manufacturing the same
US5698881A (en) * 1992-05-29 1997-12-16 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source
US5766965A (en) * 1992-05-29 1998-06-16 Yoshitomi; Takashi Semiconductor device and method of manufacturing the same
US5903027A (en) * 1992-05-29 1999-05-11 Kabushiki Kaisha Toshiba MOSFET with solid phase diffusion source

Similar Documents

Publication Publication Date Title
US4925807A (en) Method of manufacturing a semiconductor device
JPH0297027A (en) Semiconductor device and manufacture thereof
JPH0974072A (en) Manufacture of semiconductor device
EP0459398B1 (en) Manufacturing method of a channel in MOS semiconductor devices
JPH09186245A (en) Manufacture of semiconductor device
JP3431909B2 (en) LDMOS transistor manufacturing method
JPS5843912B2 (en) Method for manufacturing semiconductor integrated circuit device
JPH0291973A (en) Manufacture of semiconductor device
JPS60134469A (en) Manufacture of semiconductor device
JPH05102067A (en) Manufacture of semiconductor device
JPS60180158A (en) Manufacture of semiconductor device
JP3781472B2 (en) Manufacturing method of semiconductor device
JPS5856435A (en) Manufacture of semiconductor device
JPH0479336A (en) Production of semiconductor device
JPS60105267A (en) Manufacture of semiconductor device
JPS6197974A (en) Manufacture of semiconductor device
JP2001168208A (en) Method of manufacturing field effect transistor
JPH0590254A (en) Manufacture of semiconductor device
KR100422325B1 (en) Fabricating method of semiconductor device
JPS60158659A (en) Manufacture of semiconductor device
JPS60133755A (en) Manufacture of semiconductor device
JPH04363019A (en) Manufacture of semiconductor device
JPS63244884A (en) Semiconductor device and manufacture thereof
JP2000196073A (en) Manufacture of semiconductor device
JPS6376376A (en) Manufacture of metal-oxide semiconductor (mos) device