JPH0291973A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH0291973A
JPH0291973A JP24231888A JP24231888A JPH0291973A JP H0291973 A JPH0291973 A JP H0291973A JP 24231888 A JP24231888 A JP 24231888A JP 24231888 A JP24231888 A JP 24231888A JP H0291973 A JPH0291973 A JP H0291973A
Authority
JP
Japan
Prior art keywords
layer
high concentration
gate electrode
concentration oxygen
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP24231888A
Other languages
Japanese (ja)
Other versions
JP2755614B2 (en
Inventor
Naoyuki Shigyo
直之 執行
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63242318A priority Critical patent/JP2755614B2/en
Publication of JPH0291973A publication Critical patent/JPH0291973A/en
Application granted granted Critical
Publication of JP2755614B2 publication Critical patent/JP2755614B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film
    • H01L29/78651Silicon transistors
    • H01L29/78654Monocrystalline silicon transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To form a thin film transistor without increase in resistance in a diffused layer and without problems of etching of the diffused layer in forming a contact hole by forming source and drain films thickly in comparison with a channel region beneath a gate electrode. CONSTITUTION:In a p-type Si substrate 11, an element isolating oxide film 12 is formed by an ordinary element decomposing step. Thereafter, a gate oxide film 13 is formed. A polycrystalline Si film is deposited on the film 13. A gate electrode 14 is formed by a patterning technology. Then oxygen ions are implanted at a specified accelerating voltage, and a high concentration oxygen layer 16 is formed in the Si substrate. At this time, since the ions are implanted through the gate electrode, the high concentration oxygen layer within the Si substrate at the other element forming region can be formed deeply in comparison with the high concentration oxygen layer within the Si substrate beneath the gate electrode. Then, annealing is performed in a nitrogen atmosphere at a specified temperature. The oxygen layer 16 is made to be the Si oxide film. An Si-oxide-film embedded layer 17 is formed in the Si substrate. Then, source and drain regions 18 are formed by ion implantation.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、MOa型トランジスタを製造する技術に係わ
り、特に酸素イオン注入を用いた薄膜80I)ランジス
タ半導体装置の製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Field of Application) The present invention relates to a technology for manufacturing MOa transistors, and particularly to a method for manufacturing a thin film transistor semiconductor device using oxygen ion implantation. .

(従来の技術) 絶縁膜上に形成したS OI (Silicon −0
n−Insulator)トランジスタは、寄生容量が
小さい、ソフトエラーに強い等の利点があることが知ら
れている。更に、SOX層の薄膜化により、移動度の増
加やスイッチング特性の改善が得られることが報告され
ティる(M、 Yoihimi  et  al、 。
(Prior art) SOI (Silicon-0) formed on an insulating film
It is known that n-insulator transistors have advantages such as small parasitic capacitance and resistance to soft errors. Furthermore, it has been reported that increasing the mobility and improving switching characteristics can be achieved by making the SOX layer thinner (M, Yoihimi et al.).

IBDM Te c h−D ig−* pp−640
−643e 1987 )。
IBM Tec h-Dig-* pp-640
-643e 1987).

SOX層の製造方法としては、シリコン基板に酸素イオ
ン注入し高濃度酸素層を形成し、これを熱処理すること
により前記高濃度酸素層をシリコン酸化膜化しSOX層
を形成する方法が知られている。例えば、G、に、Ce
1ler、5olid 8tate −Teah、 、
 pp、 93−98.1987に製造方法が開示され
ている。
As a method for manufacturing the SOX layer, a method is known in which oxygen ions are implanted into a silicon substrate to form a high concentration oxygen layer, and this is heat treated to turn the high concentration oxygen layer into a silicon oxide film to form an SOX layer. . For example, G, to, Ce
1ler, 5olid 8tate-Teah, ,
A manufacturing method is disclosed in pp. 93-98.1987.

しかしながら、上記製造方法により80I層を薄膜化す
るとソース、ドレイン領域のSOX層も薄膜化するため
ソース、)″レインの拡散層抵抗が増加し、また、コン
タクト、ホールをエツチング技術で開孔する際拡散層も
エツチングされ配線が形成できないという問題があった
However, when the 80I layer is made thinner by the above manufacturing method, the SOX layer in the source and drain regions is also made thinner, which increases the resistance of the source and drain diffusion layers. There was a problem in that the diffusion layer was also etched and wiring could not be formed.

(発明が解決しようとする課題) このように、従来のSOX層の薄膜化ではソース、ドレ
インの拡散層抵抗の増加およびコンタクト、ホール形成
での拡散層のエツチングの問題があった。
(Problems to be Solved by the Invention) As described above, the conventional thinning of the SOX layer has the problems of increased resistance of the source and drain diffusion layers and etching of the diffusion layers when forming contacts and holes.

本発明は上記事情を考慮してなされたもので、80I層
の薄膜化に伴なう拡散層抵抗の増加およびコンタクト、
ホール形成による拡散層のエツチングの問題のない薄膜
80I)ランジスタの製造方法の提供を目的としている
The present invention has been made in consideration of the above circumstances, and includes an increase in diffusion layer resistance due to thinning of the 80I layer, and contact,
The object of the present invention is to provide a method for manufacturing a thin film transistor (80I) without the problem of etching the diffusion layer due to hole formation.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 上記課題を解決するために1本発明は、SOI構造を実
現する際ゲート電極を形成した後に酸素イオン注入を行
うことにより、SOX層のソース。
(Means for Solving the Problems) In order to solve the above problems, one aspect of the present invention is to form the source of the SOX layer by implanting oxygen ions after forming the gate electrode when realizing the SOI structure.

ドレイン膜厚を該ゲート電極下のチャネル領域に比べて
厚く形成して薄膜80I)ランジスタを実現するようK
したものである。
The drain film is formed thicker than the channel region under the gate electrode to realize a thin film transistor.
This is what I did.

(作用) 本発明によれば、ゲート電極を形成した後に酸素イオン
注入を行い、それをアニールすることにより酸素がイオ
ン注入された分布に従って埋め込み酸化膜を形成できる
ので、該ゲート電極下のチャネル領域の80I層に比べ
てソース、ドレイン膜厚を厚く形成することが可能とな
る。
(Operation) According to the present invention, by performing oxygen ion implantation after forming the gate electrode and annealing it, a buried oxide film can be formed according to the distribution of oxygen ions implanted, so that the channel region under the gate electrode can be formed. It is possible to form the source and drain films thicker than the 80I layer.

(実施例) 以下、本発明の詳細を図示の実施例によって説明する。(Example) Hereinafter, details of the present invention will be explained with reference to illustrated embodiments.

第1図は本発明の第1の実施例に係わる薄膜80I )
ランジスタの製造工程を示す断面図である。まず、第1
図(a) K示すごとくp型シリコン基板11において
、通常の素子分離工程、例えばLOCO8法により素子
分離酸化膜12を形成する。
FIG. 1 shows a thin film 80I according to the first embodiment of the present invention.
FIG. 3 is a cross-sectional view showing the manufacturing process of the transistor. First, the first
As shown in Figure (a) K, an element isolation oxide film 12 is formed on a p-type silicon substrate 11 by a normal element isolation process, for example, the LOCO8 method.

その後ゲート酸化膜13を例えば2Qnm形成し、その
上に多結晶シリコン膜を0.3μm堆積し周知のパター
ニング技術によりゲート電極14を形成する。次いで、
第1図Φ)に示すごとく酸素イオンを例えば加速重圧4
00KVで濃度101@0rraイオン注入し、シリコ
ン基板中に高濃度酸素層16を形成する。この場合、ゲ
ート電極を通してイオン注入を行っているため、ゲート
電極下のシリコン基板内の高濃度酸素層に比べて、他の
素子領域のシリコン基板内の高濃度酸素層を深く形成で
きる。
Thereafter, a gate oxide film 13 is formed to a thickness of, for example, 2Q nm, and a polycrystalline silicon film is deposited thereon to a thickness of 0.3 μm, and a gate electrode 14 is formed by a well-known patterning technique. Then,
As shown in Figure 1 Φ), oxygen ions are accelerated under a heavy pressure of 4
Ions are implanted at a concentration of 101 @ 0 rra at 00 KV to form a high concentration oxygen layer 16 in the silicon substrate. In this case, since ion implantation is performed through the gate electrode, the high concentration oxygen layer in the silicon substrate in other element regions can be formed deeper than the high concentration oxygen layer in the silicon substrate under the gate electrode.

次いで、第1図(C) K示すごとく窒素雰囲気中で1
100°Cでアニールし、前記高濃度酸素l11116
をシリコン酸化膜化し、シリコン基板中にシリコン酸化
膜埋め込み領域層17を・形成する。次いで、第1図(
d) K示すごとく例えばイオン注入技術によりソース
、ドレイン領域18を形成する。この後、周知の技術で
配線を形成しトランジスタを作成するO これKより、ゲート電極下のチャネル領域の8IO層の
膜厚(シリコン酸化膜埋め込み領域層17の上部からシ
リコン基板表面までの厚さ)を10〜50nmと薄膜と
した場合でもソース、ドレイン膜厚はそれ以上厚く形成
でき、拡散層抵抗の増加およびコンタクト、ホール形成
での拡散層の工、チングの問題のない薄膜SOI )ラ
ンジスタを実現することが可能となる。
Then, as shown in Fig. 1(C) K, 1
Annealed at 100°C, the high concentration oxygen l11116
is converted into a silicon oxide film, and a silicon oxide film buried region layer 17 is formed in the silicon substrate. Next, Figure 1 (
d) As shown in K, source and drain regions 18 are formed by, for example, ion implantation technology. After this, wiring is formed using a well-known technique to create a transistor. From this, the thickness of the 8IO layer in the channel region under the gate electrode (thickness from the top of the silicon oxide film buried region layer 17 to the silicon substrate surface) ) is made into a thin film of 10 to 50 nm, the source and drain films can be made thicker than that, and there is no problem of increase in diffusion layer resistance, processing of the diffusion layer during contact or hole formation, or chipping. It becomes possible to realize this.

第2図は本発明の第2の実施例に係わる薄膜80I)ラ
ンジスタの製造工程を示す断面図である。まず、第2図
(a)に示すごとくp型シリコン基板31において、ゲ
ート酸化膜32を例えば20nm形成し、その上に多結
晶シリコン膜を0.3μm堆積し周知のパターニング技
術によりゲート電極33を形成する。次いで、レジスト
膜22を0.4μm堆積し該レジスト膜の平坦化を行い
、次いで、周知のパターニング技術により素子分離領域
に前記レジスト膜34を残置する。次いで、第2図Φ)
に示すごとく酸素イオンを例えば加速電圧400KVで
濃度101°Cm1イオン注入し、シリコン基板中に高
濃度酸素層36を形成する。次いで、第2図(C)K示
すごとく窒素雰囲気中で1100°Cでアニールし、前
記高濃度酸素層36をシリコン酸化膜化し、シリコン基
板中にシリコン酸化膜埋め込み領域層37を形成し、次
いで、例えばイオン注入技術によりソース、ドレイン領
域38を形成する。この後、周知の技術で配線を形成し
トランジスタを作成する。
FIG. 2 is a sectional view showing the manufacturing process of a thin film transistor (80I) according to a second embodiment of the present invention. First, as shown in FIG. 2(a), on a p-type silicon substrate 31, a gate oxide film 32 is formed to a thickness of, for example, 20 nm, a polycrystalline silicon film is deposited to a thickness of 0.3 μm thereon, and a gate electrode 33 is formed using a well-known patterning technique. Form. Next, a resist film 22 is deposited to a thickness of 0.4 μm and the resist film is planarized, and then the resist film 34 is left in the element isolation region using a well-known patterning technique. Next, Fig. 2 Φ)
As shown in FIG. 3, oxygen ions are implanted at a concentration of 101°Cm1 at an acceleration voltage of 400 KV, for example, to form a high concentration oxygen layer 36 in the silicon substrate. Next, as shown in FIG. 2(C)K, annealing is performed at 1100° C. in a nitrogen atmosphere to convert the high concentration oxygen layer 36 into a silicon oxide film, forming a silicon oxide film buried region layer 37 in the silicon substrate, and then , the source and drain regions 38 are formed by, for example, ion implantation technology. Thereafter, wiring is formed using a well-known technique to create a transistor.

これにより、ゲート電極下のチャネル領域に比べてソー
ス、ドレイン膜厚を厚く形成でき、拡散抵抗の増加およ
びコンタクト、ホール形成での拡散層のエツチングの問
題のない薄膜5OI)ランジスタを実現することが可能
となる。また、酸素イオン注入で素子分離と80I構造
を同時に形成でき、工程を大幅に簡略化することができ
る。
As a result, the source and drain films can be formed thicker than the channel region under the gate electrode, and a thin film 5OI) transistor can be realized without the problem of increased diffusion resistance and etching of the diffusion layer when forming contacts and holes. It becomes possible. Furthermore, element isolation and the 80I structure can be formed at the same time by oxygen ion implantation, and the process can be greatly simplified.

第3図は酸素イオン注入で素子分離と80I構造を同時
に形成できる薄膜80I)ランジスタの製造工程を示す
断面図である。まず、第3図(a)に示すごとくp型シ
リコン基板21において、レジストlI[22ヲ0.4
μm堆積し周知のパターニング技術により素子分離領域
に前記レジスト膜22を残置する。その後、第3図Φ)
K示すごとく酸素イオンを例えば加速電圧400 KV
で濃度1019 CrTPイオン注入し、シリコン基板
中に高濃度酸素層24を形成する。次いで、第3図(C
)に示すごとく窒素雰囲気中で1100°Cでアニール
し、前記高濃度酸素層24をシリコン酸化膜化し、シリ
コン基板中にシリコン酸化膜埋め込み領域層25を形成
する。この後、周知の技術で素子領域23にゲート、ソ
ース、ドレイン及び配線を形成しトランジスタを作成す
る。
FIG. 3 is a sectional view showing the manufacturing process of a thin film 80I) transistor that can simultaneously form element isolation and an 80I structure by oxygen ion implantation. First, as shown in FIG. 3(a), a resist lI [22 0.4
The resist film 22 is deposited to a thickness of .mu.m and left in the element isolation region by a well-known patterning technique. After that, Fig. 3Φ)
As shown in K, oxygen ions are accelerated at an acceleration voltage of 400 KV, for example.
CrTP ions are implanted at a concentration of 1019 to form a high concentration oxygen layer 24 in the silicon substrate. Next, Figure 3 (C
), annealing is performed at 1100° C. in a nitrogen atmosphere to convert the high concentration oxygen layer 24 into a silicon oxide film, thereby forming a silicon oxide film buried region layer 25 in the silicon substrate. Thereafter, a gate, source, drain, and wiring are formed in the element region 23 using a well-known technique to create a transistor.

これにより、酸素イオン注入で素子分離と80I構造を
同時に形成でき、工程を大幅に簡略化することができる
As a result, element isolation and the 80I structure can be formed at the same time by oxygen ion implantation, and the process can be greatly simplified.

〔発明の効果〕〔Effect of the invention〕

以上述べたように本発明によれば、ゲート電極下のチャ
ネル領域に比べてソース、ドレイン膜厚を厚く形成でき
、拡散層抵抗の増加およびフンタクト、ホール形成での
拡散層のエツチングの問題のない薄膜5OI)ランジス
タを実現することが可能となる。また、酸素イオン注入
で素子分離とSOI構造を同時に形成でき、工程を大幅
に簡略化することができる。
As described above, according to the present invention, the thickness of the source and drain films can be formed thicker than that of the channel region under the gate electrode, and there is no problem of increased resistance of the diffusion layer and etching of the diffusion layer during hole formation. It becomes possible to realize a thin film (5OI) transistor. Furthermore, element isolation and the SOI structure can be formed at the same time by oxygen ion implantation, and the process can be greatly simplified.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は本発明の第1の実施例の製造工程を示す断面図
、第2図は本発明の第2の実施例の製造工程を示す断面
図、第3図は本発明の他の製造工程を示す断面図である
。 11.21.31・・・p型シリコン基板、12・・・
素子分離酸化膜、 13.32・・・ゲート酸化膜、 14.33・・・ゲート電極、 15123S35・・・SOI層、 16.24.36・・・高濃度酸素層、17.25.3
7・・・シリコン酸化膜埋め込み領域層、 18%38・・・ソース、ドレイン領域、22.34・
・・レジスト膜。 代理人 弁理士 則 近 憲 佑 同      松  山  光 之
Fig. 1 is a sectional view showing the manufacturing process of the first embodiment of the present invention, Fig. 2 is a sectional view showing the manufacturing process of the second embodiment of the invention, and Fig. 3 is a sectional view showing the manufacturing process of the second embodiment of the invention. It is a sectional view showing a process. 11.21.31...p-type silicon substrate, 12...
Element isolation oxide film, 13.32... Gate oxide film, 14.33... Gate electrode, 15123S35... SOI layer, 16.24.36... High concentration oxygen layer, 17.25.3
7... Silicon oxide film buried region layer, 18%38... Source, drain region, 22.34.
...Resist film. Agent Patent Attorney Noriyuki Chika Yudo Hikaru Matsuyama

Claims (3)

【特許請求の範囲】[Claims] (1)SOIMOS型半導体装置の製造方法においてゲ
ート電極を形成する工程と、該ゲート電極を通して高濃
度酸素イオン注入を行い前記ゲート電極下のシリコン基
板内他の素子領域のシリコン基板に高濃度酸素層を形成
する工程と、続いてこれを熱処理することにより前記高
濃度酸素層をシリコン酸化膜埋め込み領域層に変える工
程とを含むことを特徴とする半導体装置の製造方法。
(1) A step of forming a gate electrode in a method for manufacturing a SOIMOS type semiconductor device, and implanting high concentration oxygen ions through the gate electrode to form a high concentration oxygen layer in the silicon substrate in another element region within the silicon substrate under the gate electrode. 1. A method of manufacturing a semiconductor device, comprising the steps of: forming a silicon oxide layer; and then converting the high concentration oxygen layer into a silicon oxide buried region layer by subjecting the high concentration oxygen layer to a heat treatment.
(2)SOIMOS型半導体装置の製造方法において、
レジスト膜を素子分離領域に形成するとともに素子領域
にゲート電極を形成する工程と、前記レジスト膜とゲー
ト電極とを通して高濃度酸素イオン注入を行い前記レジ
スト膜直下のシリコン基板内、前記ゲート電極下のシリ
コン基板内および他の素子領域のシリコン基板内高濃度
酸素層を形成する工程と、続いてこれを熱処理すること
により前記高濃度酸素層をシリコン酸化膜埋め込み領域
層に変える工程とを含むことを特徴とする半導体装置の
製造方法。
(2) In a method for manufacturing a SOIMOS type semiconductor device,
A step of forming a resist film in the element isolation region and forming a gate electrode in the element region, and implanting high-concentration oxygen ions through the resist film and the gate electrode into the silicon substrate directly under the resist film and under the gate electrode. A step of forming a high concentration oxygen layer in the silicon substrate and in other element regions, and a step of subsequently heat-treating the layer to convert the high concentration oxygen layer into a silicon oxide film buried region layer. A method for manufacturing a featured semiconductor device.
(3)SOIMOS型半導体装置の製造方法において、
レジスト膜を素子分離領域に形成する工程と、該レジス
ト膜を通して高濃度酸素イオン注入を行い前記レジスト
膜直下にもシリコン基板内に高濃度酸素層を形成する工
程と、これを熱処理することにより前記高濃度酸素層を
シリコン酸化膜埋め込み領域層に変える工程とを含むこ
とを特徴とする半導体装置の製造方法。
(3) In a method for manufacturing a SOIMOS type semiconductor device,
a step of forming a resist film in the element isolation region; a step of implanting high concentration oxygen ions through the resist film to form a high concentration oxygen layer in the silicon substrate also directly under the resist film; A method of manufacturing a semiconductor device, comprising the step of converting a high concentration oxygen layer into a silicon oxide buried region layer.
JP63242318A 1988-09-29 1988-09-29 Method for manufacturing semiconductor device Expired - Fee Related JP2755614B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63242318A JP2755614B2 (en) 1988-09-29 1988-09-29 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63242318A JP2755614B2 (en) 1988-09-29 1988-09-29 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH0291973A true JPH0291973A (en) 1990-03-30
JP2755614B2 JP2755614B2 (en) 1998-05-20

Family

ID=17087426

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63242318A Expired - Fee Related JP2755614B2 (en) 1988-09-29 1988-09-29 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2755614B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036040A (en) * 1989-06-01 1991-01-11 Sharp Corp Semiconductor device
EP0461362A2 (en) * 1990-04-17 1991-12-18 Canon Kabushiki Kaisha Process for preparing a thin film semiconductor device
JPH0436648U (en) * 1990-07-23 1992-03-27
EP0460605B1 (en) * 1990-06-08 1997-01-08 Seiko Epson Corporation Thin film transistor and method of manufacturing it
US6475868B1 (en) * 1999-08-18 2002-11-05 Advanced Micro Devices, Inc. Oxygen implantation for reduction of junction capacitance in MOS transistors
KR100436291B1 (en) * 1999-11-09 2004-06-16 주식회사 하이닉스반도체 Method of manufacturing a transistor in a semiconductor device
JP2006173642A (en) * 2000-12-05 2006-06-29 Seiko Instruments Inc Semiconductor device and method of manufacturing the same
CN110246896A (en) * 2018-03-07 2019-09-17 三星电子株式会社 Semiconductor device and the method for manufacturing the semiconductor device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745947A (en) * 1980-09-03 1982-03-16 Toshiba Corp Mos type semiconductor integrated circuit
JPS62111445A (en) * 1985-11-08 1987-05-22 Matsushita Electronics Corp Manufacture of semiconductor device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5745947A (en) * 1980-09-03 1982-03-16 Toshiba Corp Mos type semiconductor integrated circuit
JPS62111445A (en) * 1985-11-08 1987-05-22 Matsushita Electronics Corp Manufacture of semiconductor device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH036040A (en) * 1989-06-01 1991-01-11 Sharp Corp Semiconductor device
EP0461362A2 (en) * 1990-04-17 1991-12-18 Canon Kabushiki Kaisha Process for preparing a thin film semiconductor device
US5510640A (en) * 1990-04-17 1996-04-23 Cannon Kabushiki Kaisha Semiconductor device and process for preparing the same
EP0460605B1 (en) * 1990-06-08 1997-01-08 Seiko Epson Corporation Thin film transistor and method of manufacturing it
JPH0436648U (en) * 1990-07-23 1992-03-27
US6475868B1 (en) * 1999-08-18 2002-11-05 Advanced Micro Devices, Inc. Oxygen implantation for reduction of junction capacitance in MOS transistors
KR100436291B1 (en) * 1999-11-09 2004-06-16 주식회사 하이닉스반도체 Method of manufacturing a transistor in a semiconductor device
JP2006173642A (en) * 2000-12-05 2006-06-29 Seiko Instruments Inc Semiconductor device and method of manufacturing the same
CN110246896A (en) * 2018-03-07 2019-09-17 三星电子株式会社 Semiconductor device and the method for manufacturing the semiconductor device

Also Published As

Publication number Publication date
JP2755614B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
KR930010121B1 (en) Process for forming high and low voltage cmos transistors on a single integrated circuit chip
US4422885A (en) Polysilicon-doped-first CMOS process
JPS63244776A (en) Manufacture of insulated-gate field-effect transistor
JPH0291973A (en) Manufacture of semiconductor device
JPH0799259A (en) Bi-cmos soi structure containing longitudinal bipolar transistor and preparation thereof
JP2730535B2 (en) Method for manufacturing semiconductor device
JP2596117B2 (en) Method for manufacturing semiconductor integrated circuit
KR100244402B1 (en) Method of forming a trench isolation in a semiconductor device
JP2002299590A (en) Method of manufacturing semiconductor substrate and semiconductor device
JPS62285468A (en) Manufacture of ldd field-effect transistor
JPH04343437A (en) Manufacture of semiconductor device
JPH0472770A (en) Manufacture of semiconductor device
KR0167664B1 (en) Method of fabricating semiconductor device
JP3344162B2 (en) Method for manufacturing field effect semiconductor device
US20030178679A1 (en) Semiconductor device and method of manufacturing the same
KR100303356B1 (en) SOI device having double gate structure and method of manufacturing the same
JPS60134469A (en) Manufacture of semiconductor device
JPH05275529A (en) Method of manufacturing semiconductor integrated circuit
JPH05160404A (en) Manufacture of semiconductor device
KR0147255B1 (en) Method for manufacturing mosfet
KR100357173B1 (en) Method for manufacturing thin film transistor
JP2926817B2 (en) Method for manufacturing semiconductor device
JPH04260331A (en) Manufacture of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device
JPS61252656A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees