JPH04260331A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH04260331A
JPH04260331A JP2175491A JP2175491A JPH04260331A JP H04260331 A JPH04260331 A JP H04260331A JP 2175491 A JP2175491 A JP 2175491A JP 2175491 A JP2175491 A JP 2175491A JP H04260331 A JPH04260331 A JP H04260331A
Authority
JP
Japan
Prior art keywords
conductivity type
base
film
semiconductor substrate
opening
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2175491A
Other languages
Japanese (ja)
Inventor
Tatsuya Deguchi
達也 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2175491A priority Critical patent/JPH04260331A/en
Publication of JPH04260331A publication Critical patent/JPH04260331A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Bipolar Transistors (AREA)

Abstract

PURPOSE:To form a collector.base.emitter in a self-alignment manner, and enable the connection of a base leading-out electrode and an inner base, by using a photo mask and performing oblique incidence ion implantation. CONSTITUTION:Impurity ions 8 of a conductivity type are obliquely projected in an aperture 6, from the direction of a collector contact electrode 4B by ion implantation method. Thereby an inner base 9 is formed in a semiconductor substrate 1 on the base contact electrode 4A side of the aperture 6. The inside of the aperture 6 is coated with a second insulating film 10, and a side wall insulating film 10A is formed on the side wall of the aperture 6 by anisotropic etching. A second poly Si film 11 is buried in the aperture 6 and turned into an emitter contact electrode 11A. By heat-treating the semiconductor substrate 1, impurities are diffused from a poly Si film 4, and a collector contact diffusion layer 14 isolated from an emitter 12, an outer base 13 and an inner base 9 is formed.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は,半導体装置の製造方法
,特に,バイポーラLSIの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a semiconductor device, and more particularly to a method of manufacturing a bipolar LSI.

【0002】近年,ICは高集積化,高速化が要求され
,そのために,ICを構成するトランジスタ等の素子面
積の縮小ならびにトランジスタの寄生容量の低減が必要
となっている。
In recent years, there has been a demand for higher integration and higher speed for ICs, and for this reason, it has become necessary to reduce the area of elements such as transistors constituting the IC and to reduce the parasitic capacitance of the transistors.

【0003】0003

【従来の技術】図5は従来例の説明図である。図におい
て,40は半導体基板, 41は埋没拡散層, 42は
エピタキシャル層, 43はフィールドSiO2膜, 
44は素子分離層, 45はベースコンタクト電極, 
46はコレクタコンタクト電極, 47はカバーSiO
2膜, 48はサイドウォールSiO2膜, 49はエ
ミッタコンタクト電極, 50はエミッタ, 51は内
部ベース, 52は外部ベース, 53はコレクタコン
タクト電極, 54はAl電極である。
2. Description of the Related Art FIG. 5 is an explanatory diagram of a conventional example. In the figure, 40 is a semiconductor substrate, 41 is a buried diffusion layer, 42 is an epitaxial layer, 43 is a field SiO2 film,
44 is an element isolation layer, 45 is a base contact electrode,
46 is a collector contact electrode, 47 is a cover SiO
2, 48 is a sidewall SiO2 film, 49 is an emitter contact electrode, 50 is an emitter, 51 is an internal base, 52 is an external base, 53 is a collector contact electrode, and 54 is an Al electrode.

【0004】従来のバイポーラLSIにおいては,図5
に示すように,コレクタとベース・エミッタ領域を,半
導体基板上のそれぞれ別の領域に形成していたため,マ
スクによる位置合わせの余裕度を考慮しなければならず
,トランジスタのサイズが大きくなり,従って,コレク
タ・半導体基板間の容量も大きくなっていた。
In the conventional bipolar LSI, as shown in FIG.
As shown in Figure 3, since the collector and base/emitter regions were formed in separate areas on the semiconductor substrate, allowance for alignment using masks had to be taken into account, which increased the size of the transistor. , the capacitance between the collector and the semiconductor substrate also increased.

【0005】[0005]

【発明が解決しようとする課題】従って,高集積化や高
速化の進展に支障が生ずるという問題があった。本発明
は,以上の問題点を鑑み,バイポーラトランジスタの高
集積化,高速化に寄与する方法を得ることを目的として
提供されるものである。
[Problems to be Solved by the Invention] Therefore, there has been a problem in that progress toward higher integration and higher speeds has been hindered. In view of the above-mentioned problems, the present invention is provided for the purpose of providing a method that contributes to higher integration and higher speed of bipolar transistors.

【0006】[0006]

【課題を解決するための手段】図1は本発明の原理説明
図,図4は本発明の第2,第3の実施例の模式構成図で
ある。
[Means for Solving the Problems] FIG. 1 is an explanatory diagram of the principle of the present invention, and FIG. 4 is a schematic diagram of the second and third embodiments of the present invention.

【0007】図において,1は半導体基板,2はフィー
ルド絶縁膜,3はウエル,4は第1の多結晶シリコン(
ポリSi)膜,4Aはベースコンタクト電極, 4Bは
コレクタコンタクト電極, 5は第1の絶縁膜,6は開
口部,7はスルー絶縁膜,8は不純物イオン,9は内部
ベース,10A はサイドウォール絶縁膜, 11A 
はエミッタコンタクト電極, 12はエミッタ, 13
は外部ベース, 14はコレクタコンタクト拡散層, 
15はアルミニウム(Al)電極,36はコレクタ埋没
拡散層, 37はエピタキシャル層, 38は素子分離
層, 39は高融点金属シリサイド膜である。
In the figure, 1 is a semiconductor substrate, 2 is a field insulating film, 3 is a well, and 4 is a first polycrystalline silicon (
4A is a base contact electrode, 4B is a collector contact electrode, 5 is a first insulating film, 6 is an opening, 7 is a through insulating film, 8 is an impurity ion, 9 is an internal base, 10A is a sidewall Insulating film, 11A
is an emitter contact electrode, 12 is an emitter, 13
is an external base, 14 is a collector contact diffusion layer,
15 is an aluminum (Al) electrode, 36 is a collector buried diffusion layer, 37 is an epitaxial layer, 38 is an element isolation layer, and 39 is a high melting point metal silicide film.

【0008】上記の問題点は,1枚のフォトマスクを用
いるのみで,エミッタ・ベース・コレクタをセルフアラ
インで形成することにより解決される。即ち,本発明の
目的は,図1(a)に示すように,フィールド絶縁膜2
により区画された一導電型の半導体基板1内に反対導電
型のウエル3を形成する工程と, 図1(b)に示すよ
うに,該半導体基板1上にポリSi膜4を被覆し, パ
タニングしてベースコンタクト電極 4A の形成予定
領域に一導電型の不純物を, コレクタコンタクト電極
 4B の形成予定領域に反対導電型の不純物をそれぞ
れ導入する工程と, 図1(c)に示すように,該半導
体基板1上に該ポリSi膜4を覆って絶縁膜5を形成す
る工程と, 該絶縁膜5,該ポリSi膜4を順次開口し
て, ベース形成用の開口部6を形成する工程と, 該
開口部6にコレクタコンタクト電極 4B の方向より
, イオン注入法により一導電型の不純物イオン8を斜
め入射して, 該開口部6のベースコンタクト電極4A
側の半導体基板1内に内部ベース9を形成する工程と,
 図1(d)に示すように,該開口部6内に第2の絶縁
膜10を被覆し,異方性エッチングにより, 該開口部
6側壁にサイドウォール絶縁膜10A を形成する工程
と, 該開口部6内に第2のポリSi膜11を埋め込む
でエミッタコンタクト電極11A とする工程と, 該
半導体基板1を熱処理して, 該ポリSi膜4より不純
物を拡散し,エミッタ12, 外部ベース13,及び該
内部ベース9と離間したコレクタコンタクト拡散層14
を形成することにより,あるいは,図4に示すように,
前記半導体基板1内への反対導電型のウエル3の形成に
代わって, 該半導体基板1上に反対導電型のコレクタ
埋没拡散層36を形成し, 該半導体基板1上に反対導
電型のエピタキシャル層37を形成し, しかる後, 
素子分離領域に一導電型不純物の素子分離層38を形成
することにより,さらに,前記第1の多結晶シリコン膜
4の被覆に続いて, 高融点金属シリサイド膜39を積
層することにより達成される。
The above problem can be solved by forming the emitter, base, and collector in a self-aligned manner using only one photomask. That is, the object of the present invention is to form a field insulating film 2 as shown in FIG. 1(a).
As shown in FIG. 1(b), a step of forming a well 3 of an opposite conductivity type in a semiconductor substrate 1 of one conductivity type divided by and introducing impurities of one conductivity type into the region where the base contact electrode 4A is to be formed and impurities of the opposite conductivity type into the region where the collector contact electrode 4B is to be formed. A step of forming an insulating film 5 on the semiconductor substrate 1 to cover the poly-Si film 4, and a step of sequentially opening the insulating film 5 and the poly-Si film 4 to form an opening 6 for forming a base. , Impurity ions 8 of one conductivity type are obliquely injected into the opening 6 from the direction of the collector contact electrode 4B by ion implantation, and the base contact electrode 4A of the opening 6 is formed.
forming an internal base 9 in the side semiconductor substrate 1;
As shown in FIG. 1(d), a step of covering the inside of the opening 6 with a second insulating film 10 and forming a sidewall insulating film 10A on the side wall of the opening 6 by anisotropic etching; A second poly-Si film 11 is buried in the opening 6 to form an emitter contact electrode 11A, and the semiconductor substrate 1 is heat-treated to diffuse impurities from the poly-Si film 4 to form the emitter 12 and the external base 13. , and a collector contact diffusion layer 14 spaced apart from the internal base 9.
Alternatively, as shown in Figure 4,
Instead of forming the well 3 of the opposite conductivity type in the semiconductor substrate 1, a collector buried diffusion layer 36 of the opposite conductivity type is formed on the semiconductor substrate 1, and an epitaxial layer of the opposite conductivity type is formed on the semiconductor substrate 1. Form 37, and then,
This is achieved by forming an element isolation layer 38 of one conductivity type impurity in the element isolation region, and further by laminating a high melting point metal silicide film 39 subsequent to the coating of the first polycrystalline silicon film 4. .

【0009】[0009]

【作用】本発明では,1枚のフォトマスクを用い,斜方
向入射イオン注入法により,コレクタ・ベース・エミッ
タをセルフアラインにより形成できる。
According to the present invention, the collector, base, and emitter can be formed in a self-aligned manner by using one photomask and performing oblique incidence ion implantation.

【0010】また,ベースのイオン注入角度により,セ
ルフアラインでベース引出し電極と内部ベースを接続す
ることができる。
Furthermore, depending on the ion implantation angle of the base, the base extraction electrode and the internal base can be connected in a self-aligned manner.

【0011】[0011]

【実施例】図2,図3は本発明の第1の実施例の工程順
模式断面図,図4は本発明の第2,第3の実施例の模式
構成図である。
Embodiments FIGS. 2 and 3 are schematic cross-sectional views in the order of steps of a first embodiment of the present invention, and FIG. 4 is a schematic structural diagram of second and third embodiments of the present invention.

【0012】図において,16はSi基板, 17はフ
ィールドSiO2膜, 18はnウエル,19は第1の
ポリSi膜,20は第1のフォトレジスト膜, 21は
B+ ,22は第2のフォトレジスト膜,23はP+ 
, 24は第1のSiO2膜,25は第1の開口部,2
6はスルーSiO2膜, 27はB+ , 28は内部
ベース, 29は第2のSiO2膜,30は第2のポリ
Si膜,31はエミッタ, 32は外部ベース, 33
はコレクタコンタクト拡散層, 34は第2の開口部,
35はAl電極である。
In the figure, 16 is a Si substrate, 17 is a field SiO2 film, 18 is an n-well, 19 is a first poly-Si film, 20 is a first photoresist film, 21 is a B+ film, and 22 is a second photoresist film. Resist film, 23 is P+
, 24 is the first SiO2 film, 25 is the first opening, 2
6 is a through SiO2 film, 27 is B+, 28 is an internal base, 29 is a second SiO2 film, 30 is a second poly-Si film, 31 is an emitter, 32 is an external base, 33
is a collector contact diffusion layer, 34 is a second opening,
35 is an Al electrode.

【0013】図2(a)に示すように,p型のSi基板
16上に,図示しない窒化シリコン膜をマスクとして,
選択酸化法により素子分離領域にフィールドSiO2膜
17を6,000 Åの厚さに形成する。
As shown in FIG. 2(a), a silicon nitride film (not shown) is placed on a p-type Si substrate 16 as a mask.
A field SiO2 film 17 with a thickness of 6,000 Å is formed in the element isolation region by selective oxidation.

【0014】続いて, 活性化領域内に, イオン注入
法により, 燐イオン(P+ ) を加速電圧100k
eV, ドーズ量5x1013/cm2の条件で注入し
, 1,100 ℃で60分の活性化アニールを行いn
ウエル18を形成する。
[0014] Next, phosphorus ions (P+) were implanted into the activated region at an accelerating voltage of 100 k.
eV and a dose of 5 x 1013/cm2, and activation annealing was performed at 1,100 °C for 60 minutes.
A well 18 is formed.

【0015】図2(b)に示すように,Si基板16上
に, CVD 法により第1のポリSi膜19を3,0
00 Åの厚さに被覆し, パタニングする。図2(c
)に示すように,第1のポリSi膜19に, 第1のフ
ォトレジスト膜20をマスクとして,イオン注入法によ
り, 硼素イオン(B+ ) を加速電圧30keV,
ドーズ量1x1015/cm2の条件で注入し,ベース
コンタクト電極19A を形成する。18を形成する。
As shown in FIG. 2(b), a first poly-Si film 19 is deposited on the Si substrate 16 in a thickness of 3.0% using the CVD method.
Coat to a thickness of 0.00 Å and pattern. Figure 2(c)
), boron ions (B+) are implanted into the first poly-Si film 19 using the first photoresist film 20 as a mask at an acceleration voltage of 30 keV and an ion implantation method.
The base contact electrode 19A is formed by implanting at a dose of 1.times.10.sup.15/cm.sup.2. form 18.

【0016】図2(d)に示すように,第1のポリSi
膜19に, 第2のフォトレジスト膜22をマスクとし
て,イオン注入法により, 砒素イオン(As + )
 を加速電圧 100keV,ドーズ量1x1015/
cm2の条件で注入し, コレクタコンタクト電極19
B を形成する。
As shown in FIG. 2(d), the first polySi
Arsenic ions (As + ) are injected into the film 19 by ion implantation using the second photoresist film 22 as a mask.
Accelerating voltage 100keV, dose 1x1015/
cm2, and the collector contact electrode 19
Form B.

【0017】図2(e)に示すように,S 基板16上
に第1のSiO2膜24をCVD 法により 5,00
0Åの厚さに被覆する。図2(f)に示すように,該第
1のSiO2膜24,第1のポリSi膜19を順次開口
して, ベース形成用の第1の開口部25を形成する。
As shown in FIG. 2(e), a first SiO2 film 24 is deposited on the S substrate 16 with a film thickness of 5,000 nm by CVD.
Coat to a thickness of 0 Å. As shown in FIG. 2(f), the first SiO2 film 24 and the first poly-Si film 19 are sequentially opened to form a first opening 25 for forming a base.

【0018】図2(g)に示すように,第1の開口部2
5内にスルーSiO2膜26を850 ℃の酸化で,2
00Åの厚さに被覆する。図2(h)に示すように,第
1の開口部25にコレクタコンタクト電極19B の方
向より, イオン注入法により, B + 27を加速
電圧10keV,ドーズ量3x1013/cm2の条件
で80゜の角度で斜め入射して, 第1の開口部25の
ベースコンタクト電極19A 側のSi基板16内に内
部ベース28を形成する。
As shown in FIG. 2(g), the first opening 2
The through SiO2 film 26 is oxidized at 850°C in the
Coat to a thickness of 00 Å. As shown in FIG. 2(h), B + 27 is implanted into the first opening 25 from the direction of the collector contact electrode 19B at an angle of 80° at an acceleration voltage of 10 keV and a dose of 3 x 1013/cm2. The internal base 28 is formed in the Si substrate 16 on the side of the base contact electrode 19A of the first opening 25.

【0019】図3(i)に示すように,Si基板16上
に,CVD法により第2のSiO2膜29を 4,00
0Åの厚さに被覆する。図3(j)に示すように,RI
E による異方性エッチングにより, 第2のSiO2
膜29をドライエッチングして, 第1の開口部25の
側壁にサイドウォール絶縁膜29A を形成する。
As shown in FIG. 3(i), a second SiO2 film 29 is deposited on the Si substrate 16 using the CVD method.
Coat to a thickness of 0 Å. As shown in Figure 3(j), RI
By anisotropic etching with E, the second SiO2
The film 29 is dry etched to form a sidewall insulating film 29A on the sidewall of the first opening 25.

【0020】図3(k)に示すように,Si基板16上
に第2のポリSi膜30をCVD 法により, 1,0
00 Åの厚さに被覆する。図3(l)に示すように,
第2のポリSi膜30をパタニングして,第1の開口部
25を埋めてエミッタコンタクト電極30A を形成す
る。
As shown in FIG. 3(k), a second poly-Si film 30 is deposited on the Si substrate 16 using a CVD method.
Coat to a thickness of 0.00 Å. As shown in Figure 3(l),
The second poly-Si film 30 is patterned to fill the first opening 25 and form an emitter contact electrode 30A.

【0021】図3(m)に示すように,イオン注入法に
より, As+ を加速電圧 40keV, ドーズ量
1x1016/cm2の条件でエミッタコンタクト電極
30A に注入し, 1,100゜C で30秒の活性
化アニールを行い, エミッタ31, 外部ベース32
, コレクタコンタクト拡散層33を形成する。
As shown in FIG. 3(m), As+ was implanted into the emitter contact electrode 30A using an ion implantation method at an acceleration voltage of 40 keV and a dose of 1 x 1016/cm2, and activated at 1,100°C for 30 seconds. The emitter 31 and the external base 32 are annealed.
, forming a collector contact diffusion layer 33.

【0022】図3(n)に示すように,第1のSiO2
膜に電極接続用の第2の開口部34を開口する。図3(
o)に示すように,Si基板16上に, Al膜をスパ
ッタ法により1μmの厚さに被覆し,パタニングしてエ
ミッタ・ベース・コレクタにそれぞれAl電極35を形
成して, バイポーラトランジスタを完成する。
As shown in FIG. 3(n), the first SiO2
A second opening 34 for electrode connection is opened in the membrane. Figure 3 (
As shown in o), an Al film is coated on the Si substrate 16 to a thickness of 1 μm by sputtering and patterned to form Al electrodes 35 on the emitter, base, and collector, respectively, to complete the bipolar transistor. .

【0023】第2の実施例としては,図4に示すように
,前記半導体基板1内への反対導電型のウエル3の形成
に代わって, 半導体基板1上に反対導電型のコレクタ
埋没拡散層15を形成し, 次に,半導体基板1上に反
対導電型のエピタキシャル層16を形成し, しかる後
, 素子分離領域に一導電型不純物の素子分離層17を
形成しても良い。
As a second embodiment, as shown in FIG. 4, instead of forming the well 3 of the opposite conductivity type in the semiconductor substrate 1, a collector buried diffusion layer of the opposite conductivity type is formed on the semiconductor substrate 1. 15 is formed, then an epitaxial layer 16 of the opposite conductivity type is formed on the semiconductor substrate 1, and then an element isolation layer 17 of one conductivity type impurity is formed in the element isolation region.

【0024】また,第3の実施例としては,図4に示す
ように,前記第1のポリSi膜4の被覆に続いて, 高
融点金属シリサイド膜18を積層しても良い。
Further, as a third embodiment, as shown in FIG. 4, a high melting point metal silicide film 18 may be laminated subsequent to the coating with the first poly-Si film 4.

【0025】[0025]

【発明の効果】以上説明したように, 本発明によれば
, 1枚のフォトマスクを用い,斜方向入射イオン注入
法により,コレクタ・ベース・エミッタをセルフアライ
ンにより形成でき,また,ベースのイオン注入角度によ
り,セルフアラインでベース引出し電極と内部ベースを
接続することができるので,バイポーラLSIの高集積
化,高速化に寄与するところが大きい。
[Effects of the Invention] As explained above, according to the present invention, the collector, base, and emitter can be formed by self-alignment by using one photomask and the oblique incidence ion implantation method. Depending on the implantation angle, it is possible to connect the base extraction electrode and the internal base in a self-aligned manner, which greatly contributes to higher integration and higher speed of bipolar LSIs.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】  本発明の原理説明図[Figure 1] Diagram explaining the principle of the present invention

【図2】  本発明の第1の実施例の工程順模式断面図
(その1)
[Fig. 2] Schematic sectional view of the process order of the first embodiment of the present invention (Part 1)

【図3】  本発明の第1の実施例の工程順模式断面図
(その2)
[Fig. 3] Schematic cross-sectional view of the process order of the first embodiment of the present invention (Part 2)

【図4】  本発明の第2,第3の実施例の模式構成図
[Figure 4] Schematic configuration diagram of second and third embodiments of the present invention

【図5】  従来例の説明図[Figure 5] Explanatory diagram of conventional example

【符号の説明】[Explanation of symbols]

1  半導体基板 2  フィールド絶縁膜 3  ウエル 4  ポリSi膜 4A  ベースコンタクト電極 4B  コレクタコンタクト電極 5  第1の絶縁膜 6  開口部 7  スルー絶縁膜 8  不純物イオン 9  内部ベース 10A サイドウォール絶縁膜 11A エミッタコンタクト電極 12  エミッタ 13  外部ベース 14  コレクタコンタクト拡散層 15  Al電極 16  Si基板 17  フィールドSiO2膜 18  nウエル 19  第1のポリSi膜 20  第1のフォトレジスト膜 21  B+  22  第2のフォトレジスト膜 23  P+  24  第1のSiO2膜 25  第1の開口部 26  スルーSiO2膜 27  B+  28  内部ベース 29  第2のSiO2膜 30  第2のポリSi膜 31  エミッタ 32  外部ベース 33  コレクタコンタクト拡散層 34  第2の開口部 35  Al電極である。 36  コレクタ埋没拡散層 37  エピタキシャル層 38  素子分離層 39  高融点金属シリサイド膜 1 Semiconductor substrate 2 Field insulation film 3 Well 4 Poly-Si film 4A base contact electrode 4B Collector contact electrode 5 First insulating film 6 Opening 7 Through insulation film 8 Impurity ions 9 Internal base 10A sidewall insulation film 11A emitter contact electrode 12 Emitter 13 External base 14 Collector contact diffusion layer 15 Al electrode 16 Si substrate 17 Field SiO2 film 18 n-well 19 First poly-Si film 20 First photoresist film 21 B+ 22 Second photoresist film 23 P+ 24 First SiO2 film 25 First opening 26 Through SiO2 film 27 B+ 28 Internal base 29 Second SiO2 film 30 Second poly-Si film 31 Emitter 32 External base 33 Collector contact diffusion layer 34 Second opening 35 Al electrode. 36 Collector buried diffusion layer 37 Epitaxial layer 38 Element isolation layer 39 High melting point metal silicide film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  フィールド絶縁膜(2) により区画
された一導電型の半導体基板(1) 内に反対導電型の
ウエル(3) を形成する工程と, 該半導体基板(1
) 上に第1の多結晶シリコン膜(4)を被覆し, パ
タニングしてベースコンタクト電極(4A)の形成予定
領域に一導電型の不純物を, コレクタコンタクト電極
(4B)の形成予定領域に反対導電型の不純物をそれぞ
れ導入する工程と, 該半導体基板(1) 上に該第1
の多結晶シリコン膜(4) を覆って,第1の絶縁膜(
5) を形成する工程と, 該第1の絶縁膜(5),該
第1の多結晶シリコン膜(4) を順次開口して, ベ
ース形成用の開口部(6) を形成する工程と, 該開
口部(6) にコレクタコンタクト電極(4B)の方向
より, イオン注入法により一導電型の不純物イオン(
8) を斜め入射して, 該開口部(6)のベースコン
タクト電極(4A)側の半導体基板(1) 内に内部ベ
ース(9) を形成する工程と, 該開口部(6) 内
に第2の絶縁膜(10)を被覆し,異方性エッチングに
より, 該開口部(6)側壁にサイドウォール絶縁膜(
10A) を形成する工程と, 該開口部(6) 内に
第2の多結晶シリコン膜(11)を埋め込むでエミッタ
コンタクト電極(11A) とする工程と, 該半導体
基板(1) を熱処理して, 該第1の多結晶シリコン
膜(4) より不純物を拡散し, エミッタ(12),
 外部ベース(13),及び該内部ベース(9) と離
間したコレクタコンタクト拡散層(14)を形成する工
程とを含むことを特徴とする半導体装置の製造方法。
1. A step of forming a well (3) of an opposite conductivity type in a semiconductor substrate (1) of one conductivity type partitioned by a field insulating film (2),
) is coated with a first polycrystalline silicon film (4), and patterned to inject impurities of one conductivity type into the region where the base contact electrode (4A) is planned to be formed, and the impurity of one conductivity type into the region where the collector contact electrode (4B) is planned to be formed. a step of introducing impurities of each conductivity type, and a step of introducing impurities of each conductivity type into the semiconductor substrate (1);
The first insulating film (
5) a step of sequentially opening the first insulating film (5) and the first polycrystalline silicon film (4) to form an opening (6) for forming a base; Impurity ions (of one conductivity type) are implanted into the opening (6) from the direction of the collector contact electrode (4B) by ion implantation
8) forming an internal base (9) in the semiconductor substrate (1) on the base contact electrode (4A) side of the opening (6) by obliquely injecting the internal base (9) into the opening (6); A sidewall insulating film (10) is formed on the side wall of the opening (6) by anisotropic etching.
10A), embedding a second polycrystalline silicon film (11) in the opening (6) to form an emitter contact electrode (11A), and heat-treating the semiconductor substrate (1). , impurities are diffused from the first polycrystalline silicon film (4) to form an emitter (12),
A method of manufacturing a semiconductor device, comprising the step of forming an external base (13) and a collector contact diffusion layer (14) spaced apart from the internal base (9).
【請求項2】  前記半導体基板(1) 内への反対導
電型のウエル(3) の形成に代わって, 該半導体基
板(1) 上に反対導電型のコレクタ埋没拡散層(36
)を形成し, 該半導体基板(1) 上に反対導電型の
エピタキシャル層(37)を形成し, しかる後, 素
子分離領域に一導電型不純物の素子分離層(38)を形
成することを特徴とする請求項1記載の半導体装置の製
造方法。
2. Instead of forming a well (3) of an opposite conductivity type in the semiconductor substrate (1), a collector buried diffusion layer (36) of an opposite conductivity type is formed on the semiconductor substrate (1).
), forming an epitaxial layer (37) of opposite conductivity type on the semiconductor substrate (1), and then forming an element isolation layer (38) of one conductivity type impurity in the element isolation region. 2. The method of manufacturing a semiconductor device according to claim 1.
【請求項3】  前記第1の多結晶シリコン膜(4) 
の被覆に続いて, 高融点金属シリサイド膜(39)を
積層することを特徴とする請求項1記載の半導体装置の
製造方法。
3. The first polycrystalline silicon film (4)
2. The method of manufacturing a semiconductor device according to claim 1, further comprising laminating a high melting point metal silicide film (39) subsequent to the coating.
JP2175491A 1991-02-15 1991-02-15 Manufacture of semiconductor device Withdrawn JPH04260331A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2175491A JPH04260331A (en) 1991-02-15 1991-02-15 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2175491A JPH04260331A (en) 1991-02-15 1991-02-15 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPH04260331A true JPH04260331A (en) 1992-09-16

Family

ID=12063851

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2175491A Withdrawn JPH04260331A (en) 1991-02-15 1991-02-15 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPH04260331A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024766A1 (en) * 1995-12-05 1997-07-10 National Semiconductor Corporation Use of oblique implantation in forming emitter of bipolar transistor
US10421513B2 (en) 2015-05-29 2019-09-24 Selle Royal S.P.A. Saddle for a vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997024766A1 (en) * 1995-12-05 1997-07-10 National Semiconductor Corporation Use of oblique implantation in forming emitter of bipolar transistor
US10421513B2 (en) 2015-05-29 2019-09-24 Selle Royal S.P.A. Saddle for a vehicle

Similar Documents

Publication Publication Date Title
JPH0348457A (en) Semiconductor device and manufacture thereof
JP2509690B2 (en) Semiconductor device
US5731240A (en) Manufacturing method for semiconductor depositing device
JP2730535B2 (en) Method for manufacturing semiconductor device
JPH098135A (en) Manufacture of semiconductor device
JPS6360549B2 (en)
JPH021173A (en) Mis field-effect transistor
JPH04260331A (en) Manufacture of semiconductor device
JPH0423329A (en) Manufacture of semiconductor device
JP2890550B2 (en) Method for manufacturing semiconductor device
JPS6142171A (en) Manufacture of nonvolatile semiconductor memory device
JP3700210B2 (en) Manufacturing method of semiconductor device
KR950010878B1 (en) Bipolar transistor manufacturing process
JP2517380B2 (en) Method for manufacturing semiconductor integrated circuit
JPH05235029A (en) Manufacturing method of semiconductor device
JPH04360539A (en) Manufacture of semiconductor device
JPS6155783B2 (en)
JPH0474438A (en) Manufacture of semiconductor device
JPS59124767A (en) Manufacture of semiconductor-integrated circuit device
JPH027441A (en) Manufacture of semiconductor device
JPH0290536A (en) Manufacture of semiconductor device
JPH053210A (en) Manufacture of semiconductor device
JPH0992658A (en) Semiconductor device, and manufacturing method
JPH04330775A (en) Manufacture of bicmos semiconductor integrated device
JPS63144575A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514