JPS63144575A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPS63144575A
JPS63144575A JP29145786A JP29145786A JPS63144575A JP S63144575 A JPS63144575 A JP S63144575A JP 29145786 A JP29145786 A JP 29145786A JP 29145786 A JP29145786 A JP 29145786A JP S63144575 A JPS63144575 A JP S63144575A
Authority
JP
Japan
Prior art keywords
regions
film
source
drain regions
oxide film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP29145786A
Other languages
Japanese (ja)
Inventor
Minoru Kimura
実 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP29145786A priority Critical patent/JPS63144575A/en
Publication of JPS63144575A publication Critical patent/JPS63144575A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0642Isolation within the component, i.e. internal isolation
    • H01L29/0649Dielectric regions, e.g. SiO2 regions, air gaps
    • H01L29/0653Dielectric regions, e.g. SiO2 regions, air gaps adjoining the input or output region of a field-effect device, e.g. the source or drain region

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)

Abstract

PURPOSE:To prevent the deterioration of electrical characteristics due to a short channel effect by implanting oxygen ions into the formation prearranged regions of source-drain regions, activating oxygen ions through heat treatment and easily forming insulating films to one parts of the regions in arbitrary depth. CONSTITUTION:A field oxide film 2 is shaped to an silicon substrate 1, a gate oxide film 3 is formed onto the surface of an insular substrate region isolated by the field oxide film through thermal oxidation, a gate-electrode material film such as a polycrystalline silicon film is deposited onto the whole surface, and the polycrystalline silicon film is patterned and a gate electrode 4 is shaped selectively onto the gate oxide film. Oxygen ions as an impurity are implanted only into regions as source-drain regions. A photo-resist film 5 is used as a mask. The photo-resist film 5 is removed, oxygen ions are further activated through heat treatment, and first insulating films 6 are formed to one parts of regions as the source-drain regions.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は半導体装置の製造方法に関する。[Detailed description of the invention] [Purpose of the invention] (Industrial application field) The present invention relates to a method for manufacturing a semiconductor device.

(従来の技術) 従来、半導体装置は例えば次のようにして製造されてい
る。p型の半導体基板に素子分離領域を形成すると共に
、該素子分離領域で分離された島状の素子領域を形成す
る。つづいて素子領域にゲート酸化膜を介してゲート電
極を形成し、更にn型のソース●ドレイン領域を形成し
た後、全面に第1の絶縁膜として、CVD−Sin,膜
を堆積し、更に第2の絶縁膜としてBPSG膜(ボロン
嗜リンシリケートガラス)を順次堆積する。そして、選
択的1c CVD−S i O, g、BPSG Mj
C :l :/ 9 クト;h −ルを開孔し、AAl
[を蒸着した後バターニングして、コンタクトホールを
介して前記ソース●ドレイン領域等に接続し、M配線を
形成し、MOS型半導体装置を製造する。
(Prior Art) Conventionally, semiconductor devices have been manufactured, for example, in the following manner. An element isolation region is formed in a p-type semiconductor substrate, and island-shaped element regions separated by the element isolation region are formed. Next, a gate electrode is formed in the element region via a gate oxide film, and an n-type source/drain region is formed, and then a CVD-Sin film is deposited on the entire surface as a first insulating film, and then a second insulating film is deposited on the entire surface. As the second insulating film, BPSG films (boron phosphorus silicate glass) are sequentially deposited. and selective 1c CVD-S i O, g, BPSG Mj
C:l:/9 Cut;h - hole is drilled and AAl
[After being vapor-deposited, it is patterned and connected to the source and drain regions etc. through contact holes to form M wiring, thereby manufacturing a MOS type semiconductor device.

しかしながら、上述した従来の技術においては素子の高
速化・大規模化の要求から素子の微細化を進めると、い
わゆる短チヤネル効果が発生して電気的特性の劣化をも
たらす、即ち高速化により配線抵抗やソース・ドレイン
領域の抵抗を大きくすることができないためソース・ド
レイン領域形成のための不純−添加は極端に低濃度にで
きない、したがって拡散層の深さが深くなり、必然的に
横方向への拡散が進み、実効チャネル長が減少し、いわ
ゆる短チヤネル効果が発生してしまう。
However, in the above-mentioned conventional technology, when elements are made smaller due to demands for higher speeds and larger scale elements, a so-called short channel effect occurs, resulting in deterioration of electrical characteristics. Since it is not possible to increase the resistance of the source/drain regions, the impurity doping for forming the source/drain regions cannot be made at an extremely low concentration. Therefore, the depth of the diffusion layer becomes deep, which inevitably causes lateral damage. As the diffusion progresses, the effective channel length decreases, resulting in the so-called short channel effect.

また、低抵抗にして拡散深さを浅くすると、電極取り出
し用AJ配線を形成した後、いわゆるつき抜は現象が発
生し、接合が破壊され素子のリーク電流が増大し、特性
上重大な影響を引き起こしてし才う。
In addition, if the resistance is low and the diffusion depth is shallow, a so-called punch-through phenomenon will occur after forming the AJ wiring for taking out the electrode, which will destroy the junction and increase the leakage current of the element, which will have a serious effect on the characteristics. I'm good at causing it.

(発明が解決しようとする問題点) 本発明は上記事情に鑑みてなされたもので、高速化、高
集積度化の要求から素子の微細化が進められた場合、短
チヤネル効果による電気的特性の劣化を防止し且・つ、
素子の信頼性を向上させることができる半導体装置の製
造方法を提供することを目的とするものである。
(Problems to be Solved by the Invention) The present invention has been made in view of the above-mentioned circumstances.When the miniaturization of elements is advanced due to the demand for higher speed and higher integration, the electrical characteristics due to the short channel effect To prevent the deterioration of the
It is an object of the present invention to provide a method for manufacturing a semiconductor device that can improve the reliability of the device.

〔発明の構成〕[Structure of the invention]

(問題点を解決するための手段) 本発明は、ソース・ドレイン領域の形成予定領域に酸素
をイオン注入し、その後熱処理により活性化し、この領
域の一部に絶縁膜を任意の深さに容易に形成するもので
ある。
(Means for Solving the Problems) The present invention involves implanting oxygen ions into regions where source/drain regions are to be formed, then activating them by heat treatment, and easily forming an insulating film in a part of this region to an arbitrary depth. It is to be formed.

(作用) 本発明による半導体装置の製造方法によれば、微細化さ
れた素子の電気的特性の劣化を防止し且つ信頼性が向上
された半導体装置を簡単な工程で製造できる。
(Function) According to the method for manufacturing a semiconductor device according to the present invention, it is possible to prevent deterioration of the electrical characteristics of a miniaturized element and to manufacture a semiconductor device with improved reliability through a simple process.

(実施例) 次に本発明をnチャネルMOSトランジスタの製造に適
用した例について、第1図へ第5図を参照して説明する
(Example) Next, an example in which the present invention is applied to the manufacture of an n-channel MOS transistor will be described with reference to FIGS. 1 and 5.

まず、P型シリコン基板(1)にフィールド酸化膜(2
)を形成し、このフィールド酸化膜で分離された島状の
基板領域表面に熱酸化によりゲート酸化膜(3)を形成
した後、全面にゲート電極材料膜、例えば多結晶シリコ
ン膜を堆積し、これをバターニングして前記ゲート酸化
膜上にゲート電極(4)を選択的に形成した(第1図)
。次いで、ソース・ドレイン領域となる領域のみに酸素
不純物をイオン注入する。マスクとしてフォトレジスト
膜(5)を用いる。その注入条件として加速エネルギー
は10kev〜100keV 、 V−ス量はI X 
1018/m以上任意に設定すれば良い。次いでフォト
レジスl’Nf5)を除去後、高温熱処理を行ない更に
活性化し、ソース・ドレイン領域となる領域の一部に第
1の絶縁膜(6)を形成する(第2図)。
First, a field oxide film (2) is placed on a P-type silicon substrate (1).
), and after forming a gate oxide film (3) by thermal oxidation on the surface of the island-shaped substrate region separated by this field oxide film, a gate electrode material film, such as a polycrystalline silicon film, is deposited on the entire surface, This was patterned to selectively form a gate electrode (4) on the gate oxide film (Figure 1).
. Next, oxygen impurity ions are implanted only into regions that will become source and drain regions. A photoresist film (5) is used as a mask. The conditions for the implantation are that the acceleration energy is 10keV to 100keV, and the amount of V-s is I
It may be set arbitrarily to 1018/m or more. Next, after removing the photoresist l'Nf5), high-temperature heat treatment is performed to further activate it, and a first insulating film (6) is formed in a part of the region that will become the source/drain region (FIG. 2).

つづいてゲート電極及びフィールド酸化膜をマスクとし
てn型不純物、例えば砒素を島状の基板領域にイオン注
入し、その後の熱処理により活性化し、LDD法を用い
n型のソース・ドレイン領域(71(81を形成する(
第3図)。これは例えばCVD5in、膜(9)を全面
堆積後、これを全面几IEによってゲート側壁に自己整
合的に残置し、燐又は砒素を基板にイオン注入して形成
する。
Next, using the gate electrode and field oxide film as a mask, n-type impurities, such as arsenic, are ion-implanted into the island-shaped substrate region, activated by subsequent heat treatment, and using the LDD method, n-type source/drain regions (71 (81) form (
Figure 3). This is formed, for example, by depositing a 5-inch CVD film (9) over the entire surface, leaving it on the gate sidewall in a self-aligned manner by IE over the entire surface, and implanting phosphorus or arsenic ions into the substrate.

ひきつづき全面に厚さ3000λのCVD−8in、膜
及び厚さ7000AのHP SG膜(9)αQを順次堆
積して、2層構造の第2絶縁膜を形成する(第4図)。
Subsequently, a CVD-8 inch film with a thickness of 3000λ and an HPSG film (9) αQ with a thickness of 7000A are sequentially deposited on the entire surface to form a second insulating film with a two-layer structure (FIG. 4).

次いでソース・ドレイン領域の一部に対応する第2の絶
縁膜及びゲート酸化膜を選択的にエツチングしてコンタ
クトホールを形成し、そして全面にAノー87を蒸着し
、バターニングして前記ソース・ドレイン領域にコンタ
クトホールを介して接続するソース・ドレイン電極を形
成し、nチャネル型のWSトランジスタを製造する(第
5図)。
Next, the second insulating film and the gate oxide film corresponding to part of the source/drain region are selectively etched to form a contact hole, and A-no-87 is deposited on the entire surface and patterned to form the source/drain region. Source/drain electrodes connected to the drain region via contact holes are formed to manufacture an n-channel type WS transistor (FIG. 5).

〔発明の効果〕〔Effect of the invention〕

このようにこの半導体装置の製造方法によればソース・
ドレイン領域下に@縁膜層が設けられているため、浅い
拡散層を形成を容易に形成することができ、且つAlの
つき抜は現象を完全に防止することができた。
In this way, according to this semiconductor device manufacturing method, the source
Since the @edge film layer was provided under the drain region, a shallow diffusion layer could be easily formed, and the phenomenon of Al penetration could be completely prevented.

本発明方法はnチャネルMOSトランジスタの製造のみ
に限らず、PチャネルMO8トランジスタ。
The method of the present invention is not limited to manufacturing only n-channel MOS transistors, but also P-channel MO8 transistors.

0MO8構造の製造にも同様に適用できる。It can be similarly applied to the production of 0MO8 structures.

以上説明したように、本発明によれば素子の信照性を高
めることができた。
As explained above, according to the present invention, the reliability of the device can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図、第3図、第4図及び第5図は本発明の
一実施例に係わるnチャネルMO8型トランジスタの製
造方法を工程順に示す断面図である。 図において、 1・・・p型シリコン膜、2・・・フィールド酸化膜、
3・・・ゲート酸化膜、4・・ゲート電極、5・・・フ
ォトレジスト膜、6・・・第一絶縁膜、7・・・n型ソ
ース領域、B −・−n型トレーン領域、9 ・・・C
VD−8io、膜、10・・・HP8G膜、11・・・
i配線、12・・・A/とSiの合金属。
FIGS. 1, 2, 3, 4, and 5 are cross-sectional views showing a method of manufacturing an n-channel MO8 type transistor according to an embodiment of the present invention in order of steps. In the figure, 1... p-type silicon film, 2... field oxide film,
3... Gate oxide film, 4... Gate electrode, 5... Photoresist film, 6... First insulating film, 7... N-type source region, B--n-type train region, 9 ...C
VD-8io, membrane, 10...HP8G membrane, 11...
i wiring, 12... alloy metal of A/ and Si.

Claims (3)

【特許請求の範囲】[Claims] (1)半導体基板の素子領域にゲート絶縁膜を介してゲ
ート電極を選択的に形成する工程と、後の工程でソース
、ドレイン領域となる領域のみに所望のピーク値を持つ
ように酸素を添加する工程と、ソース、ドレイン領域を
形成する工程と、全面に絶縁膜を堆積し、コンタクトホ
ールを形成する工程と、ソース、ドレイン領域とコンタ
クトホールを介して接続する取り出し金属配線を形成す
る工程とを具備したことを特徴とする半導体装置の製造
方法。
(1) A process of selectively forming a gate electrode in the element region of a semiconductor substrate via a gate insulating film, and adding oxygen to only the regions that will become source and drain regions in a later step so as to have a desired peak value. a step of forming source and drain regions; a step of depositing an insulating film over the entire surface and forming contact holes; and a step of forming lead-out metal wiring connected to the source and drain regions via the contact holes. A method for manufacturing a semiconductor device, comprising:
(2)酸素を添加する方法としてイオン注入法を用いる
ことを特徴とする、前記特許請求の範囲第1項記載の半
導体装置の製造方法。
(2) The method for manufacturing a semiconductor device according to claim 1, characterized in that an ion implantation method is used as the method for adding oxygen.
(3)イオン注入の方法として、酸素イオンを1×10
^1^8/cm^3以上のドーズ量でイオン注入するこ
とを特徴とする前記特許請求の範囲第2項記載の半導体
装置の製造方法。
(3) As an ion implantation method, oxygen ions were added at 1×10
3. The method of manufacturing a semiconductor device according to claim 2, wherein ions are implanted at a dose of ^1^8/cm^3 or more.
JP29145786A 1986-12-09 1986-12-09 Manufacture of semiconductor device Pending JPS63144575A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29145786A JPS63144575A (en) 1986-12-09 1986-12-09 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29145786A JPS63144575A (en) 1986-12-09 1986-12-09 Manufacture of semiconductor device

Publications (1)

Publication Number Publication Date
JPS63144575A true JPS63144575A (en) 1988-06-16

Family

ID=17769115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29145786A Pending JPS63144575A (en) 1986-12-09 1986-12-09 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63144575A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489586B1 (en) * 1997-12-30 2005-09-06 주식회사 하이닉스반도체 Method of forming junction part of semiconductor device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100489586B1 (en) * 1997-12-30 2005-09-06 주식회사 하이닉스반도체 Method of forming junction part of semiconductor device

Similar Documents

Publication Publication Date Title
JPH0426542B2 (en)
JPS61179567A (en) Manufacture of self-aligning laminated cmos structure
JP2509690B2 (en) Semiconductor device
JPS6360549B2 (en)
JPH09306862A (en) Manufacturing semiconductor device
JPS63144575A (en) Manufacture of semiconductor device
JPS61154172A (en) Manufacture of semiconductor device
JPH0127589B2 (en)
JP3038857B2 (en) Method for manufacturing semiconductor device
JPS6074663A (en) Manufacture of complementary type semiconductor device
JP2953915B2 (en) Semiconductor integrated circuit device and method of manufacturing the same
JPS6156448A (en) Manufacture of complementary semiconductor device
JP3108927B2 (en) Method for manufacturing semiconductor device
JPS6154661A (en) Manufacture of semiconductor device
JPH07193235A (en) Semiconductor device and its manufacture
JP3848782B2 (en) Manufacturing method of semiconductor device
JPS61139057A (en) Manufacture of semiconductor integrated circuit device
JPH0734453B2 (en) Method for manufacturing semiconductor integrated circuit device
JP2000114393A (en) Manufacture of semiconductor device
JPH0964361A (en) Manufacture of semiconductor device
JPH04139834A (en) Manufacture of semiconductor device
JPH10189952A (en) Semiconductor device and manufacture thereof
JPH11238874A (en) Manufacture of semiconductor integrated circuit device
JPH05243566A (en) Manufacture of semiconductor device
JPH03222435A (en) Manufacture of semiconductor device