JPH0127589B2 - - Google Patents

Info

Publication number
JPH0127589B2
JPH0127589B2 JP53147605A JP14760578A JPH0127589B2 JP H0127589 B2 JPH0127589 B2 JP H0127589B2 JP 53147605 A JP53147605 A JP 53147605A JP 14760578 A JP14760578 A JP 14760578A JP H0127589 B2 JPH0127589 B2 JP H0127589B2
Authority
JP
Japan
Prior art keywords
polycrystalline silicon
contact hole
gate electrode
source
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP53147605A
Other languages
Japanese (ja)
Other versions
JPS5574175A (en
Inventor
Ikuo Kawamata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP14760578A priority Critical patent/JPS5574175A/en
Publication of JPS5574175A publication Critical patent/JPS5574175A/en
Publication of JPH0127589B2 publication Critical patent/JPH0127589B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors

Description

【発明の詳細な説明】 本発明は半導体装置の製造方法にかかり、特に
相補型半導体装置の浅い拡散層と、配線金属との
間に、半導体層たとえば多結晶シリコン層を挾ん
でなる相補型MOS半導体装置の製造方法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION The present invention relates to a method for manufacturing a semiconductor device, and particularly to a complementary MOS device in which a semiconductor layer, such as a polycrystalline silicon layer, is sandwiched between a shallow diffusion layer of a complementary semiconductor device and a wiring metal. The present invention relates to a method for manufacturing a semiconductor device.

従来、配線材料としてアルミニウムを使用する
場合には、第1図に示す如く、拡散層5及び6と
アルミニウム配線1とは酸化膜9に開孔したコン
タクト孔内を通して直接接触していた。この場合
アルミニウム配線1と拡散層5及び6の電気的接
触を良くするため400℃〜500℃の温度で熱処理さ
れるのが普通で以下この熱処理をアロイと呼ぶこ
とにする。従来技術による構造ではアロイにより
基板のシリコンが配線用アルミニウム中に拡散す
ると同時に、こ配線用アルミニウムが基板のシリ
コン中にも拡散し、シリコンとアルミニウムの熱
合金反応物が形成される。この熱合金反応物はア
ロイスパイクと呼ばれ、コンタクト部より接合付
近に向かい反応が進む。アロイスパイクはアロイ
時間と共に深くなり、ついにはP―N接合リーク
および接合の破壊という劣化現象を引き起こす欠
点を有していた。相補型MOS半導体装置からな
る集積回路の高集積化に伴い、近年素子寸法の縮
小化と拡散層深さが0.5μm以下のシヤロウ化が要
求されているが、従来のプロセスでは前述のよう
な欠点を有するため拡散層深さは0.5μm以下には
出来ず、相補型MOS半導体装置からなる集積回
路の高集積化に制限を加えている。
Conventionally, when aluminum is used as a wiring material, diffusion layers 5 and 6 and aluminum wiring 1 are in direct contact through contact holes formed in oxide film 9, as shown in FIG. In this case, in order to improve electrical contact between the aluminum wiring 1 and the diffusion layers 5 and 6, heat treatment is usually performed at a temperature of 400°C to 500°C, and this heat treatment will hereinafter be referred to as alloying. In the prior art structure, the alloy causes the silicon of the substrate to diffuse into the aluminum for wiring, and at the same time, the aluminum for wiring also diffuses into the silicon of the substrate, forming a thermal alloy reaction product of silicon and aluminum. This thermal alloy reactant is called an alloy spike, and the reaction progresses from the contact area toward the vicinity of the bond. Alloy spikes have the drawback of becoming deeper with the time of alloying and eventually causing deterioration phenomena such as PN junction leakage and junction breakdown. With the increasing integration of integrated circuits made of complementary MOS semiconductor devices, in recent years there has been a demand for smaller device dimensions and shallower diffusion layers of 0.5 μm or less, but conventional processes have the drawbacks mentioned above. Therefore, the depth of the diffusion layer cannot be reduced to less than 0.5 μm, which limits the high integration of integrated circuits made of complementary MOS semiconductor devices.

本発明は上述の欠点を除去し、相補型MOS半
導体装置からなる集積回路の高集積化を可能にす
る新規な相補型MOS半導体装置の製造方法を提
供するものである。
The present invention provides a novel method for manufacturing a complementary MOS semiconductor device that eliminates the above-mentioned drawbacks and enables high integration of integrated circuits made of complementary MOS semiconductor devices.

本発明による半導体装置の製造方法は、一導電
型のシリコン基板に逆導電型のウエル領域を形成
する工程と、第1チヤンネル型の第1絶縁ゲート
電界効果トランジスタのための第1多結晶シリコ
ンゲート電極を前記シリコン基板上に、第2チヤ
ンネル型の第2絶縁ゲート電界効果トランジスタ
のための第2多結晶シリコンゲート電極を前記ウ
エル領域上に、それぞれゲート絶縁膜を介して形
成する工程と、前記第1多結晶シリコンゲート電
極をマスクにして前記シリコン基板に前記逆導電
型の第1ソース・ドレイン領域を形成する工程
と、前記第2多結晶シリコンゲート電極をマスク
にして前記ウエル領域に前記一導電型の第2ソー
ス・ドレイン領域を形成する工程と、前記第1お
よび第2多結晶シリコンゲート電極の表面ならび
に前記シリコン基板および前記ウエル領域の表面
を絶縁層で覆う工程と、前記絶縁層に第1乃至第
4コンタクト穴を形成して、前記第1多結晶シリ
コンゲート電極の一部を前記第1コンクタト穴に
よつて露出させ、前記第1ソース・ドレイン領域
の一部を前記第2コンタクト穴によつて露出さ
せ、前記第2多結晶シリコンゲート電極の一部を
前記第3コンタクト穴によつて露出させ、前記第
2ソース・ドレイン領域の一部を前記第4コンタ
クト穴によつて露出させる工程と、前記逆導電型
の不純物を前記第1コンタクト穴を介して前記第
1多結晶シリコンゲート電極にイオン注入すると
ともに前記第2コンタクト穴を介して前記第1ソ
ース・ドレイン領域よりも浅くイオン注入する工
程と、前記一導電型の不純物を前記第3コンタク
ト穴を介して前記第2多結晶シリコンゲート電極
にイオン注入するとともに前記第4コンタクト穴
を介して前記第2ソース・ドレイン領域よりも浅
くイオン注入する工程と、その後、不純物が添加
されていない多結晶シリコン層を各コンタクト穴
に形成する工程と、前記多結晶シリコン層上にア
ルミニウムを形成し熱処理する工程とを備えてい
る。
A method for manufacturing a semiconductor device according to the present invention includes the steps of forming a well region of an opposite conductivity type in a silicon substrate of one conductivity type, and forming a first polycrystalline silicon gate for a first channel type first insulated gate field effect transistor. forming an electrode on the silicon substrate and a second polycrystalline silicon gate electrode for a second channel type second insulated gate field effect transistor on the well region through a gate insulating film; forming the first source/drain regions of opposite conductivity type in the silicon substrate using the first polycrystalline silicon gate electrode as a mask; forming a conductive type second source/drain region; covering the surfaces of the first and second polycrystalline silicon gate electrodes and the surfaces of the silicon substrate and the well region with an insulating layer; forming first to fourth contact holes, exposing a portion of the first polycrystalline silicon gate electrode through the first contact hole, and exposing a portion of the first source/drain region to the second contact hole; a portion of the second polycrystalline silicon gate electrode is exposed through the third contact hole; and a portion of the second source/drain region is exposed through the fourth contact hole. ion-implanting the impurity of the opposite conductivity type into the first polycrystalline silicon gate electrode through the first contact hole, and implanting the impurity into the first source/drain region shallower than the first source/drain region through the second contact hole. ion-implanting the impurity of one conductivity type into the second polycrystalline silicon gate electrode through the third contact hole and from the second source/drain region through the fourth contact hole; The method also includes a step of shallowly implanting ions, a step of forming a polycrystalline silicon layer to which no impurity is added in each contact hole, and a step of forming aluminum on the polycrystalline silicon layer and heat-treating it.

以下本発明の一実施例を、従来技術と比較しな
がら、図面を用いて詳しく説明する。第2図に示
すように、本発明に基くコンタクト部の配線はノ
ンドープの多結晶シリコン11と、アルミニウム
配線1の二層構造となつている。従つてアロイに
よつて、アルミニウム中へのシリコンの拡散現象
は起こるが、拡散するシリコンが、ノンドープの
多結晶シリコン11より供給されるため、シリコ
ン基板3の拡散層5及び6は、この現象とは全く
無関係となり、良好なP―N接合の特性が保たれ
る。また、このコンタクト孔の部分を拡大した第
3図a及び第3図bに示すように、従来の技術に
よれば開孔されたコンタクト孔部15が拡散層5
又は6からズレている時にはアルミニウム配線1
がP―N接合を短絡してしまい、良好なP―N接
合を得ることができない。しかし、第4図a及び
第4図bに示すように、本発明によれば、開孔さ
れたコンタクト孔部15が拡散層5又は6からズ
レていてもコンタクト孔の下のシリコン基板3に
は、あらかじめ、イオン注入により形成された拡
散層5a又は6aが形成されているため、上述の
ような短絡事故はなく、良好なP―N接合を得る
ことが出来る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings while comparing it with the prior art. As shown in FIG. 2, the contact wiring according to the present invention has a two-layer structure of non-doped polycrystalline silicon 11 and aluminum wiring 1. As shown in FIG. Therefore, although the diffusion phenomenon of silicon into aluminum occurs due to the alloy, since the diffused silicon is supplied from the non-doped polycrystalline silicon 11, the diffusion layers 5 and 6 of the silicon substrate 3 are free from this phenomenon. becomes completely unrelated, and good PN junction characteristics are maintained. Further, as shown in FIGS. 3a and 3b, which are enlarged views of the contact hole, according to the conventional technique, the opened contact hole 15 is connected to the diffusion layer 5.
Or if it deviates from 6, aluminum wiring 1
will short-circuit the PN junction, making it impossible to obtain a good PN junction. However, as shown in FIGS. 4a and 4b, according to the present invention, even if the opened contact hole 15 is displaced from the diffusion layer 5 or 6, the silicon substrate 3 under the contact hole Since the diffusion layer 5a or 6a is formed in advance by ion implantation, there is no short-circuit accident as described above, and a good PN junction can be obtained.

つぎに第5図乃至第18図を用いて、本発明の
新規な相補型MOS半導体装置の製造方法の一実
施例について順次説明する。まず従来の製造方法
に従い、第5図に示すようにN型シリコン基板3
の表面に、熱酸化法などにより二酸化シリコン9
を設け、Pウエルを形成すべき部分を写真蝕刻法
により選択エツチングし、その後熱拡散法又はイ
オン注入法を用いて第6図に示すようにホウ素を
デポジツト、ドライブインし、Pウエル4を形成
する。次に第7図に示すように素子を形成すべき
部分の二酸化シリコンを写真蝕刻法により選択エ
ツチングした後、第8図に示すように熱酸化法に
よりゲート酸化膜10を形成する。その後気相成
長法などにより、多結晶シリコン12を被着す
る。その後、第9図に示すように、多結晶シリコ
ン12をゲート部分7と8を残し、写真蝕刻法に
より、選択エツチングした後、第10図に示すよ
うに、CVD法などにより、シリコン窒化膜13
を、N型不純物領域の拡散層を形成する際にマス
クとなるだけの厚さを有する層となるように、全
面に被着し、写真蝕刻法により、N型不純物領域
となる部分を選択的にエツチングする。しかる
後、第11図に示すように、N型不純物領域のソ
ース及びドレイン用拡散層5を、熱拡散法又はイ
オン注入法により形成する。この時、N型不純物
領域の多結晶ポリシリ8にもN型不純物が拡散さ
れる。その後、第12図に示すように、P型不純
物領域となる部分に被着したシリコン窒化膜13
を選択的にエツチングする。その後第13図に示
すように、P型不純物領域30にP型の不純物を
熱拡散法又はイオン注入法によりソース・ドレイ
ン用拡散層6を形成する。この時、P型不純物
は、P型不純物領域の多結晶シリコン7にも拡散
される。その後、第14図に示すように所定の位
置にコンタクト孔を開孔した後、フオトレジスト
などによりN型不純物領域31の表面をマスキン
グすることにより、P型不純物領域30のコンタ
クト孔部分にP型不純物を矢印20で示したよう
に、イオン注入し、P型不純物領域30のコンタ
クト孔下のシリコン基板にP型拡散層6aを設け
る。その後、N型不純物領域31の表面をマスキ
ングしていたフオトレジストを剥離した後、P型
不純物領域30の表面をフオトレジストなどによ
りマスキングすることにより、N型不純物領域3
1のコンタクト孔部分にN型不純物を矢印21で
示したようにイオン注入し、N型不純物領域31
のコンタクト孔下のシリコン基板にN型拡散層5
aを設け、N型不純物領域31の表面をマスキン
グしていたフオトレジストを剥離する。その後第
15図に示すように、気相成長法などにより、全
面におよそ500Å〜3000Åの多結晶シリコン11
を被着した後第16図に示すように、該多結晶シ
リコン11の上に真空蒸着法などにより配線用ア
ルミニウム14を被着する。その後、第17図に
示すように、写真蝕刻工程により所定の配線1及
び2を形成し、第18図に示すように、該配線金
属1及び2をマスクとして該多結晶シリコン11
を選択的に除去し、電気的接触を良くするための
熱処理を施す。かくして、相補型MOS半導体装
置が得られる。このように本発明による相補型
MOS半導体装置の製造方法を用いることにより、
前述のような長所を有する相補型MOS半導体装
置を得ることが出来る。
Next, one embodiment of the method for manufacturing a novel complementary MOS semiconductor device of the present invention will be sequentially described using FIGS. 5 to 18. First, according to the conventional manufacturing method, as shown in FIG.
Silicon dioxide 9 is applied to the surface by thermal oxidation method etc.
The part where the P well is to be formed is selectively etched by photolithography, and then boron is deposited and driven in using the thermal diffusion method or ion implantation method as shown in FIG. 6 to form the P well 4. do. Next, as shown in FIG. 7, the silicon dioxide in the area where the device is to be formed is selectively etched by photolithography, and then, as shown in FIG. 8, a gate oxide film 10 is formed by thermal oxidation. Thereafter, polycrystalline silicon 12 is deposited by vapor phase growth or the like. Thereafter, as shown in FIG. 9, the polycrystalline silicon 12 is selectively etched by photolithography, leaving only the gate portions 7 and 8. As shown in FIG. 10, the silicon nitride film 13 is etched by CVD or the like.
is deposited on the entire surface so that it becomes a layer thick enough to serve as a mask when forming the diffusion layer of the N-type impurity region, and the portion that will become the N-type impurity region is selectively etched using photolithography. Etching. Thereafter, as shown in FIG. 11, source and drain diffusion layers 5 for N-type impurity regions are formed by thermal diffusion or ion implantation. At this time, the N-type impurity is also diffused into the polycrystalline polysilicon 8 in the N-type impurity region. Thereafter, as shown in FIG.
selectively etched. Thereafter, as shown in FIG. 13, source/drain diffusion layers 6 are formed with P-type impurities in the P-type impurity region 30 by thermal diffusion or ion implantation. At this time, the P-type impurity is also diffused into the polycrystalline silicon 7 in the P-type impurity region. After that, as shown in FIG. 14, after forming a contact hole at a predetermined position, the surface of the N-type impurity region 31 is masked with a photoresist or the like, so that the contact hole portion of the P-type impurity region 30 is formed into a P-type. Impurity ions are implanted as indicated by arrows 20 to provide a P-type diffusion layer 6a in the silicon substrate below the contact hole of the P-type impurity region 30. Thereafter, after peeling off the photoresist masking the surface of the N-type impurity region 31, the surface of the P-type impurity region 30 is masked with a photoresist or the like.
N-type impurity ions are implanted into the contact hole portion of No. 1 in the direction indicated by the arrow 21, and the N-type impurity region 31 is
An N-type diffusion layer 5 is formed on the silicon substrate under the contact hole.
A is provided, and the photoresist masking the surface of the N-type impurity region 31 is peeled off. Thereafter, as shown in FIG. 15, polycrystalline silicon 11 with a thickness of about 500 Å to 3000 Å is grown over the entire surface by vapor phase growth or the like.
After this, as shown in FIG. 16, wiring aluminum 14 is deposited on the polycrystalline silicon 11 by vacuum evaporation or the like. Thereafter, as shown in FIG. 17, predetermined wirings 1 and 2 are formed by a photolithography process, and as shown in FIG. 18, using the wiring metals 1 and 2 as masks, the polycrystalline silicon 11
is selectively removed and heat treated to improve electrical contact. In this way, a complementary MOS semiconductor device is obtained. In this way, the complementary type according to the present invention
By using the manufacturing method of MOS semiconductor devices,
A complementary MOS semiconductor device having the above-mentioned advantages can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は従来技術によるシリコンゲート相補型
MOS半導体装置の断面図であり、第2図は本発
明に基く一実施例であるシリコンゲート相補型
MOS半導体装置の断面図である。また、第3図
a及び第3図bは、従来技術による拡散層とコン
タクト孔とが位置ズレした時のコンタクト部の平
面図及びA―A′矢視断面図であり、第4図a及
び第4図bは本発明による拡散層とコンタクト孔
とが位置ズレした時のコンタクト部の平面図及び
B―B′矢視断面図である。第5図乃至第18図
は、本発明に基く一実施例である相補型MOS半
導体装置の製造方法を順次工程順に説明する図で
ある。 なお、図において、1……ソース及びドレイン
用引き出しアルミニウム配線、2……アルミニウ
ムゲート電極、3……N型シリコン基板、4……
Pウエル、5……N型拡散層、6……P型拡散
層、7……P型不純物領域のシリコンゲート電
極、8……N型不純物領域のシリコンゲート電
極、9……フイールド部の二酸化シリコン、10
……ゲート部分の二酸化シリコン、11……ノン
ドープの配線用多結晶シリコン、12……ゲート
電極用多結晶シリコン、13……シリコン窒化
膜、14……配線用アルミニウム、15……開孔
されたコンタクト部、20,21……それぞれP
型およびN型不純物をイオン注入する状態を示す
矢印、30,31……それぞれP型およびN型不
純物領域を構成する部分を示す。
Figure 1 shows a silicon gate complementary type using conventional technology.
FIG. 2 is a cross-sectional view of a MOS semiconductor device, and FIG. 2 is a silicon gate complementary type, which is an embodiment based on the present invention.
FIG. 2 is a cross-sectional view of a MOS semiconductor device. Furthermore, FIGS. 3a and 3b are a plan view and a cross-sectional view taken along arrow A-A' of the contact portion when the diffusion layer and the contact hole are misaligned according to the prior art, and FIGS. FIG. 4b is a plan view and a sectional view taken along the line B-B' of the contact portion according to the present invention when the diffusion layer and the contact hole are misaligned. FIGS. 5 to 18 are diagrams illustrating, step by step, a method for manufacturing a complementary MOS semiconductor device according to an embodiment of the present invention. In the figure, 1... lead-out aluminum wiring for source and drain, 2... aluminum gate electrode, 3... N-type silicon substrate, 4...
P well, 5...N-type diffusion layer, 6...P-type diffusion layer, 7...Silicon gate electrode in P-type impurity region, 8...Silicon gate electrode in N-type impurity region, 9...Dioxide in field part Silicon, 10
...Silicon dioxide for gate portion, 11...Non-doped polycrystalline silicon for wiring, 12...Polycrystalline silicon for gate electrode, 13...Silicon nitride film, 14...Aluminum for wiring, 15...Opened hole Contact part, 20, 21...each P
Arrows 30, 31 indicating the state of ion implantation of type and N type impurities indicate portions constituting P type and N type impurity regions, respectively.

Claims (1)

【特許請求の範囲】[Claims] 1 一導電型のシリコン基板に逆導電型のウエル
領域を形成する工程と、第1チヤンネル型の第1
絶縁ゲート電界効果トランジスタのための第1多
結晶シリコンゲート電極を前記シリコン基板上
に、第2チヤンネル型の第2絶縁ゲート電界効果
トランジスタのための第2多結晶シリコンゲート
電極を前記ウエル領域上に、それぞれゲート絶縁
膜を介して形成する工程と、前記第1多結晶シリ
コンゲート電極をマスクにして前記シリコン基板
に前記逆導電型の第1ソース・ドレイン領域を形
成する工程と、前記第2多結晶シリコンゲート電
極をマスクにして前記ウエル領域に前記一導電型
の第2ソース・ドレイン領域を形成する工程と、
前記第1および第2多結晶シリコンゲート電極の
表面ならびに前記シリコン基板および前記ウエル
領域の表面を絶縁層で覆う工程と、前記絶縁層に
第1乃至第4コンタクト穴を形成して、前記第1
多結晶シリコンゲート電極の一部を前記第1コン
タクト穴によつて露出させ、前記第1ソース・ド
レイン領域の一部を前記第2コンタクト穴によつ
て露出させ、前記第2多結晶シリコンゲート電極
の一部を前記第3コンタクト穴によつて露出さ
せ、前記第2ソース・ドレイン領域の一部を前記
第4コンタクト穴によつて露出させる工程と、前
記逆導電型の不純物を前記第1コンタクト穴を介
して前記第1多結晶シリコンゲート電極にイオン
注入するとともに前記第2コンタクト穴を介して
前記第1ソース・ドレイン領域よりも浅くイオン
注入する工程と、前記一導電型の不純物を前記第
3コンタクト穴を介して前記第2多結晶シリコン
ゲート電極にイオン注入するとともに前記第4コ
ンタクト穴を介して前記第2ソース・ドレイン領
域よりも浅くイオン注入する工程と、その後、不
純物が添加されていない多結晶シリコン層を各コ
ンタクト穴に形成する工程と、前記多結晶シリコ
ン層上にアルミニウムを形成し熱処理する工程と
を含むことを特徴とする半導体装置の製造方法。
1. A step of forming a well region of an opposite conductivity type in a silicon substrate of one conductivity type, and a step of forming a well region of a first channel type.
a first polycrystalline silicon gate electrode for an insulated gate field effect transistor on the silicon substrate and a second polycrystalline silicon gate electrode for a second channel type second insulated gate field effect transistor on the well region. , a step of forming the first source/drain region of the opposite conductivity type on the silicon substrate using the first polycrystalline silicon gate electrode as a mask, and a step of forming the first source/drain region of the opposite conductivity type on the silicon substrate using the first polycrystalline silicon gate electrode as a mask. forming the second source/drain region of one conductivity type in the well region using the crystalline silicon gate electrode as a mask;
covering the surfaces of the first and second polycrystalline silicon gate electrodes and the surfaces of the silicon substrate and the well region with an insulating layer; forming first to fourth contact holes in the insulating layer;
A portion of the polycrystalline silicon gate electrode is exposed through the first contact hole, a portion of the first source/drain region is exposed through the second contact hole, and the second polycrystalline silicon gate electrode is exposed through the second contact hole. exposing a portion of the second source/drain region through the third contact hole and exposing a portion of the second source/drain region through the fourth contact hole; implanting ions into the first polycrystalline silicon gate electrode through the hole and implanting ions into the first source/drain region through the second contact hole; A step of implanting ions into the second polycrystalline silicon gate electrode through the third contact hole and implanting ions shallower than the second source/drain region through the fourth contact hole, and then adding impurities. 1. A method of manufacturing a semiconductor device, comprising: forming a polycrystalline silicon layer in each contact hole; and forming aluminum on the polycrystalline silicon layer and heat-treating the layer.
JP14760578A 1978-11-29 1978-11-29 Preparing interpolation type mos semiconductor device Granted JPS5574175A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14760578A JPS5574175A (en) 1978-11-29 1978-11-29 Preparing interpolation type mos semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14760578A JPS5574175A (en) 1978-11-29 1978-11-29 Preparing interpolation type mos semiconductor device

Publications (2)

Publication Number Publication Date
JPS5574175A JPS5574175A (en) 1980-06-04
JPH0127589B2 true JPH0127589B2 (en) 1989-05-30

Family

ID=15434100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14760578A Granted JPS5574175A (en) 1978-11-29 1978-11-29 Preparing interpolation type mos semiconductor device

Country Status (1)

Country Link
JP (1) JPS5574175A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5785226A (en) * 1980-11-18 1982-05-27 Seiko Epson Corp Manufacture of semiconductor device
JPS5810856A (en) * 1981-07-10 1983-01-21 Nec Corp Manufacture of complementary type semiconductor integrated circuit device
JPS5821858A (en) * 1981-07-31 1983-02-08 Nec Corp Manufacture of semiconductor device
JPS5885559A (en) * 1981-11-18 1983-05-21 Nec Corp C-mos semiconductor integrated circuit device
KR930009127B1 (en) * 1991-02-25 1993-09-23 삼성전자 주식회사 Semicondcutor memory device with stacked capacitor cells

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116675A (en) * 1975-04-05 1976-10-14 Fujitsu Ltd Manufacturing method for a semiconductor device
JPS51134566A (en) * 1975-05-17 1976-11-22 Fujitsu Ltd Semiconductor unit manufacturing process
JPS51137384A (en) * 1975-05-23 1976-11-27 Nippon Telegr & Teleph Corp <Ntt> Semi conductor device manufacturing method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51116675A (en) * 1975-04-05 1976-10-14 Fujitsu Ltd Manufacturing method for a semiconductor device
JPS51134566A (en) * 1975-05-17 1976-11-22 Fujitsu Ltd Semiconductor unit manufacturing process
JPS51137384A (en) * 1975-05-23 1976-11-27 Nippon Telegr & Teleph Corp <Ntt> Semi conductor device manufacturing method

Also Published As

Publication number Publication date
JPS5574175A (en) 1980-06-04

Similar Documents

Publication Publication Date Title
US4433468A (en) Method for making semiconductor device having improved thermal stress characteristics
US4306915A (en) Method of making electrode wiring regions and impurity doped regions self-aligned therefrom
KR870006673A (en) Fabrication process of self-aligned bipolar transistor structure
JPH0127589B2 (en)
JPH0581051B2 (en)
JPH05283687A (en) Production of semiconductor element
JPH06177376A (en) Manufacture of mos field-effect semiconductor device
JPH1064898A (en) Manufacturing method of semiconductor device
JPH1131665A (en) Manufacture of semiconductor integrated circuit
JPS6340374A (en) Mos-type semiconductor device and manufacture thereof
JPS624339A (en) Semiconductor device and manufacture thereof
JPH065696B2 (en) Method for manufacturing semiconductor device
JPH0616559B2 (en) Method for manufacturing semiconductor device
JPS6237543B2 (en)
JPS6154661A (en) Manufacture of semiconductor device
JPH0554263B2 (en)
JP2745946B2 (en) Method for manufacturing semiconductor integrated circuit
JPS626664B2 (en)
JPS61251164A (en) Manufacture of bi-mis integrated circuit
JPH01191478A (en) Manufacture of semiconductor device
JPS596579A (en) Semiconductor device
JPS62147777A (en) Manufacture of mos field effect transistor
JPS6212124A (en) Manufacture of semiconductor device
JPH11289082A (en) Semiconductor device and its manufacture
JPH0555475A (en) Semiconductor integrated circuit device and its manufacture